
RESEARCH Open Access

Artificial intelligence enables
comprehensive genome interpretation and
nomination of candidate diagnoses for rare
genetic diseases
Francisco M. De La Vega1,2,3 , Shimul Chowdhury4, Barry Moore5, Erwin Frise1, Jeanette McCarthy1,
Edgar Javier Hernandez5, Terence Wong4, Kiely James4, Lucia Guidugli4, Pankaj B. Agrawal6,7, Casie A. Genetti6,
Catherine A. Brownstein6, Alan H. Beggs6, Britt-Sabina Löscher8, Andre Franke8, Braden Boone9, Shawn E. Levy9,
Katrin Õunap10,11, Sander Pajusalu10,11, Matt Huentelman12, Keri Ramsey12, Marcus Naymik12, Vinodh Narayanan12,
Narayanan Veeraraghavan4, Paul Billings1, Martin G. Reese1*, Mark Yandell1,5* and Stephen F. Kingsmore4

Abstract

Background: Clinical interpretation of genetic variants in the context of the patient’s phenotype is becoming the
largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial
intelligence (AI) holds promise to greatly simplify and speed genome interpretation by integrating predictive
methods with the growing knowledge of genetic disease. Here we assess the diagnostic performance of Fabric
GEM, a new, AI-based, clinical decision support tool for expediting genome interpretation.

Methods: We benchmarked GEM in a retrospective cohort of 119 probands, mostly NICU infants, diagnosed with
rare genetic diseases, who received whole-genome or whole-exome sequencing (WGS, WES). We replicated our
analyses in a separate cohort of 60 cases collected from five academic medical centers. For comparison, we also
analyzed these cases with current state-of-the-art variant prioritization tools. Included in the comparisons were trio,
duo, and singleton cases. Variants underpinning diagnoses spanned diverse modes of inheritance and types,
including structural variants (SVs). Patient phenotypes were extracted from clinical notes by two means: manually
and using an automated clinical natural language processing (CNLP) tool. Finally, 14 previously unsolved cases were
reanalyzed.
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Results: GEM ranked over 90% of the causal genes among the top or second candidate and prioritized for review a
median of 3 candidate genes per case, using either manually curated or CNLP-derived phenotype descriptions.
Ranking of trios and duos was unchanged when analyzed as singletons. In 17 of 20 cases with diagnostic SVs, GEM
identified the causal SVs as the top candidate and in 19/20 within the top five, irrespective of whether SV calls were
provided or inferred ab initio by GEM using its own internal SV detection algorithm. GEM showed similar
performance in absence of parental genotypes. Analysis of 14 previously unsolved cases resulted in a novel finding
for one case, candidates ultimately not advanced upon manual review for 3 cases, and no new findings for 10
cases.

Conclusions: GEM enabled diagnostic interpretation inclusive of all variant types through automated nomination
of a very short list of candidate genes and disorders for final review and reporting. In combination with deep
phenotyping by CNLP, GEM enables substantial automation of genetic disease diagnosis, potentially decreasing
cost and expediting case review.

Background
A central tenet of genomic medicine is that outcomes
are improved when symptom-based diagnoses and treat-
ments are augmented with genetic diagnoses and
genotype-differentiated treatments. Worldwide, an esti-
mated 7 million infants are born with serious genetic
disorders every year [1]. The last decade witnessed a
huge increase in the catalog of genes associated with
Mendelian conditions, from about 2300 in 2010 [2], to
over 6700 by the end of 2020 [3]. The translation of that
knowledge, in conjunction with major improvements in
WES and WGS and downstream analytical pipelines, has
enabled increased rates of diagnosis, from about 10%,
with single gene tests, to over 50% [4]. While limitations
of read alignment and variant calling were major obsta-
cles to early clinical implementations of WES and WGS
[5], they have been largely removed by algorithmic ad-
vances, hardware acceleration, and parallelization
through cloud computing [6, 7]. However, clinical inter-
pretation of genetic variants in the context of the pa-
tient’s phenotype remains largely manual and extremely
labor-intensive, requiring highly trained expert input.
This remains a major barrier to widespread adoption
and contributes to continued low rates of genomic test-
ing for patients with suspected genetic disorders despite
strong evidence for diagnostic and clinical utility and
cost effectiveness [8].
The major challenge for genome-based diagnosis of

rare genetic disease is to identify a putative disease-
causing variant amid approximately four million benign
variants in each genome, a problem akin to finding a
needle in a haystack [9]. Clinical genome interpretation
is, by necessity, performed by highly trained, scarce, gen-
ome analysts, genetic counselors, and laboratory direc-
tors [10]. For an average of 100 variants for review per
case [11], this translates to 50–100 h of expert review
per patient [10]. In practice, this has led to review of
only about 10 variants per case, which somewhat defeats
the purpose of genome-wide sequencing.

The genome interpretation process consists of iterative
variant filtering, coupled with evidence-based review of
candidate disease-causing variants [12]. This process was
almost entirely manual until the advent of variant
prioritization algorithms, such as Annovar [13] and
VAAST [14], and was later improved by the integration
of patient phenotypes in analyses, e.g., Phevor [15], Exo-
miser [16], Phen-Gen [17], Phenolyzer [18], and more
recently Amelie [19]. While these tools accelerate review
times, their stand-alone performance has been insuffi-
cient for widespread clinical adoption, in part due to
their inability to appropriately interpret structural vari-
ants (SVs). SVs account for over 10% of Mendelian dis-
ease [20, 21], and about 20% of diagnoses in routine
neonatal intensive care unit (NICU) [22] and pediatric
patients [23]. Unified methods for prioritization of SVs,
SNVs, and small indels are a fundamental requirement
for further automation of genome interpretation.
The use of artificial intelligence (AI) has made signifi-

cant inroads in healthcare [24], and a new class of gen-
ome interpretation methods [19, 25–28] are being
developed with the promise of removing the interpret-
ation bottleneck for rare genetic disease diagnosis
through electronic clinical decision support systems
(eCDSS) [29]. Speed and accuracy of interpretation
are particularly important for seriously ill children in
the NICU [27], where diagnosis in the first 24–48 h
of life has been shown to maximally improve health
outcomes [30]. The settings and extent to which AI
facilitates diagnosis are still being investigated [27,
28]. Issues include what types of AI methods are
most suitable (e.g., Bayesian networks, decision trees,
neural nets [31]); how they compare with current
variant prioritization approaches in terms of accuracy;
their diagnostic performance across different clinical
scenarios and variant types; their potential to offer
new forms of decision support; and how well they in-
tegrate with automated patient phenotyping and clin-
ical decision making [27, 28, 32].
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Algorithmic benchmarking in this domain is no simple
matter. Hitherto, most attempts have used simulated
cases (created by adding known disease-causing variants
to reference exomes and genomes), included only a few
cases, derived from a single center, or were limited to
certain variant types [17, 33, 34]. Such benchmarking is
inherently limited, as it is not representative of the true
diversity of genetic diseases and variant types (e.g., by
omitting cases with causal SVs), and provide no means
to evaluate the impact of different sequencing and vari-
ant calling pipelines on performance.
Here we describe and benchmark the diagnostic per-

formance of Fabric GEM (hereafter referred to as
“GEM”), a new AI-based eCDSS, and compare it to
current variant prioritization approaches using a diverse
cohort of retrospective pediatric cases from the Rady
Children’s Institute for Genomic Medicine (RCIGM).
These cases are largely comprised of seriously ill NICU
infants; all were diagnosed with Mendelian conditions
following WGS (or, in a few cases, WES), using a com-
bination of filtering and variant prioritization ap-
proaches. These real-world cases encompass the breadth
of phenotypes and disease-causing variants, including
pathogenic SVs. We then sought to replicate the diag-
nostic performance of GEM in a second set of affected,
diagnosed, and undiagnosed children outside the NICU.
They were collected from five different academic med-
ical centers, mostly consisting of WES, to examine the
generalizability of GEM’s diagnostic performance to
other sequencing, variant calling pipelines, and clinical
settings. Finally, we reanalyzed a set of previously nega-
tive RCIGM cases to evaluate the ability of GEM to
identify new diagnoses without suggesting numerous
false positives that would lead to time-consuming case
reviews. Our results show that rapid, accurate, and com-
prehensive WGS- and WES-based diagnosis is achiev-
able through integration of new data modalities with
algorithmic innovations made possible by AI.

Methods
Patient selection, phenotyping, and specimen sequencing
This retrospective study was designed to provide bench-
mark data to test the GEM eCDSS. We compiled 119
cases from Rady Children’s Hospital (the Benchmark co-
hort), consisting of mostly NICU admissions, and 60
additional cases from five academic medical centers (the
Validation cohort), which consisted mostly of referrals
from genetic clinics and none included causal structural
variants, as described below.

Rady Children’s Hospital
In total, 119 cases with primary findings, deemed defini-
tively solved using previously published methods [27, 30,
35], and 14 negative cases, were sequenced as part of the

rapid-WGS (rWGS) sequencing program at the Rady
Children’s Hospital Clinical Genome Center. These cases
where a sample of convenience, drawn from the first
symptomatic children who were enrolled in four previ-
ously published studies that examined the diagnostic
rate, time to diagnosis, clinical utility of diagnosis, out-
comes, and health care utilization of rWGS between 26
July 2016 and 25 September 2018 at Rady Children’s
Hospital, San Diego, USA. One of the studies was a ran-
domized controlled trial of genome and exome sequen-
cing (ClinicalTrials.gov identifier: NCT03211039) [30];
the others were cohort studies (ClinicalTrials.gov identi-
fiers: NCT02917460, and NCT03385876) [35–40]. All
subjects had a symptomatic illness of unknown etiology
in which a genetic disorder was suspected, had a Rady
Children’s Hospital Epic EHR, and that had clinical
phenotype descriptions expressed as human phenotype
ontology terms both manually curated by clinicians and
automatically extracted by CNLP (Additional file 1:
Table S1).
WGS (or in a few instances WES) was performed as

previously described [35, 40]. Briefly, PCR-free WGS
was performed to an average of 40× coverage in the Illu-
mina HiSeq 2000, HiSeq 4000, and NovaSeq 6000 se-
quencers. Alignment and sequence variant calling were
performed using the Illumina DRAGEN software, while
copy number variation was identified through an ap-
proach that integrates the tools Manta [41] and CNVna-
tor [42]. Structural variants were then filtered for
recurrent artifacts observed in previous non-affected
cases and only included in the input VCF file if they
overlap a known disease gene (OMIM). All variants re-
ported as primary findings were validated orthogonally
by Sanger sequencing. In the case of trios, de novo ori-
gin of reported variants was established by comparing to
their parents’ data. In some older cases, SV calling was
not performed; any causal SVs therein were identified by
an orthogonal CGH microarray or manual inspection of
alignments. In what follows, we refer to these 119 cases
with primary findings as the Benchmark cohort, and the
14 negative cases as the Unsolved cohort.

Boston Children’s Hospital
Eleven cases (all single probands) from the Beggs Lab,
Congenital Myopathy Research Program laboratory, and
Manton Center for Orphan Disease Research at Boston
Children’s Hospital were included in the analysis [43–
48].
Libraries (TruSeq DNA v2 Sample Preparation kit;

Illumina, San Diego, CA) and whole-exome capture (EZ
Exome 2.0, Roche) were performed according to manu-
facturer protocols from DNA extracted from blood sam-
ples. WES was carried out on an Illumina HiSeq 2000.
Reads were aligned to the GRCh37/hg19 human genome
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assembly using an in-house assembler. Variants were
called using Gene Analysis Toolkit (GATK) version 3.1
or higher (Broad Institute, Cambridge, MA) and were
Sanger confirmed by the Boston Children’s Hospital
IDDRC Molecular Genetics Core Facility.

Christian-Albrechts University of Kiel
Twelve cases (all single probands) from the Institute of
Clinical Molecular Biology (IKMB) were included in the
analysis [49–55].
Illumina’s Nextera/TruSeq whole-exome target cap-

ture method was applied. WES was carried out on the
Illumina HiSeq/NovaSeq platforms. Reads were aligned
to the GRCh37/hg19 human genome assembly using
BWA-MEM version 0.7.17 and variants called using
GATK version 4.1.6.0 (Broad Institute, Cambridge, MA).

HudsonAlpha Institute for Biotechnology
Three cases (two trios and a single proband) from the
Clinical Services Laboratory at HudsonAlpha Institute
for Biotechnology, including cases from the Clinical Se-
quencing Evidence-Generating Research (CSER) consor-
tium, were included in the analysis [56–59].
WGS was carried out on an Illumina HiSeq X. Reads

were aligned to the GRCh37/hg19 human genome as-
sembly followed by variant calling using the Illumina
DRAGEN software version 3.2.8 (Illumina, Inc. San
Diego, CA).

Translational Genomics Research Institute
Twenty-three cases (including singletons, duos, trios,
and quads) from the Center for Rare Childhood Disor-
ders at The Translational Genomics Research Institute
(TGen) were included in the analysis [60, 61].
WES or WGS sequencing was carried out on an Illu-

mina HiSeq 2000, HiSeq 2500, HiSeq 4000, or Nova-
Seq6000. For WES, the Agilent SureSelect Human All
Exon V6 or CRE V2 target capture method was applied.
Reads were aligned to reference GRCh37 version hs37d5
and variants called using GATK Haplotype caller version
3.3-0-g37228af (Broad Institute, Cambridge, MA).

Tartu University Hospital
Eleven cases from Tartu University Hospital in Estonia
that had undergone WES were included in the analysis
[62–64].
Nextera Rapid Capture Exome Kit-i (Illumina Inc.) tar-

get capture method was applied. WES was carried out
on an Illumina HiSeq2500 sequencer. Reads were
aligned to the GRCh37/hg19 human genome assembly
using BWA-MEM version 0.5.9 and variants called using
GATK Haplotype caller version 3.4 (Broad Institute,
Cambridge, MA).

Variant annotation and data sources
All analyses were performed based on the GRCh37 hu-
man genome assembly. Variant consequences and anno-
tations were obtained with VEP v.95 [65] utilizing
ENSEMBL transcripts version 95 (excluding non-coding
transcripts) and selecting the canonical transcript for
analysis. Transcript-specific prediction for evaluating
variant deleteriousness was calculated with VVP [66],
which were also used as input for VAAST [14]. Variants
were annotated with ClinVar (version 20200419) [67]
ensuring exact position and base match. Gene conditions
were extracted from OMIM (version 2020_07) [68] and
HPO (obo file dated 2020-08-11) [69]. Gene symbols
were harmonized using ENSEMBL and HGNC databases
controlling for synonymous gene symbols.

AI-based disease gene and condition prioritization
AI-based prioritization and scoring of candidate disease
genes and diagnostic conditions was performed using
Fabric GEM [70], which is a commercially available
eCDSS part of the Fabric Enterprise platform (Fabric
Genomics, Oakland, CA). GEM inputs are genetic vari-
ant calls in VCF format and case metadata, including
(optional) parental affection status, and patient (pro-
band) phenotypes in the form of Human Phenotype
Ontology (HPO) terms. The VCF files can include “small
variants” (single nucleotide, multiple nucleotide, and
small insertion/deletion variants), and (optionally) struc-
tural variants (insertion/deletions of over 50 bp, inver-
sions, and/or copy number variants with imprecise
ends). This information can be provided via an applica-
tion programming interface or manually in the user
interface. Data analysis is typically carried out in minutes
depending on inputs. GEM outputs are displayed in an
interactive report (Additional file 2: Figure S1) that in-
cludes a list of candidate genes ranked by the GEM gene
score (see below), detailed information of patient vari-
ants present in each candidate gene, and conditions as-
sociated with each candidate gene ranked by GEM’s
condition match (CM) score (explained below).
GEM aggregates inputs from multiple variant

prioritization algorithms with genomic and clinical data-
base annotations, using Bayesian means to score and
prioritize potentially damaged genes and candidate dis-
eases. Briefly, the algorithm parametrizes itself using the
proband’s called variants as one-time, run-time training
data, inferring the states of multiple variables directly
from the input variant distribution, e.g., sex. Additional
static training parameters were derived from the 1000
Genomes Project [71] and CEPH [72] genome datasets.
GEM reevaluates genotype calls and quality scores con-
sidering read support, genomic location, proband sex,
and potentially overlapping SVs, augmenting the geno-
type calls with more nuanced posterior probabilities,
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computing ploidy for each variant. GEM also computes
the likelihood that the proband belongs to any of several
different ancestry groups using the input genotypes to-
gether with gnomAD sub-population variant frequency
data [73]. The probabilities of other, internal, variables,
conditioned on each state (sex and ancestry, etc.) are then
obtained using naive Bayes, controlling for non-
independence of variables by calculating a correlation
matrix at run time using the proband’s data. For example,
after conditioning variant scores on ancestry, known in-
heritance pattern for the gene in question, gene location,
and proband sex, GEM may conclude that a de novo vari-
ant is unlikely to participate in a disease-causing genotype,
even though it is predicted to be highly damaging. Thus,
highly damaging and de novo variants, even frameshifting
ones, do not automatically receive high GEM scores. GEM
uses the same procedure to evaluate and score biallelic ge-
notypes for known and novel disease-gene candidates.
The only difference is that the global prior (e.g., relative
proportion of known disease genes with autosomal reces-
sive vs. autosomal dominant inheritance patterns), rather
than OMIM and HPO support for a particular inheritance
pattern at that locus, is used to evaluate possible biallelic
cases in novel gene candidates.
GEM’s gene scores are Bayes factors (BF) [74]. Analo-

gous to the likelihood ratio test, a Bayes factor presents
the log10 ratio between the posterior probabilities of two
models, summarizing the relative support for the hy-
pothesis (in this case) that the prioritized genotype dam-
ages the gene in which it resides and that explains the
proband’s phenotype versus the contrapositional hypoth-
esis that the variant neither damages the gene nor ex-
plains the proband’s phenotype. In keeping with
established best practice [74], a log10 Bayes factor be-
tween 0 and 0.69 is considered moderate support, be-
tween 0.69 and 1.0 substantial support, between 1.0 and
2.0 strong support, and above 2.0, decisive support. A
score less than 0 indicates that the counter hypothesis is
more likely. For calculating the Bayes posterior p(M|D),
the probability of the data given a model (pD|M) is de-
rived from GEM’s severity scoring protocol, which in-
cludes input from the VAAST and VVP algorithms, and
any available prior variant classifications from the Clin-
Var database. This model is conditioned upon sex, an-
cestry, feasible inheritance model, gene location, and
gene-phenotype priors derived by seeding the provided
patient HPO terms to the HPO ontology graph and sub-
sequently obtaining priors for all genes in the HPO and
GO ontologies by belief propagation using Phevor’s pre-
viously described Bayesian network-based algorithm
[15]. The prior probability for the model (pM) is based
upon known disease associations in the Mendelian con-
ditions databases OMIM and/or HPO with the gene in
question.

GEM’s Bayes factor-based scoring system is designed
for ease of explanation and to speed interpretation.
GEM scores are not intended to be definitive, rather
they are designed to provide guidance for succinct case
reviews carried out by clinical geneticists. Thus, GEM
outputs also include several additional scores that pro-
vide additional guidance and improve explainability.
GEM gene scores, for example, are accompanied by
VAAST [14], VVP [66], and Phevor [15] posterior prob-
abilities, conditioned upon the potentially confounding
variables of proband sex, gene location, and ancestry, to-
gether with common variant genomic and clinical anno-
tations (Additional file 2: Figure S1). These scores
further ease interpretation, as they allow users to assess
the major drivers of a GEM score and their relative con-
tributions to it.
GEM also provides means to assess the Mendelian

conditions associated with putative disease-causing
genes as possible diagnoses via its condition match (CM)
scores. Like gene scores, CM scores are Bayes factors
and are derived from the log10 ratio of the posterior
probability that HPO phenotype associations for a given
Mendelian condition’s HPO are consistent with the pro-
band’s phenotype versus the contrapositional hypothesis.
For these calculations, the probability of the data,
p(D|M), is determined using Phevor’s Bayesian algo-
rithm to obtain a probability for each disease, condi-
tioned upon the proband’s phenotype. The prior
probability for the model, p(M), is the probability that
one or more genes associated with the Mendelian condi-
tion (as documented in OMIM and/or HPO) contain a
damaging genotype as ascertained by GEM’s severity
scoring protocol. Condition match scores are displayed
alongside each gene-associated condition for review
(Additional file 2: Figure S7).

Structural variant scoring and ab initio inference by GEM
At run time, GEM infers ab initio the existence of SVs,
their coordinates, and their copy numbers (ploidy) in a
probabilistic fashion using SNVs, sort indel calls, read
depths, zygosity, and gnomAD frequency data. GEM
searches the proband’s genotypes for evidence of three
types of SV: deletions, duplications, and CNVs. Regions
exhibiting loss of heterozygosity (LOH), for example, are
used as evidence for heterozygous deletions. Genomic
spans lacking expected variants, the signature of homo-
zygous deletions, are identified using gnomAD popula-
tion frequencies [73] to derive point estates that a given
gnomAD variant would or would not be ascertained
given its population frequency. Further evidence for du-
plications and deletions is derived from read support,
e.g., approximately integer increases or decreases in
depth across a region provide support for copy number
variation. Point estimates at each site of a small variant
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call are further conditioned upon provided variables,
such as genotype qualities, and inferred ones, such as
sex and ancestry, to obtain more refined estimates. High
scoring segments and their maximum likelihood start
and end coordinates are identified using a Markov
model [75]. The results are used to determine the degree
of support for external SV calls, and as the basis for
GEM’s own SV calls. For ease of reporting, ab initio SV
calls that overlap an external SV call (default minimum
reciprocal overlap of 33%) are replaced in the output by
the external SV call as long as they still overlap the rele-
vant scored genes.

Benchmarking variant prioritization with VAAST, Phevor,
and Exomiser
We used the Snakemake software [76] to create a work-
flow that analyzes cases with the VAAST, Phevor, and
Exomiser algorithms. This workflow was only applied to
the benchmark cohort to enable us to compare the per-
formance of four genome interpretation tools with
exactly the same inputs and annotations. The pipeline
starts with a VCF file, family structure, affection status,
and HPO terms and concludes with the outputs for each
of the algorithms. VVP scores were obtained as de-
scribed above and provided to VAAST as input. VAAST
was provided pedigree information and affection status
and was run in both dominant and recessive modes with
results aggregated. Gene ranks for VAAST are reported
for the highest scoring occurrence of the gene from ag-
gregated outputs. Phevor was provided with HPO terms
and VAAST scores as inputs. Ranks were selected as de-
scribed for VAAST.
Exomiser [16] benchmark analyses were run with the

same configuration used in the 100,000 Genomes Project
[77], specifically (1) using the GRCh37 genome assem-
bly; (2) analyzing autosomal and X-linked forms of dom-
inant and recessive inheritance; (3) allele frequency
sources from the 1000 Genomes Project [78], TopMed
[79], UK10K [80], ESP, ExAC [81], and gnomAD [73]
(except Ashkenazi Jewish); (4) pathogenicity sources
from REVEL [82] and MVP [83]; and (5) including the
steps failedVariantFilter, variantEffectFilter (remove
non-coding variants), frequencyFilter with maxFre-
quency = 2.0, pathogenicityFilter with keepNonPatho-
genic = true, inheritanceFilter, omimPrioritiser, and
hiPhivePrioritiser.
Exomiser was considered to have identified the diag-

nosed gene when it was scored as a candidate for any of
the utilized modes of inheritance. None of the tools in
this analysis were provided a target mode of inheritance
(as it is unknown), and so the diagnostic gene rank for
Exomiser was determined from its rank within the com-
bined gene candidate list from all modes of inheritance
(i.e., the same procedure used for VAAST and

PHEVOR). The ranks within the combined list of candi-
date genes were generated by sorting gene-level candi-
dates from all modes of inheritance on the Exomiser
combinedScore in descending order with each candidate
gene only added to the list on its first, highest scoring
occurrence. Exomiser variant level scoring was not con-
sidered for determining candidates or ranking. All Exo-
miser analyses on the benchmark cohort ran to
completion and successfully produced output; however,
in 18 cases, Exomiser did not identify the true positive
diagnostic gene as a scored candidate (i.e., it was absent
from its output). A similar phenomenon was observed in
4 cases using VAAST. For both tools, these cases were
considered false negatives.

Impact of deep phenotypes derived from clinical NLP
The utility of HPO terms was investigated by rerunning
all analyses from the benchmark cohort with three sets
of HPO terms. The motivations for these analyses were
first to determine how sensitive GEM is to phenotyping
errors; and second, to compare the utility of CNLP-
derived descriptions to manual ones. For each case, an
HPO terms list was provided that included HPO terms
manually curated by the analysis team when the case
was originally solved. A second set of HPO terms was
generated from NLP analysis of clinical notes related to
the case using the CLiX ENRICH software (Clinithink,
Alpharetta, GA) [28]. A randomized set of HPO terms
was generated for each case whereby the number of
HPO terms from the CliniThink analysis case was held
constant, and alternate terms were randomly selected
from the entire corpus of HPO terms across all samples
with each selection probability determined by the num-
ber of times that term occurred in the corpus.

Results and discussion
GEM AI outperforms variant prioritization approaches
We benchmarked GEM, an AI-based eCDSS, using a co-
hort of 119 pediatric retrospective cases from Rady Chil-
dren’s Institute for Genomic Medicine (RCIGM;
benchmark cohort). Most of these were critically ill
NICU infants who received genomic sequencing for
diagnosis of genetic diseases. All had been diagnosed
with one or more Mendelian conditions using a combin-
ation of manual filtering and variant prioritization ap-
proaches (“Methods”). To further validate performance,
we also analyzed a second cohort comprised of 60 non-
NICU, rare disease patients from five different academic
medical centers (validation cohort). Finally, we reana-
lyzed a set of 14 previously analyzed probands that had
remained undiagnosed by WGS. Our goal was to evalu-
ate the ability of GEM to identify new diagnoses in these
previously unsolved cases, without providing false posi-
tive findings that would result in time-consuming case
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reviews. To provide context for our performance bench-
marks, we also ran three commonly used variant
prioritization tools: VAAST [14], Phevor [15], and Exo-
miser [16].
The benchmark and validation cohorts included

singleton probands, parent-offspring trios, different
modes of inheritance, and both small causal variants
(SNVs, and small insertions or deletions, indels; Table 1;
Additional file 1: Table S1) and large structural variants
(SV), some of which were causative (Table 2). In these
retrospective analyses, we considered the variants, dis-
ease genes, and conditions that were included as primary
findings in the clinical report as the “gold standard”
truth set.
GEM gene scores are Bayes factors (BF) [84]; these

were used to rank gene candidates (Additional file 2:
Figure S1). BFs are widely used in AI, as they concisely
quantify the degree of support for a conclusion derived
from diverse lines of evidence. In keeping with estab-
lished practices [84], a BF of 0–0.69 was considered
moderate support, 0.69–1.0 substantial support, 1.0–2.0
strong support, and above 2.0, decisive support [84].
Scores less than 0 indicated support for the counter hy-
pothesis—that variants in that gene were not causal for
the proband’s disease. GEM outputs also include several
annotations and metrics that provide additional, sup-
portive guidance for subsequent expert case review
(Additional file 2: Figure S1). Experience has shown that
such guidance is critical for adoption by experts who
wish to review the evidence supporting automated vari-
ant assertions. These include VAAST, VVP, and Phevor
posterior probabilities, conditioned upon proband sex,
gene location, and ancestry. Annotations include variant
consequence, ClinVar database pathogenicity assess-
ments, and OMIM conditions associated with genes.

This metadata enables expert users to review the
major contributions underpinning a final GEM score.
Moreover, GEM prioritizes diplotypes, rather than
variants, which speeds interpretation of compound
heterozygous variants in recessive diseases (Additional
file 2: Figure S1B). Comparison of the diagnostic per-
formance of GEM to variant prioritization methods
utilized ranking of the correct diagnostic gene. We
assumed that in the case of compound heterozygotes,
variant prioritization methods such as Exomiser
would rank one variant of the pair highly, leading to
identification of the other upon manual review
(“Methods”).
GEM ranked 97% of previously reported causal gene(s)

and variant(s) among the top 10 candidates in the 119
benchmark cohort cases. In 92% of cases, it ranked the
correct gene and variant in the top 2 (Fig. 1A). By com-
parison, the next best algorithm, Phevor, identified 73%
of causal variants in the top 10 candidates and 59% in
the top 2. GEM, Phevor, and Exomiser prioritize results
by patient phenotypes (provided as HPO terms) in
addition to variant pathogenicity, whereas VAAST only
utilizes genotype data, explaining its lower performance.
Thus, these data also highlight that patient phenotypes
improve the diagnostic performance of automated inter-
pretation tools.
The benchmark cohort included 3 cases for which two

genes were reported to contribute to the patient pheno-
type. This rate (2.5%) is consistent with previous reports
for digenic inheritance [85]. The statistics above use the
top ranked genes in these cases, but Additional file 1:
Table S3 shows that GEM also ranked the second causal
gene among its top candidates, whereas Phevor reported
poor ranks in one case, and Exomiser missed the second
gene in two out of the three cases.

Table 1 Characteristics of case cohorts. Benchmark cohort, 119 cases total. Validation cohort, 60 cases total. Grand total, 179 cases

Assay type Variant type Proband sex Pedigree Type

Mode of inheritance WGS WES SNV/Indel SV Male Female Single Duos Trios

Benchmark cohort

Autosomal dominant 70 11 66 15 36 45 35 6 40

Autosomal recessive 27 – 23 4 14 13 9 1 17

X-linked dominant 6 – 5 1 1 5 2 – 4

X-linked recessive 5 – 5 – 5 – 2 1 2

Sub-totals 108 11 99 20 56 63 48 8 63

Validation cohort

Autosomal dominant 3 34 37 – 10 27 15 2 20

Autosomal recessive 1 14 15 – 5 10 9 – 6

X-linked dominant 1 5 6 – 3 3 1 3 2

X-linked recessive – 2 2 – 2 – 1 – 1

Sub-totals 5 55 60 0 20 40 26 5 29
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Table 2 Diagnostic structural variants identified by GEM in the benchmarking cohort (20 out of 119 cases). Structural variants are
ranked by GEM based on the genes harbored by the variant and presented alongside other ranked genes with coding SNVs or
small indels based on the top scored gene. The asterisk indicates genes that in the literature are candidates for the phenotype of
the diagnostic disease/syndrome (as described in OMIM). The results show that GEM can analyze both deletions (del) and
duplications (dup) of sizes as small as 4 kb and up to entire chromosome arms, diverse modes of inheritance, pedigree structure,
and from either WGS or WES assay data. GEM also automatically identified compound heterozygotes between SVs and SNV/indels
(cases 1, 2, and 8). Input SV calls can include breakpoint-based calls (here “SV”), or imprecise CNV calls based on read depth analysis.
Notably, GEM can also infer SVs directly from the small variant data when external SV calls are not provided (cases 2, 10, 15, and 17),
and score them appropriately, identifying diagnostic variants that in the original cases were found by microarrays and not by
sequencing

Case
no.

Top
scored
gene(s)

Gene
rank

GEM
score

Variant(s) position SV
type

Length
(kb)

Mode of
Inheritance

Pedigree
type

Assay
type

SV calls
in
input

Diagnosis

252268 FANCA* 1 2.28 chr16:89847864-89863349;
FANCA: c.3788_
3790delTCT

Del 15 Recessive Trio WGS SV Fanconi anemia

223449 TANGO2* 1 2.13 chr22:20028937-20057143;
TANGO2: c.605+1G>A

Del 28 Recessive Trio WGS None MECRCN

266523 BTRC* 1 2.05 chr10:102941001-
103430600

Dup 490 Dominant Duo WGS SV Split hand/foot
malformation type 3

267392 HIRA,
TBX1*

1 2.05 chr22:18893883-21562619 Del 2669 Dominant Single WES CNV DiGeorge syndrome;
velocardiofacial
syndrome

267148 KMT2A 1 1.87 chr11:116691508-
126432828; chr22:
17038511-20307516

Dup 9741;
3269

Dominant Trio WES CNV Emanuel syndrome

253691 HIRA,
TBX1*

1 1.73 chr22:18893883-20307516 Del 1414 Dominant Single WES CNV DiGeorge syndrome;
velocardiofacial
Syndrome

256943 MAGEL2* 1 1.64 chr15:22833478-28566610 Del 5733 Dominant Single WES CNV Prader Willi syndrome

254012 NDUFS3* 1 1.56 chr11:47605229-47609177;
NDUFS3: c.374G>A

Del 4 Recessive Trio WGS SV Leigh syndrome

254728 EPHA4 2 1.46 chr2:220309089-
224580863

Del 4272 Dominant Single WGS SV Pathogenic deletion in
2q35q36.1

44671 NPAP1 1 1.42 chr15 tetrasomy (broken
in multiple dups)

Dup 4542;
991; 358;
158

Dominant Trio WGS None Isodicentric
chromosome 15
syndrome

360547 FREM1 1 1.33 chr9:1-18477200 Del 18,437 Dominant Trio WGS SV Chromosome 9p
deletion syndrome

259685 TYROBP 1 1.31 chr19:23158251-33502767 Dup 10,345 Dominant Trio WES SV Partial trisomy
19p12.q13.11

266700 TAB2 1 1.31 chr6:144951601-
150260400

Del 5309 Dominant Trio WGS SV Chromsome 6q24-q25
Syndrome

244102 MAGEL2* 1 1.28 chr15:23684685-26108259 Del 2424 Dominant Single WES CNV Prader Willi syndrome

204560 JAG1* 2 1.21 chr20:10471400-13459333 Del 44 Dominant Trio WGS None Alagille syndrome

246146 HCN1 1 1.20 chr5:213101-46,270,700 Dup 44 Dominant Single WGS SV Trisomy 5p

45020 PCDH19* 1 1.15 chrX:92925011-99669272 Del 6744 X-linked
dominant

Trio WGS None Developmental and
epileptic
encephalopathy 9

248678 FANCC* 1 1.14 chr9:97998556-98009092 Del 11 Recessive Single WGS SV Fanconi Anemia

352726 THRA 1 1.00 chr17:32147833-79020944 Dup 46,873 Dominant Proband WGS SV Distal trisomy 17q

251355 TRIP11 4 0.58 chr14:84783523-96907490 Del 12,124 Dominant Duo WGS SV Chromosome
14q31.2q32.2
Syndrome
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Next, we investigated whether the diagnostic perform-
ance of GEM extended to Mendelian diseases other than
those of NICU infants, such as patients with later disease
onset, less severe presentations, or with data produced
by other variant calling pipelines or outpatient genetic
clinics. For these analyses, we compiled a validation co-
hort largely consisting of WES cases from five different
academic medical centers (Table 1; Additional file 1:
Table S2). The diagnostic performance of GEM in the
validation cohort was almost identical to that in the
benchmark cohort (Fig. 1B). These data demonstrated
that the diagnostic performance of GEM was not
dependent of disease severity, age of onset, or genomic
sequencing or variant detection methods.
An implication of these findings is that GEM achieved

97% recall (true positive rate) by review of 10 genes,
whereas the other tools had < 78% recall by similar re-
view (Fig. 1, Additional file 2: Figure S2). In part, this
difference reflected the unique ability of GEM to
prioritize SVs. Excluding SV cases, GEM, Phevor, and
Exomiser achieved recall of 97%, 83%, and 76%, respect-
ively, by review of 10 genes (Additional file 2: Figure
S3A). Furthermore, VAAST and Exomiser failed to pro-
vide rankings for 4 and 18 true positive variants, respect-
ively. Exclusion of false negatives and SV cases increased
the top 10 recall of Exomiser to 93% (Additional file 2:
Figure S3B), in agreement with previous reports [86].
These data show the importance of including all types of
cases and causal variants in benchmarking to avoid over-
estimation of diagnostic performance in real-world clin-
ical applications.

Scoring of structural variants increases diagnostic rate
A major barrier to the incorporation of SV calls into
genome diagnostic interpretation, whether manual or

using eCDSS, is their low precision (high false positive,
FP, rates) using short read alignments, with typical FP
rates of 20–30% [87, 88]. This leads to overwhelmingly
time-consuming, manual assessment of event quality
and significance for large numbers of SVs. GEM mini-
mizes the effect of low precision by scoring SVs either
with SV calls provided in the proband’s input VCF file,
and/or by inferring ab initio their existence from meta-
data associated with SNV and indel calls (“Methods”; see
below). The benchmark cohort included 20 cases in
which SVs were reported to be causative, reflecting a
similar incidence to that in real-world experience (Fig.
1A, Table 2) [20–23]. In 17 of these, the causative SV
was ranked first by GEM. In two, it was ranked second,
and in one it was listed fourth, demonstrating that GEM
retains adequate diagnostic performance with imprecise
SV calls. The disease-causing SVs in the benchmark set
ranged from small (4 kb) to very large (e.g., entire
chromosome arms). In three cases, the diagnosis was of
an autosomal recessive disorder in which the SV was
compound heterozygous with a SNV/indel. In each,
GEM integrated the two variants correctly, automatically
identifying the causative diplotypes (Additional file 2:
Figure S5). With regard to the diagnostic specificity of
GEM, the mean and median number of gene candidates
for these probands with BF > 0 (any support) was 8.7
and 9.5, respectively, which was similar to probands
whose VCF files contained no SVs, causative or
otherwise.
Large SVs frequently affect more than one gene. For

consistency with other variant classes, genes within mul-
tigenic SVs are grouped and sorted by GEM based upon
the gene-centric Bayes factor score associated with the
overlap of the proband phenotype and known Mendelian
disorders (if any) associated with them (“Methods”). For

Fig. 1 The diagnostic sensitivity of GEM was greater than the variant prioritization methods Phevor, Exomiser, and VAAST. A Proportion of the
benchmark cohort of 119 cases where the true causal genes (or variants in the case of causal SVs) were identified among the top 1st, 2nd, 5th, or
10th gene candidates. Patient phenotypes were extracted manually from medical records by clinicians and provided as HPO term inputs to GEM,
Exomiser, and Phevor. VAAST only considers variant information. It should be noted that GEM and Phevor ranks correspond to genes, which may
include one or two variants (the latter in the case of a compound heterozygote), whereas Exomiser and VAAST ranks were for single variants. In
the case of compound heterozygotes, the rank of the top-ranking variant is shown for Exomiser and VAAST. B Comparison of GEM performance
in the validation cohort (excluding SV cases) versus the validation cohort (comprised of 60 rare genetic disease cases from multiple sources)
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example, Additional file 2: Figure S4 shows a case that
highlights the practical utility of prioritizing genes har-
boring causative SVs together with SNVs and short
indels in the same report, rather than separately cross-
referencing with databases of microdeletion syndromes
[89]. While it is often unknown which genes harbored in
a pathogenic SV are causal for microdeletion/microdu-
plication syndromes, GEM’s gene-by-gene rankings typ-
ically agreed with causal gene candidates suggested by
the literature (asterisks in Table 2).
By default, GEM evaluates every gene and transcript

for the presence of overlapping SVs. Notably, four
benchmark cases did not include externally called SVs in
their input VCFs (these had been previously diagnosed
by manual inspection and orthogonal confirmatory tests;
Table 2). Nevertheless, GEM inferred the existence of
these four SVs using its ab initio SV identification algo-
rithm and evaluated them jointly with SNVs and indels
(“Methods”). To further demonstrate this innovative
functionality, we removed all external SV calls from each
input VCF file of the 14 WGS cases (as GEMs ab initio
SV imputation is currently limited to WGS data) and re-
ran GEM. GEM re-identified 13 of the 14 of the causa-
tive SVs. Although GEM’s inferred SV termini were
imprecise, an overlapping SV of the same class (duplica-
tion, deletion, or CNV) and ploidy to that in the original
VCF was inferred, and the same high scoring gene and
mode of inheritance/genotype (autosomal dominant,
simple recessive, or compound heterozygote) was ranked
first. SV recall within the top 1, 5, and 10 ranked GEM
results were 71%, 86%, and 93%, respectively. The single
false negative was a small (4 kb) homozygous deletion.
GEM failed to identify this SV because it did not span
sites with known variation in the gnomAD database
[73], upon which ab initio SV inference is based
(“Methods”). With regard to specificity, the mean and me-
dian number of results with genes with BF > 0 in these
cases was 10.6 and 12.5, respectively. These values differed
only slightly from the results obtained using external SV
calls (8.7 and 9.5, respectively), despite the fact every gene
and transcript was evaluated for the presence of SVs.
Collectively, these results demonstrate the accuracy of

GEM’s ab initio approach to identification and
prioritization of SVs without recourse to external calls and
databases of known causative SVs. Thus, GEM compen-
sates, in part, for the low recall of SVs from short-read se-
quences. If an external SV calling pipeline fails to detect an
SV, there is still the possibility that GEM will identify it via
this ab initio approach. This capability, together with
GEM’s ability to accurately prioritize SVs in the context of
SNVs and short indels, addresses an unmet need for clinical
applications. This characteristic also makes GEM well
suited for reanalyses of older cases and/or pipelines lacking
SV calling.

Leveraging automated phenotyping from clinical natural
language processing
Ontology-based phenotype descriptions, using Human
Phenotype Ontology (HPO) terms [69], are widely used
to communicate the observed clinical features of disease
in a machine-readable format. These lists of terms are
usually derived by manual review of patient EHR data by
trained personnel, a time-consuming, subjective process.
A solution is automatic extraction of patient phenotypes
from clinical notes using clinical natural language pro-
cessing (CNLP) [28, 90]. One challenge has been that
CNLP generates many more terms than manual extrac-
tion. Thus, manual curation yielded an average of 4
HPO terms (min = 1, max = 12) in the benchmark co-
hort, while CNLP yielded an average of 177 HPO terms
(min = 2, max = 684). Some of the extra CNLP terms
are hierarchical parent terms of those observed, raising
the concern that their inclusion diminishes the average
information content in a manner that could impede
diagnosis [27]. To investigate the effect of CNLP-derived
HPO terms on GEM’s performance, we analyzed the
benchmark cohort both with HPO terms extracted by
commercial CNLP (“Methods”) and manually extracted
HPO terms.
Figure 2 shows the distributions and medians for ranks

and GEM gene scores of true positives, as well as the
number of gene candidates with BF ≥ 0.69 (moderate
support), for manual and CNLP terms. The median rank
of the causal genes did not significantly differ between
CNLP- and manually derived phenotype descriptions
(Fig. 2A). The median GEM gene score of true positives
was higher with CNLP-derived phenotypes than with
manual phenotypes (Fig. 2B). The number of candidates
above the BF threshold was higher with manual pheno-
types than CNLP (Fig. 2C). CNLP rescued a few true
positives with low ranks and negative BF scores com-
pared to manual phenotype descriptions (Fig. 2A, B).
These results demonstrate that GEM performs some-
what better with CNLP-derived phenotype descriptions
as part of an automated interpretation workflow, than
with sparse, manual phenotypes.

Resilience to mis-phenotyping and gaps in clinical
knowledge
Given the potentially noisy nature of the CNLP pheno-
type descriptions, it was important to examine the sensi-
tivity of GEM to mis-phenotyping. To address this
question, we randomly permuted CNLP-extracted HPO
terms between cases, weighting by term frequency
within the cohort, so that every case maintained the
same number of HPO terms as CNLP originally pro-
vided. Permuting HPO terms resulted in lower gene
scores, and several cases would have been lost for review
had the gene score threshold of BF ≥ 0 still been used,
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but ranks are unaffected (98% in top 10; Fig. 3). This
represented lower bound estimates, as actual mis-
phenotyping (short of data tracking issues) would be
much less. It is also worth noting that even using ran-
domly permuted phenotype descriptions, GEM’s per-
formance still exceeded that of Phevor and Exomiser
using the correct phenotypes (Additional file 2: Figure
S2). We therefore conclude that GEM is resilient to mis-
phenotyping.
We also evaluated the impact of gaps in clinical know-

ledge on GEM performance by withdrawing annotations
from a key clinical database, ClinVar. Absence of Clin-
Var annotations had minimal impact in ranking, al-
though it reduced median gene scores (1.1 vs. 2.7),

resulting in 9 cases no longer meeting the minimum
Bayes factor threshold ≥ 0 (any support; Fig. 3). Clearly,
ClinVar provided GEM with valuable information.
Nonetheless, without ClinVar, GEM’s top 10 maximal
recall (88%) still exceeded that of Phevor (72%) and Exo-
miser (65%; Fig. 1). More broadly, these results show
that integrating more datatypes in GEM improves diag-
nostic performance and results in greater algorithmic
stability (Figs. 2 and 3).
About 70% (86/122) of the disease-causing variants in

the benchmarking dataset are reported in ClinVar with
pathogenic (P) or likely pathogenic (LP) clinical signifi-
cance annotations. Moreover, each proband’s whole-
genome variant set contained on average 1.9 variants

Fig. 2 Comparison of GEM performance with manually curated and CNLP-derived HPO terms in the benchmark cohort. Distribution of ranks for
causal genes (A); GEM Bayes factors for causal genes (B); and number of candidates (hits) at BF ≥ 0.69 threshold (moderate support) (C). The
black line in the graphs denotes the median. The asterisks represent statistical difference between the groups with p < 0.0001 from a two-tailed
Wilcoxson matched pairs signed rank test (ranks showed no statistically significant difference)

Fig. 3 Impact of missing data and mis-phenotyping on GEM performance in the benchmark cohort. Causal gene rank (A); Bayes factors for causal
genes (B); and number of candidates (hits) above gene BF ≥ 0.69 threshold (moderate support) (C) under standard conditions, withdrawing
ClinVar information, and permuting HPO terms extracted by CNLP. The black line in the graphs denotes the median
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with ClinVar P/LP annotations. These two facts under-
score the importance of ClinVar annotations for assist-
ing diagnosis. They also make clear that tools that
leverage ClinVar information need to avoid false posi-
tives which lead to longer candidate lists as non-causal
genes also contain ClinVar P/LP variants. Additional file
1: Table S4 breaks down results for the benchmark co-
hort with respect to ClinVar annotations of causal vari-
ants. Overall, mean, and median ranks were slightly
improved for diagnostic variants with ClinVar P/LP an-
notations vs. those without them (mean 1 vs. 3), with
GEM showing the greatest improvement in ranks. More-
over, GEM maintained the same number of candidates
with GEM gene score > 0 for both classes [10], demon-
strating that GEM can use ClinVar status to improve
diagnostic rates without increasing the number of candi-
dates for review.

GEM performs equivalently on parent-offspring trios and
single probands
Parent-offspring trios are widely used for molecular
diagnosis of rare genetic disease. While a recent study
showed that singleton proband sequencing returned a
similar diagnostic yield as trios [91], interpretation of
trio sequences is less labor-intensive. For example, trios
enable facile identification of de novo variants, which is
the leading mechanism of genetic disease in outbred
populations [92]. Likewise, in recessive disorders, pro-
band compound heterozygosity can be automatically dis-
tinguished from two variants in cis. However, these
benefits are associated with increased sequencing costs.
Moreover, both parents are not always available for se-
quencing or do not wish to have their genomes
sequenced.

To understand how GEM performs in the absence of
parental data, we reanalyzed the 63 trio and duo cases
from the benchmark cohort as singleton proband cases.
Surprisingly, we observed insignificant differences in the
mean rank of the causal gene (Fig. 4A), GEM score of
the causal gene (Fig. 4B), or number of candidates with
BF ≥ 0.69 (Fig. 4C), using either manually or CNLP-
extracted HPO terms. In contrast, this reanalysis was as-
sociated with a decline in the performance of Exomiser
(Additional file 2: Figure S6). These analyses demon-
strated that GEM was resilient to the absence of parental
genotypes, a feature that could increase the cost effect-
iveness and adoption of WGS.

GEM scores optimize case review workflows
Conventional prioritization algorithms rank variants, en-
abling manual reviewers to start with the top ranked var-
iants, and work their way down in the list until a
convincing variant is identified for further curation, clas-
sification, and possible clinical reporting. This review
process typically involves (a) assessing variant quality,
deleteriousness, and prior clinical annotations; (b) evalu-
ating whether there is a reasonable match between the
phenotypes exhibited by the patient and those reported
for condition(s) known to be associated with defects in
the corresponding gene; and (c) considering the match
in mode(s) of inheritance reported in the literature for
the candidate disease and the patient’s diplotype.
GEM accelerates this process, because it intrinsically

considers variant quality, deleteriousness, prior clinical
annotations, and mode of inheritance. Furthermore, at
manual review, GEM gene scores summarize the relative
strength of evidence supporting the hypothesis that the

Fig. 4 Comparative performance of parent-offspring trios or duos vs. singleton probands in the benchmark cohort. Causal gene rank (A); Bayes
factors (B); and number of candidates (hits) above gene BF ≥ 0.69 (moderate support) (C) for 63 cases analyzed as parent-offspring trios (n = 59)
or duos (n = 4), as compared with analysis as single probands, using both manually curated or CNLP-derived HPO terms. The black line in the
graphs denotes the median. No statistically significance difference between the any manual/CNLP groups was found between trios versus single
probands using the two-tailed Wilcoxson matched pairs signed rank test
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gene is damaged and that this explains the proband’s
phenotype.
GEM scores provide a logical framework for setting

thresholds with regard to the optimal number of candi-
dates that should be reviewed to achieve a desired diag-
nostic rate. This enables laboratory directors and
clinicians to dynamically set optimal tradeoffs of inter-
pretation time and diagnosis rate for specific patients,
relative to their suspicion of a genetic etiology or results
of other diagnostic tests.
We examined the effect of different BF thresholds on

recall (true positive rate) and median number of gene
candidates for review in the benchmark cohort (Fig. 5).
In such analyses, it is germane to consider the concept
of maximal true positive rate (or recall) to measure the
theoretical proportion of true positive diagnoses recover-
able by perfect interpretation when reviewing a set of N
genes containing the true positive. For example, in the
benchmark dataset, a GEM causal gene score threshold
≥ 0 would retain a median of ten candidates for review
and provide a 99% maximal recall; whereas a threshold
of ≥ 0.5 would retain a median of four candidates for re-
view for a 97% maximal recall (Fig. 5).
These results illustrate how a tiered approach to case

review using GEM gene scores could minimize the num-
ber of candidate genes to review, and, thereby manual
interpretation effort. For example, a first pass review of
candidates with a gene BF ≥ 0.69 provided an expected
95% diagnostic rate (and a corresponding median of 3
genes to be manually reviewed). If followed by a second
pass using a threshold > 0, if no convincing candidates
are found, an additional 4% possible diagnoses would be

recovered, involving review of a median increment of
seven genes. Application of this two-tiered approach to
the benchmark dataset of 119 cases (Fig. 1), required
manual final review of 395 candidate genes (3 genes in
115 cases and 10 genes in 5 cases), or an average of 3.3
candidate genes per case, for a maximal recall of 99%.
Finally, review of candidates with BF < 0 recovered the
last true positive in the benchmark cohort (COL4A4,
ranked 40th in the GEM report with a BF = − 0.6. This
case was a phenotypically and genotypically atypical
autosomal dominant presentation of Alport syndrome 2
(MIM 203780).

Clinical decision support for diagnosis
Quantifying how well the observed phenotypes in a pa-
tient match the expected phenotypes of Mendelian con-
ditions associated with a candidate gene is challenging
for clinical reviewers and is a major interpretation
bottleneck. In practice, clinicians look for patterns of
phenotypes, biasing their observations. In addition, pa-
tient phenotypes evolve as their disease progresses. And
there is considerable, disease-specific heterogeneity in
the range of expected phenotypes. Simply comparing
exact matches of the patient’s observed HPO terms with
those expected for that disease is suboptimal, because
the observed and expected HPO terms are often hier-
archical neighbors, rather than exact matches. Missing
terms, particularly those considered pathognomonic for
a condition, and “contradictory” terms further compli-
cate such comparisons by clinicians. Thus, generation of
quantitative, standardized, unbiased models of disease
similarity has proven elusive.

Fig. 5 Trade-off between GEM gene scores, maximal true positive rates, and number of candidates for review in the benchmark cohort. GEM
gene scores are Bayes factors (BF) that can be used speed case review. A Gene maximal true positive rate achieved at the different BF thresholds
(Y-axis). B Median number of candidate genes for review at each BF threshold. As the BF threshold is decreased, true positive rate increases, while
the number of candidates to review remains manageable. Input HPO terms for this analysis were extracted by CNLP
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GEM can automate or provide clinical decision sup-
port for this process via a condition match (CM) score
(“Methods”). The GEM CM score summarizes the match
between observed and expected HPO phenotypes for
genetic diseases and considers the known mode(s) of in-
heritance, associated gene(s), their genome location(s),
proband sex, the pathogenicity of observed diplotypes,
and ClinVar annotations. Importantly, CM scores reflect
relationships between phenotype terms as expressed in
the HPO ontology graph, enabling inclusion of imprecise
matches in similarity comparisons. CM scores can be
used in a wide variety of clinical settings to prioritize
and quickly assess possible Mendelian conditions as can-
didate diagnoses, a process we term diagnostic
nomination.
Specific, definitive, genetic disease diagnosis remains a

significant challenge for clinical reviewers, even with the
short, highly informative candidate gene lists provided
by tools such as GEM. This is because many genes are
associated with more than one Mendelian disease. For
example, application of a GEM causal gene score thresh-
old ≥ 0.69 to the 119 probands in the benchmark cohort
results in a median of 3 gene candidates per proband
(c.f. Fig. 5), associated with a maximal gene recall of
95%. However, because many genes are associated with
more than one disease, clinical reviewers would actually
need to consider around 12 candidate Mendelian condi-
tions per proband (data not shown). This difficulty is ex-
acerbated by the fact that most laboratory directors are
not physicians and lack formal training in clinical
diagnosis.
Determination of a specific, definitive genetic disease

diagnosis among several candidates can be accomplished
with a combination of GEM CM scores and causal gene
scores (Fig. 6). Using the benchmark cohort’s true

(reported) gene and disorder diagnoses as ground truth,
we used a GEM gene score threshold ≥ 0.69 to recover
gene candidates, and the associated CM scores to rank
order the diseases associated with those gene candidates
(Fig. 6A). Using CNLP-derived phenotypes, the true dis-
ease diagnosis was the top nomination by CM score in
75% of cases, within the top 5 in 91% of cases, and
within the top 10 in 95% of cases. Performance was in-
ferior with manually extracted phenotype terms. The
area under the receiver-operator characteristic (ROC)
curves (AUCs) were 0.90 and 0.88, for CNLP and man-
ual terms, respectively (Fig. 6B). This implied that the
larger number of CNLP-extracted terms conveyed
greater information content, permitting better discrimin-
ation of the correct diagnostic condition, than sparse,
manually extracted phenotypes [27].
In the benchmark cohort, 58 of the 100 candidate

genes (excluding cases with causal, multigenic SVs) were
associated with 2 or more disorders (median of 3 gene-
disorder, maximum of 15; Additional file 2: Figure S7
shows the example of ERCC6). We measured how well
the CM score distinguished between multiple, alternative
disorders associated with the same gene (Fig. 6B). In
these 58 cases, the AUC was less than that for CNLP
with the entire set of candidate genes in the benchmark
cohort (0.68 vs 0.9). This decrease can be at least par-
tially explained by the high similarity (and in some cases
identity) of the clinical features of different disorders as-
sociated with the same gene. Thus, a combination of
GEM gene and CM scores can refine candidate disorders
for clinical reporting, further reducing review times.

Reanalysis of previously unsolved cases
Recent reports show that reanalysis of older unsolved
cases suspected of rare genetic disease can yield new

Fig. 6 Performance of GEM condition match scores for diagnostic nomination in the benchmark cohort. A Ranks for reported diagnostic
conditions for the benchmark dataset, using a GEM gene BF score ≥ 0.69 and sorted by CM score, for HPO terms derived from CNLP or manual
curation. B Receiver-operator characteristic curves for the condition match (CM) score for all hits with BF ≥ 0. CNLP All: HPO extracted from
clinical notes by CNLP; AUC = 0.91. Manual: Manually curated HPO terms; AUC = 0.88. CNLP Multiple Dx: CNLP-derived CM score for the true
positive disorder versus the other possible disorders associated with that gene; AUC = 0.68. Manual Multiple Dx: As for CNLP-derived CM but
using manually curated HPO terms; AUC = 0.69
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diagnoses supported by incremental increases in know-
ledge of pathogenic variants, disease-gene discoveries,
and reports of phenotype expansion for known disorders
[93, 94]. While worthwhile, there are barriers to reanaly-
sis, such as limited reimbursement and low incremental
diagnostic yield, that limit use to physician requests.
Ideally, all unsolved cases would be reanalyzed automat-
ically periodically, and a subset with high likelihood
of new findings would be prioritized for manual review.
The strong correlation between true positive rates and
GEM gene scores (Fig. 5) suggested a strategy for triag-
ing reanalyzed cases for manual review: only cases for
which the recalculated GEM score had increased suffi-
ciently to suggest a high probability of a new diagnosis
would pass the threshold for manual review. Likewise,
GEM condition match scores could be used to search all
prior cases to identify the subset of unsolved cases with
support for particular Mendelian conditions, aiding co-
hort assembly for targeted reanalysis based upon par-
ticular proband phenotypes, or for review by particular
medical specialists. Of note, an advantage of CNLP is
that it is possible to automatically generate a new clinical
feature list at time of reanalysis. This is particularly im-
portant in disorders whose clinical features evolve with
time and were the observed features may be nondescript
at presentation.
To test the utility of GEM for reanalysis, we selected

14 unsolved cases that had rWGS performed by RCIG
M. For these reanalyzes, we used CNLP-derived HPO
terms (Table 3) and a more stringent gene BF threshold
≥ 1.5 to restrict the search to very strongly supported
candidates. Ten cases yielded no hits. Four cases
returned a total of 7 candidate genes. Review of three
cases did not return new diagnoses. In the remaining
case, a new likely diagnosis was made of autosomal
dominant Shwachman-Diamond Syndrome (MIM:
260400) or severe congenital neutropenia (MIM:
618752) [95, 96], both of which are associated with
pathogenic variants in SRP54. The respective CM scores
using 261 CNLP-derived terms were relatively high

(0.893 and 0.672, respectively). The association of SRP54
and these disorders was first reported in November 2017
[95] and entered in OMIM in January 2020 [97], which
explained why it was not identified as the diagnosis ori-
ginally in July 2017. The identified candidate p.Gly108-
Glu variant has been classified as “uncertain
significance” by ACMG guidelines. However, if we were
able to confirm de novo origin with paternal genotypes
(which is currently lacking for this single proband case),
the variant could be reclassified as “likely pathogenic”
(meeting PM2, PM1, PP3, and PM6 of the ACMG
guidelines). This was a singleton proband sequence and
confirmation is being pursued. Thus, GEM reanalysis of
14 unsolved cases led to 7 gene-disorder reviews (an
average of 0.5 per case), and yielded one likely new diag-
nosis, which was consistent with prior reanalysis yields
[93, 94].

Conclusions
Here we described and benchmarked a Bayesian, AI-
based gene prioritization tool for scalable diagnosis of
rare genetic diseases by CNLP and WES or WGS. GEM
improved upon prior, similar tools [19, 27, 28, 98, 99] by
incorporating OMIM, HPO, and ClinVar knowledge ex-
plicitly, automatically controlling for confounding fac-
tors, such as sex and ancestry, compatibility with CNLP-
derived phenotypes, SVs and singleton probands, and by
directly nominating diplotypes and disorders, rather than
just prioritizing variants.
In the cohorts examined, GEM had maximal recall of

99%, requiring review of an average of 3 candidate genes,
and less than one half of the associated disorders nomi-
nated by other widely used variant prioritization
methods per case. Improved diagnostic performance is
anticipated to enable faster and more cost-effective,
tiered reviews. GEM recall was essentially unaltered in
the absence of parental genotypes in our data, meaning
that full trio-sequencing is not always a requirement for
high diagnostic yield. However, our cohort includes only
definitively solved cases with 70% of variants already

Table 3 Previously undiagnosed cases with potential leads. Cases with hits with a GEM gene score BF > 1.5. Zygo zygosity, Hom
homozygous, Het heterozygous, Dup large duplication

Case Pedigree Sex Assay Rank Chr Gene Variant
Type

Variant
ACMG

De
novo

Zygo GEM
score

Mode of
inheritance

MIM
ID(s)

CM
score(s)

244799 Single Male WGS 1 14 SRP54 SNV Uncertain
significance

Likely Het 1.76 Dominant 618752,
260400

0.672,
0.893

245237 Trio Male WGS 2 X GK SNV VUS Yes Het 1.60 X-linked
recessive

307030 1.119

245237 Trio Male WGS 3 16 FANCA SNV VUS No Hom 1.55 Recessive 227650 1.315

245768 Single Male WGS 1 16 TSC2 Dup VUS Likely Het 1.64 Dominant N/A N/A

247458 Single Male WGS 1 1 SLC25A24 SNV VUS Likely Het 1.86 Dominant 612289 1.995

247963 Trio Female WGS 1 X STAG2 SNV Likely
pathogenic

Yes Het 1.53 X-linked
dominant

301022 1.25
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classified as P/LP in ClinVar; identification of less cer-
tain candidate variants and genes may still benefit from
parental genotypes for ascertaining de novo variants, and
for phasing alleles in genes associated to recessive
conditions.
Uniquely, GEM provided AI-based unified gene

prioritization for SVs and small variants. Hitherto, this
has been frustrated by the high false positive rates of SV
calls using short-read sequences and lack of a suitable
framework for AI-based SV pathogenicity assertions [87,
88]. Furthermore, GEM inferred SV calls ab initio from
WGS when they were not provided. These functional-
ities are critical for reanalyzing older cases, and for pipe-
lines lacking SV calls.
Finally, in a small data set, we showed that GEM can

efficiently reanalyze cases, potentially permitting cost-
effective, scalable reanalysis of previously unsolved cases
as disease, gene, and variant knowledge evolves [94,
100]. Indeed, integration of GEM and CNLP could en-
able automatic surveillance for rare disease patients
[101] from genomes obtained for research or other clin-
ical tests performed in healthcare [102, 103]. These com-
bined features hold promise for reduced time-to-
diagnosis and greater scalability for critical applications,
such as in seriously ill children in the NICU/PICU [27,
104].
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