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ABSTRACT

Purpose. Progression from metastatic castration-sensitive pros-
tate cancer (mCSPC) to a castration-resistant (mCRPC) state her-
alds the lethal phenotype of prostate cancer. Identifying
genomic alterations associated with mCRPC may help find new
targets for drug development. In the majority of patients,
obtaining a tumor biopsy is challenging because of the predom-
inance of bone-only metastasis. In this study, we hypothesize
that machine learning (ML) algorithms can identify clinically rel-
evant patterns of genomic alterations (GAs) that distinguish
mCRPC from mCSPC, as assessed by next-generation sequenc-
ing (NGS) of circulating cell-free DNA (cfDNA).
Experimental Design. Retrospective clinical data from men
with metastatic prostate cancer were collected. Men with NGS
of cfDNA performed at a Clinical Laboratory Improvement
Amendments (CLIA)-certified laboratory at time of diagnosis of
mCSPC or mCRPC were included. A combination of supervised
and unsupervised ML algorithms was used to obtain biologi-
cally interpretable, potentially actionable insights into genomic
signatures that distinguish mCRPC from mCSPC.

Results. GAs that distinguish patients with mCRPC
(n = 187) from patients with mCSPC (n = 154) (positive
predictive value = 94%, specificity = 91%) were identified
using supervised ML algorithms. These GAs, primarily
amplifications, corresponded to androgen receptor, Mito-
gen-activated protein kinase (MAPK) signaling, Pho-
sphoinositide 3-kinase (PI3K) signaling, G1/S cell cycle, and
receptor tyrosine kinases. We also identified recurrent
patterns of gene- and pathway-level alterations associated
with mCRPC by using Bayesian networks, an unsupervised
machine learning algorithm.
Conclusion. These results provide clinical evidence that pro-
gression from mCSPC to mCRPC is associated with stereo-
typed concomitant gain-of-function aberrations in these
pathways. Furthermore, detection of these aberrations in
cfDNA may overcome the challenges associated with
obtaining tumor bone biopsies and allow contemporary
investigation of combinatorial therapies that target these
aberrations. The Oncologist 2021;26:1–10

Implications for Practice: The progression from castration-sensitive to castration-resistant prostate cancer is characterized by
worse prognosis and there is a pressing need for targeted drugs to prevent or delay this transition. This study used machine
learning algorithms to examine the cell-free DNA of patients to identify alterations to specific pathways and genes associated with
progression. Detection of these alterations in cell-free DNA may overcome the challenges associated with obtaining tumor bone
biopsies and allow contemporary investigation of combinatorial therapies that target these aberrations.
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INTRODUCTION

Prostate cancer is the second most common cause of
cancer-related deaths in American men [1]. Metastatic
castration-resistant prostate cancer (mCRPC) is the lethal
form of disease. When newly diagnosed, metastatic pros-
tate cancer (mPC) responds rapidly to androgen deprivation
therapy (ADT) by medical or surgical castration, and there-
fore, this state is called metastatic castration-sensitive pros-
tate cancer (mCSPC). However, almost all men with mCSPC
eventually experience disease progression on ADT after a
median of 16 months to mCRPC. In current studies, the
median overall survival after onset of mCRPC is
�3 years [2].

In 2004, chemotherapy with docetaxel, a microtubule
inhibitor, was approved for the treatment of mCRPC [3].
This was followed by approval of novel androgen axis inhibi-
tors abiraterone and enzalutamide; a novel taxane,
cabazitaxel; a vaccine, sipuleucel-T; and a radiopharmaceu-
tical, radium-223, in 2013 [4]. However, all of these agents
are associated with a modest improvement in median over-
all survival in the mCRPC setting in the range of 3–4 months
each. More recently, multiple phase III trials showed
improved survival outcomes by using chemotherapy with
docetaxel, or novel androgen axis inhibitors in combination
with ADT for the treatment of castration-sensitive disease.
These results have led to these agents now increasingly
being used for treatment of men with mCSPC [3, 5]. Move-
ment of these agents, hitherto available for treating
mCRPC, to treatment of castration-sensitive disease poses
further challenges to treatment of mCRPC by limiting the
number of therapeutic options for these men.

Single-agent targeted therapies for mCRPC, such as Poly
[ADP-Ribose] Polymerase (PARP) inhibitors, just received
regulatory approval, and many others are under active
investigation [6, 7]. However, mCRPC can rapidly become
resistant against single-agent therapies through heteroge-
neous patterns of genomic alteration [8]. In order to
improve patient outcomes, combinatorial treatments that
target critical signaling pathways or anticipate mechanisms
of resistance in mCRPC are needed.

Next-generation sequencing (NGS) of cell-free DNA
(cfDNA) is used as a relatively noninvasive clinical assay to

detect somatic genomic alterations (GAs) in metastatic solid
tumors [9]. Currently, PARP inhibitors are the only molecu-
larly targeted drugs approved for mPC. One of the major
reasons for the lack of multiple approved targeted options
is the absence of readily biopsiable sites of metastasis in
these patients. Eighty percent of patients with mPC have
bone-only metastases, which are not feasible to biopsy in
the vast majority of cases, a critical factor limiting develop-
ment of molecularly targeted therapy in mPC. Genomic pro-
filing of tumor somatic alterations in circulating cfDNA has
the potential to circumvent this limitation. Machine learn-
ing (ML) algorithms extract generalizable patterns and asso-
ciations from large, complex data sets (e.g., cancer
genomics data) [10]. In principle, ML algorithms can be
applied to large genomic data sets in order to reveal novel
patterns of GAs associated with the progression from
mCSPC to mCRPC. These patterns of genomic evolution can,
in turn, correspond to clinically actionable mechanistic
insights that are applicable to treatment development.
Although machine learning has been applied to early detec-
tion of cancer in cfDNA, to our knowledge there have been
no reports describing its use for identification of molecular
targets of disease progression in cfDNA. In this article, we
hypothesize that ML algorithms can identify clinically rele-
vant patterns of genomic alterations that distinguish mCRPC
from mCSPC, as assessed by NGS of circulating cfDNA.

MATERIALS AND METHODS

Study Design and Cohort Characteristics
This study was performed with approval from the University
of Utah Institutional Review Board (IRB #67518). Clinical
data were retrospectively collected on men with metastatic
prostate cancer. mCRPC was diagnosed per Prostate Cancer
Working Group. 2.0 criteria [11] by either prostate-specific
antigen (PSA) or radiographic progression, or by clinical pro-
gression as determined by the investigator, whichever
occurred earlier. In this cohort, 341 men had undergone
Guardant360 (Guardant Health, Inc., Redwood City, CA)
testing. At the time of testing, 154 men had mCSPC and
187 men had mCRPC. Clinical characteristics of the cohort
are summarized in Table 1.

Table 1. Clinical characteristics of patients with mCSPC and patients with mCRPC

Variable mCSPC (n = 154) mCRPC (n = 187) Mann-Whitney p value

Age, yr, median (range) 65 (40–97) 63 (40–89) .14

Gleason score, median (IQR) 8 (7–9) 8 (7–9) .24

PSA, ng/mL, median (IQR) 20.1 (7.5–81.4) 20.9 (7–90) .34

Number of systemic lines prior to NGSa

0 NA 59 NA

1 NA 54 NA

2 NA 37 NA

3 NA 37 NA

IQR represents the range between the 25th and 75th percentiles.
aLines of systemic therapy included, but were not limited to, the following agents: abiraterone, enzalutamide, docetaxel, and radium-223.
Abbreviations: IQR, interquartile range; mCRPC, metastatic castration-resistant prostate cancer; mCSPC, metastatic castration-sensitive prostate
cancer; NA, not applicable; NGS, next-generation sequencing; PSA, Prostate-specific antigen.
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All patient reports were included in this study, even
those with no detectable alterations. Our rationale for this
decision was to provide a more accurate and generalizable
representation of ML performance on new data. Addition-
ally, the diagnostic sensitivity and specificity of individual
GAs could be assessed. Furthermore, the detection of a GA
is dependent on technical factors and underlying biological
differences that can lead to a difference in cfDNA shedding
in mCSPC versus mCRPC. The inclusion of patient samples
without detectable alterations would empirically account
for the combination of these latent biological and technical
variables.

Next-Generation Sequencing, Variant Calling, and
Functional Annotation
NGS of cfDNA was performed during routine standard-of-
care treatment using a commercially available panel, Guar-
dant360. Briefly, cfDNA isolation, library construction and
sequencing, and quality-control methods were performed
as previously described [12, 13]. Variant calling was done
by a validated custom bioinformatics pipeline that uses
molecular barcoding and double-stranded consensus
sequence representation to achieve >99.99% per-position
analytic specificity [12, 13]. Single nucleotide variants
(SNVs), small insertions/deletions (InDels), gene
rearrangements/fusions, and copy number amplifications
(CNAs) were called in a panel of cancer-relevant genes (sup-
plemental online Table 1). CNAs were determined by evalu-
ating whether gene-level probe counts were
overrepresented compared with the baseline diploid count,
established within each patient’s own sample, using
prespecified statistical decision thresholds [12, 13]. The
reportable ranges for SNVs, InDels, fusions, and CNAs are
>0.04%, >0.02%, >0.04%, and > 2.12 copies, respectively
[12, 13]. Germline alterations were filtered out as previ-
ously described [12, 13]. Variants of unknown significance
and synonymous alterations were excluded from further
analyses. Only characterized alterations predicted to be
functionally significant by COSMIC [14], cBioPortal for Can-
cer Genomics [15], UniProt [16], and literature catalogued
by PubMed and the International agency for research on
cancer (IARC) database [17] for TP53 were used in the
analysis.

Principal Components Analysis
We used principal components analysis, an unsupervised
ML algorithm, for data exploration and visualization. The
sci-kit learn package version 0.21.3 in a Python version
3.6.8 (Python Software Foundation, Delaware, USA) was
used for this analysis. Gene alteration counts were scaled
to a standard normal distribution with mean = 0 and
SD = 1. Correlations between GAs and phenotype were
visualized by plotting each sample’s variance along the first
two principal components. Correlations between genes,
and between genes and phenotype, were identified by a
loadings plot.

Supervised Machine Learning
The sci-kit learn package v0.21.3 in Python v3.6.8 was used
for supervised ML classification. All available supervised

machine learning algorithms in this package were trained to
classify patient as mCRPC or mCSPC using somatic genomic
alterations in cfDNA data, and included Bayesian algorithms
(Bernoulli, Gaussian, and multinomial naïve Bayes), kernel-
based algorithms (Gaussian process, support vector
machine, quadratic discriminant analysis), tree-based
algorithms (random forest, gradient boosting, adaptive
boosting), logistic regression, deep neural networks, and
k-nearest neighbors. A dummy classifier using stratified
estimates was used as a negative control.

Evaluation of Supervised Machine Learning
Algorithm Performance
In order to avoid optimistic bias in model evaluation [18],
we used a nested cross-validation strategy consisting of an
inner cross-validation for hyperparameter tuning and
parameter selection, followed by an outer cross-validation
for model evaluation. Hyperparameter optimization for
each machine learning algorithm was performed using a
random search approach. Empirically, 1,000 iterations of
fivefold repeated, stratified cross-validation was sufficient
for consistent model selection. Under- and overfitting was
assessed by comparing inner and outer cross-validation
metrics (supplemental online Fig. 1B). Algorithm perfor-
mance was assessed by overall accuracy, sensitivity, specific-
ity, positive predictive value (PPV), negative predictive
value, and area under the curve (AUC) for the receiver oper-
ating characteristic. Performance metrics were determined
using 60 iterations of repeated stratified fivefold cross-
validation (supplemental online Fig. 1C, 1D). Mean perfor-
mance metrics and variance did not change with 100, 200,
and 500 iterations of repeat stratified cross-validation.

Identification of mCRPC-Associated Genes
In order to identify genes associated with mCRPC, we used
a combination of feature selection and supervised machine
learning. First, joint mutual information was calculated
between each gene and phenotype. Then, subsets of genes
were generated using both forward and backward feature
selection, in which genes were iteratively added based on
rank order of joint mutual information. Then, we trained
supervised machine learning algorithms to use these sets of
genes to classify samples as either mCRPC or mCSPC. The
association between a gene set and mCRPC was quantified
by the performance metrics of supervised machine learning
algorithms fitted to it. The rank order of feature importance
by joint mutual information was highly similar between fea-
ture importance in Bernoulli naïve Bayes, support vector
machine with a linear kernel, logistic regression, and ran-
dom forest.

Identification of mCRPC-Associated Pathways
In order to identify pathways enriched for GAs associated
with mCRPC, we performed Gene Ontology enrichment
analysis [19, 20]. The optimal subset of genes identified by
recursive feature selection to be informative for classifying
mCRPC were used for this analysis. The analysis type used
was the PANTHER Overrepresentation Test (released July
11, 2019). The Reactome pathway database (version
65, released March 12, 2019) was used for annotation.
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Homo sapiens was chosen for the reference gene list. Statis-
tical significance was assessed by Fisher’s exact test with
false discovery rate correction.

Unsupervised Machine Learning
Bayesian networks were used to model conditional depen-
dencies by edges in a directed graph. The pomegranate
package in Python was used for this analysis. The exact
structure was learned for a Bayesian network that consisted
of phenotype and gene alterations associated with mCRPC.
Gene alterations were modeled as binary variables, as this
assumption was valid for the vast majority of samples. At
the pathway level, Bayes nets were fitted using the pres-
ence or absence of GAs as a discrete variable, and then
using GA counts in pathways as discrete variables. Relative
risk was calculated by averaging the bidirectional condi-
tional likelihood between two variables. Bayes nets were
refitted to 1,000 permutations of nonparametric boo-
tstrapping in order to obtain robust estimates and confi-
dence intervals for network structure and conditional
likelihoods.

Statistical Analysis
The two-sided Student’s t test was used to compare the
total number of GAs per patient between mCRPC and
mCSPC. The χ2 test was used to assess statistically signifi-
cant differences in the frequency of GAs in each gene
between mCRPC and mCSPC. False discovery rate was con-
trolled to 0.05 using Benjamini-Hochberg (supplemental
online Fig. 1A). Statistical significance was defined
as p < .05.

RESULTS

We first sought to determine whether GAs could be used to
distinguish mCRPC from mCSPC. In order to answer this
question, we retrospectively identified a cohort of patients
with metastatic prostate cancer who underwent NGS of
cfDNA (Materials and Methods; supplemental online
Table 1) as a part of routine care (n = 341, mCSPC = 154,
mCRPC = 187). Clinical cohort characteristics are presented
in Table 1. Data exploration by principal components analy-
sis revealed distinct clusters corresponding to patients with
mCRPC and patients with mCSPC (Fig. 1A) and GAs that con-
tributed to cluster formation (Fig. 1B). In mCSPC, no signifi-
cant differences in the number of GAs were observed
between patients with mCSPC on ADT versus patients who
had not yet started ADT. Men with mCRPC had more GAs
than men with mCSPC (mean 4.5 vs. 1.9, p < .0001), and
more unique GAs (supplemental online Fig. 1A).

Next, we sought to identify a specific set of gene alter-
ations associated with the development of mCRPC. Using a
combination of feature selection and supervised machine
learning, we found a set of 16 genes to be most highly asso-
ciated with mCRPC (Fig. 1C, 1D). AR was the most signifi-
cant predictor of mCRPC, in accordance with previous
studies [21]. Supervised ML algorithms that were trained on
these 16 genes showed improved performance in compari-
son with the same algorithms trained on the entire panel
(PPV = 94% vs. 88%, specificity = 91% vs. 86%, AUC = 0.74

vs. 0.74) (Fig. 1C, 1D; supplemental online Fig. 1B–1D). By
performing Gene Ontology enrichment analysis, we found
that receptor tyrosine kinases (RTK), mitogen-activated pro-
tein kinase (MAPK) signaling, phosphoinositide 3 kinase
(PI3K) signaling, and G1/S cell cycle were significantly
enriched for these mCRPC-associated GAs (Fig. 1E). Super-
vised ML algorithms trained using GA counts in these path-
ways showed a similarly high performance for classifying
samples as mCRPC or mCSPC (supplemental online Fig. 1E).
Therefore, GAs in these pathways distinguish mCRPC from
mCSPC with high specificity and positive predictive value.

Next, we assessed whether recurrent patterns existed
among mCRPC-associated GAs. In order to identify such pat-
terns, we used Bayesian networks to discover statistical
dependencies between GAs. The presence of GAs in AR
increased the likelihood of mCRPC phenotype, as well as
the likelihood of harboring GAs in KIT, MET, BRAF, and
PIK3CA (Fig. 2A). Positive statistical interdependencies
between genes in the RTK, PI3K, MAPK, and G1/S pathways
were numerous, notably between BRAF and PIK3CA
(Fig. 2A). More than half of patients with mCRPC harbored
GAs in these pathways, which were predominantly gene
amplifications (Fig. 2B–E).

At a pathway level, the probability of having an mCRPC
phenotype was significantly associated with harboring GAs
in the AR gene (Relative risk [RR]= 2.32) (Fig. 3A, 3B). The
presence of GAs in AR also increased the likelihood of har-
boring GAs in the G1/S pathway (RR = 3.88 � 1.03)
(Fig. 3A, 3C). In turn, harboring GAs in the G1/S pathway
significantly increased the likelihood of harboring GAs in
the MAPK (RR = 3.40 � 1.14), PI3K (RR = 3.43 � 1.32),
and RTK (RR = 7.12 � 1.90) signaling pathways (Fig. 3C,
3D). Increased numbers of GAs in AR were significantly
associated with the mCRPC phenotype (supplemental
online Fig. 2A, 2B). Having developed mCRPC was accompa-
nied by increased numbers of GAs in both PI3K and G1S
(supplemental online Fig. 2A–D). Finally, increased numbers
of GAs in G1/S were also positively associated with
increased numbers of GAs in RTK and MAPK signaling (sup-
plemental online Fig. 2A, 2E, 2F). Drugs that are capable of
targeting many of these GAs have been approved in other
indications (supplemental online Table 2). In sum, mCRPC is
enriched in targetable genomic alterations in RTK, MAPK,
PI3K, and G1/S signaling pathways.

DISCUSSION

In summary, we applied ML algorithms to cfDNA NGS data
to discover targetable patterns of GAs associated with the
progression from mCSPC to mCRPC. Unsupervised ML algo-
rithms revealed recurrent patterns of GAs in the RTK, PI3K,
MAPK, and G1/S signaling pathways that were associated
with mCRPC. Supervised ML algorithms could robustly dis-
tinguish samples from patients with mCRPC from samples
from patients with mCSPC using these GAs. These pathways
are not targeted by currently approved therapies for
mCRPC and should be explored as targets in possible com-
bination therapies.

Our results provide direct clinical evidence showing that
progression from mCSPC to mCRPC is associated with an

© 2021 AlphaMed Press.
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accumulation of GAs in both MAPK and PI3K signaling.
Although previous studies have described GAs in PI3K and
MAPK in prostate cancer, they did not show an association

with progression from mCSPC to mCRPC [22–25]. Another
study showed that MAPK gene expression was upregulated
in mCRPC in comparison to primary localized prostate

A B

E

D

Figure 1. Genomic alterations (GAs) associated with mCRPC. (A): Principal components analysis shows clusters of cell-free DNA
samples that correspond to patients with mCRPC and patients with mCSPC. (B): GAs that contribute to the formation of mCRPC
and mCSPC clusters plotted in principle component space. (C): The association between gene sets and mCRPC using forward fea-
ture selection. Each label on the x-axis represents the performance of support vector classification after a gene was included. Verti-
cal bands represent the 95th percentile confidence intervals. The top 16 genes are highlighted in blue. (D): The association
between gene sets and mCRPC using backward feature selection. Each label on the x-axis represents the performance of support
vector classification after a gene was eliminated. Vertical bands represent the 95th percentile confidence intervals. The top 16 genes
are highlighted in blue. (E): Pathways significantly enriched for mCRPC-associated GAs were determined using Gene Ontology
enrichment analysis.
Abbreviations: MAPK, mitogen-activated protein kinase; mCRPC, metastatic castration-resistant prostate cancer; mCSPC, metastatic
castration-sensitive prostate cancer; RTK, receptor tyrosine kinase.
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cancers, but not mCSPC [26]. In our cohort, mCRPC was
enriched for amplifications of RTK genes (i.e., PDGFRA, KIT,
EGFR, MET, and FGFR) that signal through both MAPK and
PI3K pathways [27]. We also show that RTK gene amplifica-
tions are positively associated with GAs in MAPK, PI3K, and
G1/S signaling. Moreover, our data indicate that 13.5% of
patients with mCRPC had GAs in both MAPK and PI3K
signaling genes. We also observed positive statistical depen-
dencies between PIK3CA and BRAF GAs. Preclinical models

have shown a compensatory relationship between PI3K and
MAPK signaling in prostate cancer [28], and that simulta-
neous inhibition of PI3K and MAPK signaling can inhibit
mCRPC [29–31]. MAPK signaling can be targeted with-
MAPK/ERK kinase (MEK) inhibitors, such as trametinib and
cobimetinib, which are approved for BRAF-mutated mela-
noma and KRAS/BRAF-mutated colorectal cancer [32].
Although anecdotal, a heavily pretreated patient with
mCRPC treated with trametinib elicited a durable clinical

A

B C

D E

Figure 2. Gene-level patterns of genomic alterations (GAs) associated with mCRPC. (A): A Bayesian network of mCRPC-associated
GAs. GAs are represented as nodes on the graph. The size of each node is proportional to the marginal likelihood, or frequency, of
observing a GA. Blue edges represent a positive conditional probability between two GAs. Gray edges represent positive condi-
tional probability between two GAs upon moralization of the Bayesian network. No edges are drawn between two GAs if they are
statistically independent. The width of an edge is proportional to the averaged bidirectional relative risk between two GAs. (B–E):
Alteration counts for each gene in the mCRPC and mCSPC cohorts separated by pathway.
Abbreviations: AMP, amplification; mCRPC, metastatic castration-resistant prostate cancer; mCSPC, metastatic castration-sensitive
prostate cancer; SNV, single nucleotide variant.
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response [26]. PI3K/AKT signaling inhibitors, including
buparlisib and dactolisib, have shown limited efficacy in
clinical trials [29, 33]. The compensatory effects of MAPK
signaling may explain this finding. Our results provide new
clinical evidence that provides rationale for investigating
concomitant PI3K and MAPK inhibition in clinical trials for
mCRPC.

In our cohort, mCRPC was enriched for gene amplifica-
tions in G1/S, which signal downstream of MAPK [34].
Importantly, we found that the presence of amplifications

in G1/S increased the likelihood of harboring GAs in RTK
and MAPK. This association could be explained by selective
pressure or a survival advantage, suggesting that targeting
of MAPK signaling could be viable for mCRPC with G1/S
amplifications. Specifically, we found that mCRPC was
enriched for amplifications in genes that encode the
CyclinD-Cdk4/6 complexes (i.e., CDK4 and CDK6) [34]. Direct
inhibitors of CDK4/6 for mCRPC are in phase II trials and
clinical data are limited [35]. However, many patients are
excluded because Rb loss-of-function mediates resistance

A

B

C

D

Figure 3. Pathway-level patterns of genomic alteration associated with mCRPC. (A): A Bayesian network of mCRPC-associated geno-
mic alterations (GAs). The presence of GAs in each pathway are represented as nodes on the graph. Blue edges represent a positive
conditional probability of harboring GAs in two pathways. No edges are drawn between pathways if the probability of harboring
GAs in the pathways are statistically independent. The width of an edge is proportional to the averaged bidirectional relative risk
between two GAs. (B): The relative risk of GAs in a pathway if a sample is mCRPC versus mCSPC. (C): The relative risk of GAs in a
pathway if a sample has GAs in G1/S. (D): The relative risk of GAs in G1/S if a sample has GAs in other pathways.
Abbreviations: mCRPC, metastatic castration-resistant prostate cancer; mCSPC, metastatic castration-sensitive prostate cancer; RR,
relative risk.
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Lin, Hahn, Nussenzveig et al. 7



against CDK4/6 inhibitors [36] and occurs frequently in
prostate cancer [37]. Direct upregulation of MAPK signaling
has also been shown to contribute to CDK4/6 inhibitor
resistance [38, 39]. MAPK signaling regulates cyclinD1
expression and post-translationally regulates CyclinD-
Cdk4/6 complex assembly [34]. A preclinical study showed
that prostate cancer cells with Rb loss–mediated resistance
to G1/S inhibitors had increased MAPK activity and were
sensitized to MEK inhibition [38]. In our cohort, mCRPC was
also enriched for amplifications of CCNE1, which encodes
CyclinE [40]. Cdk2, in association with CyclinE, regulates
G1/S transition and S phase progression [34, 40]. Cdk2 must
be transported to the nucleus in order to be activated, and
its transport is dependent on MAPK activity [41, 42]. In
preclinical models, MAPK inhibition decreased
Cdk2-cyclin E activation by decreasing nuclear localiza-
tion and phosphorylation of Cdk2 [42]. Together, our
results provide clinical evidence to support further inves-
tigation of MAPK inhibitors for patients with mCRPC with
G1/S gene amplifications.

Recent publications have indicated circulating tumor DNA
(ctDNA) fraction is increasingly recognized as a prognostic bio-
marker for patients with mCRPC [43, 44]. Guardant does not
include total ctDNA fraction in their patient reports. However,
we estimated the total ctDNA fraction using the allelic fre-
quencies provided in the patient reports. Our findings did not
detect a significant difference in ctDNA fraction between the
mCSPC and mCRPC settings. It is important to note that in
this study we were not investigating whether ctDNA fraction
was associated with patient outcomes; rather, the focus was
in identifying gene aberrations that were associated with dis-
ease progression from the mCSPC to mCRPC settings.

Finally, these findings demonstrate the utility of our
novel machine learning–based analysis of cancer genomics
data obtained from circulating cfDNA. We showed that a
combination of supervised and unsupervised ML algorithms
could provide biologically interpretable, potentially action-
able insights into genomic signatures associated with clini-
cal phenotypes. In principle, the methods employed here
could be used to identify genomic signatures associated
with any clinical phenotype of interest (e.g., treatment
response, prognosis, diagnosis). The same methods could
be applied to diverse investigations in medical oncology,
which could yield novel research insights as well as
improved companion diagnostics.

Our study has several limitations. A major limitation of
this work lies on the Guardant cfDNA assay not detecting
copy number loss, which includes key deletions in mCRPC
such as PTEN loss, RB1 loss, and loss of DNA damage repair
genes. Additionally, the assay used in our study does not
test for all genes of interest in metastatic prostate cancer,
including SPOP, ETS family gene fusions, and AR splice vari-
ants. The absence of these genes from the panel may
explain why we obtain high positive predictive (94%) and
specificity (91%) values on these data, but lower sensitivity
(64%) and negative predictive values (62%). The retrospec-
tive nature of our study means that unknown exposures
could act as confounding variables; however, this is repre-
sentative of real-world clinical settings. Although the

strength of this study is inclusion of clinically annotated
patient samples, the limitation is that patients with mCSPC
and mCRPC were unmatched.

CONCLUSION

GAs, primarily amplifications in AR, RTK, MAPK, PI3K, and
G1/S signaling pathways, are enriched in metastatic
castration-resistant prostate cancer. Identification of these
pathways may provide an avenue for developing novel ther-
apeutic combination strategies for these men. More specifi-
cally, MEK inhibitors alone or in combination with AKT
inhibitors warrant further investigation in patients
with amplifications in the MAPK pathway. Finally, our
machine learning framework for cancer genomics facilitates
the discovery of mutational signatures associated with clini-
cal phenotypes, provides insight into novel therapeutic
strategies, has potential as a companion diagnostic for
treatment selection, and is applicable to diverse investiga-
tions in clinical oncology.
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