
ARTICLE

Go Get Data (GGD) is a framework that facilitates
reproducible access to genomic data
Michael J. Cormier 1,2, Jonathan R. Belyeu 1,2, Brent S. Pedersen1,2, Joseph Brown1,2, Johannes Köster 3 &

Aaron R. Quinlan 1,2,4✉

The rapid increase in the amount of genomic data provides researchers with an opportunity

to integrate diverse datasets and annotations when addressing a wide range of biological

questions. However, genomic datasets are deposited on different platforms and are stored in

numerous formats from multiple genome builds, which complicates the task of collecting,

annotating, transforming, and integrating data as needed. Here, we developed Go Get Data

(GGD) as a fast, reproducible approach to installing standardized data recipes. GGD is

available on Github (https://gogetdata.github.io/), is extendable to other data types, and can

streamline the complexities typically associated with data integration, saving researchers

time and improving research reproducibility.

https://doi.org/10.1038/s41467-021-22381-z OPEN

1 Department of Human Genetics, University of Utah, Salt Lake City, UT, USA. 2 Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT,
USA. 3 Institute of Human Genetics, University of Duisburg-Essen, Essen, NRW, Germany. 4Department of Biomedical Informatics, University of Utah, Salt
Lake City, UT, USA. ✉email: aquinlan@genetics.utah.edu

NATURE COMMUNICATIONS | (2021) 12:2151 | https://doi.org/10.1038/s41467-021-22381-z | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22381-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22381-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22381-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22381-z&domain=pdf
http://orcid.org/0000-0002-2667-9264
http://orcid.org/0000-0002-2667-9264
http://orcid.org/0000-0002-2667-9264
http://orcid.org/0000-0002-2667-9264
http://orcid.org/0000-0002-2667-9264
http://orcid.org/0000-0001-5470-8299
http://orcid.org/0000-0001-5470-8299
http://orcid.org/0000-0001-5470-8299
http://orcid.org/0000-0001-5470-8299
http://orcid.org/0000-0001-5470-8299
http://orcid.org/0000-0001-9818-9320
http://orcid.org/0000-0001-9818-9320
http://orcid.org/0000-0001-9818-9320
http://orcid.org/0000-0001-9818-9320
http://orcid.org/0000-0001-9818-9320
http://orcid.org/0000-0003-1756-0859
http://orcid.org/0000-0003-1756-0859
http://orcid.org/0000-0003-1756-0859
http://orcid.org/0000-0003-1756-0859
http://orcid.org/0000-0003-1756-0859
https://gogetdata.github.io/
mailto:aquinlan@genetics.utah.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications

There is a need to standardize and simplify access to
genomic data to enable reproducibility, remove common
barriers to research, and foster studies that integrate

diverse datasets. We developed Go Get Data (GGD)1–5 to address
these challenges. Our approach is inspired by software package
managers (e.g., pip (https://pip.pypa.io/en/stable/), Conda
(https://conda.io), and HomeBrew), which are popular because
they use recipes to simplify and automate software installation via
standard naming, version tracking, and dependency handling. We
realized that the concept of a recipe could also be used to auto-
matically locate, transform, standardize, and install datasets. GGD
builds upon the software package framework in Conda, while
modifications within GGD allow the Conda infrastructure to
support datasets in addition to software. We chose to use Conda
because of its wide acceptance and popularity within the life
sciences with the support of Bioconda6, its version tracking and
dependency handling, and its ability to normalize the installation
of software packages across operating systems. Furthermore,
Conda removes the dependence of administrative software
management by installing all the desired packages within an
isolated environment on a user’s system.

Multiple tools and databases have been developed in an attempt
to mitigate common problems in accessing genomic data. For
example, databases and tools like Galaxy7,8, the NCBI Assembly
Database9, and Ensembl’s set of software resources and APIs10–12

provide simple access to stable sources of genomic sequence and
annotation files. Tools such as the SRA toolkit13 and Refgenie14

provide programmatic access to genomic sequencing data.
Language-specific tools like AnnotationHub15 provide access to
various genomic data files from resources like UCSC and
Ensembl within the R programming language. Additionally, other
tools such as Intake (https://intake.readthedocs.io/) provide a
means to load multiple data types into data objects for analysis.
However, each of these tools or databases are limited in the type
and scope of accessible data. Some of these limitations include the
quantity and variety of accessible data, the lack of local and/or
global data management, the breadth and depth of data avail-
ability, and the ability to create and add data recipes to the
database. Additionally, some tools are not language-agnostic or do
not allow data curation beyond the simple sequence or annotation
files. These limitations make existing tools and databases insuffi-
cient to provide a reliable resource for genomic data access,
reproducibility, and management. GGD attempts to address these
limitations by providing a more versatile approach for standar-
dized, reproducible access to genomic data with applications in a
wide range of data analyses.

Results
GGD data recipe content, creation, and validation. Conda
provides a mature framework on which to build; however,
managing genomic data comes with a unique set of challenges not
seen with software management. GGD’s data recipes require
additional knowledge regarding the version and provenance of
the datasets, along with details about what makes the recipe
unique. For example, genomic data is plagued by many incon-
sistencies such as genome build, chromosome labeling, sorting,
indexing, and more, all of which require consistency and stan-
dardization in order to be properly managed. The resulting file
format (e.g., BAM16, VCF17, BED18) must be correct, verified,
and standardized for interoperability with common software and
other datasets and annotations. Data processing is commonly
required in order to use a dataset for an analysis. Processing
genomic data also typically requires additional bioinformatics
software tools, supplementary genomic datasets, and multiple
curation steps. Storing the data recipes, associated metadata,

genomic data files, and more all require a framework for access
and management. In order to facilitate the use of data after
installation, data files must be consistently organized and have a
unique environment variable that points to the specific data
package. These difficulties complicate genomic data management
and are accounted for within the GGD framework.

Each GGD data recipe is a modified Conda recipe. Conda’s
recipe format entails a powerful and sometimes complex set of
possible statements, only a subset of which is relevant for data
recipes. Therefore, in order to simplify the process, GGD partially
automates the creation of a data recipe. Rather than requiring
researchers to create all of the pieces required for the recipe, GGD
only requires one to supply a Bash script (Fig. 1a). The Bash
script must contain the necessary steps for obtaining and
transforming the raw data into a standardized data recipe. Once
a Bash script is provided, GGD command-line tools create (via
‘ggd make-recipe‘) and validate (via ‘ggd check-recipe‘) the recipe
for use within the GGD and Conda frameworks.

A GGD recipe contains the information required to find and
install the dataset, and to manage the resulting data recipe on a
user’s system. Each GGD recipe contains a metadata file, a system
processing script, a data curation script, and a checksum file
(Fig. 1a). The metadata file describes data package information
such as software and data dependencies. It also tracks essential
attributes such as the species, genome build, data provider, data
version, and genomic file type. The system processing script
provides recipe, metadata, and local file handling within the
Conda environment, initiates data curation, and adds local
environment variables for easy data file access. The data curation
script provides the necessary steps to access, download, process,
and install the data recipe. Finally, the checksum file is used to
verify that the data files along with their content are installed as
expected. Collectively, these files represent the instruction manual
that enables GGD to automatically find, transform, install, and
manage genomic data within a local Conda environment on a
user’s system.

Once a GGD recipe has been created and tested, the recipe is
added to the GGD data recipe repository on GitHub. A continuous
integration system is used to automatically test and package recipes
(Supplemental Note). Once packaged, the continuous integration
system caches the resulting data files on cloud storage (currently
AWS S3) for rapid user installation, uploads the packaged data
recipe as a data package to the Anaconda cloud, and creates the
metadata files necessary for use with GGD. This continuous
integration system ensures the validity of each recipe and provides
an automated approach that simplifies manual review of each data
recipe added to GGD.

GGD data package installation, use, and management. To
install a data package, a researcher using GGD searches for a
dataset or annotation by name and/or keyword (Fig. 1b). Once
the relevant data package is identified, the researcher uses GGD to
install it and integrate it into their research (Fig. 1c). One widely
known disadvantage of Conda is the time required to identify all
of the dependencies that a software package needs prior to
installation (which has, however, been significantly improved in
recent releases). Therefore, GGD has optimized the process of
installing pre-computed data recipes by bypassing Conda’s
environment solving step. Instead, GGD directly installs pre-
validated data recipes that have been cached on cloud storage,
allowing fast data recipe installation (typically in 10 s or less).

Rapid, standardized installation of datasets and annotations
removes many common frustrations that researchers face for
common analyses. In turn, this increased simplicity allows one to
quickly leverage multiple data packages and combine them with

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22381-z

2 NATURE COMMUNICATIONS | (2021) 12:2151 | https://doi.org/10.1038/s41467-021-22381-z | www.nature.com/naturecommunications

https://pip.pypa.io/en/stable/
https://conda.io
https://intake.readthedocs.io/
www.nature.com/naturecommunications

analysis software to address research questions. For example,
Fig. 2 provides a simple use-case in which a researcher can
quickly download and integrate necessary GGD data packages
into their analyses. In this case, the user installs a GTF file
containing coding exons defined by Ensembl19, as well as a
FASTA20 file for build 38 of the human reference genome.
Bedtools21,22 is then used to identifying the DNA sequences from
non-coding loci, which can then be used for downstream
analyses. Furthermore, GGD can easily be integrated into
reproducible processing and analysis workflow systems such as
Nextflow23 and Snakemake24.

Information about where the data originated, the version of the
data being used, how it was processed, and distinguishing
metadata (e.g., genome build for genomic recipes) are key
components for every data recipe. This information acts as a
unique identifier for the data recipe, and ensures data provenance
and reproducibility. GGD maintains this information for each
data recipe and provides multiple ways to obtain it through the

documentation page for the recipe, the recipe stored in the ggd-
recipes repo, or the (‘ggd pkg-info‘) command (Table 1).

Large-scale data integration is essential in all areas of genome
research, since new annotations, datasets, and file formats are
constantly being released. Through a suite of command-line tools
(Table 1), GGD provides a standardized system for quickly
finding, installing, managing, and creating data recipes.

Discussion
GGD is a natural solution for enabling programmatic access to
data in both ad hoc analyses and in more involved, frequently-
used workflows. Developed to overcome common problems in
genomic data access and processing, GGD provides reproducible
and simple access to datasets. Using Conda’s version tracking and
dependency handling, along with Conda’s environment infra-
structure, GGD can provide a full range of data management on a
user’s system. Whether within a container or on a local system,

Fig. 1 Overview of the creation and use of GGD data recipes. a GGD creates a data recipe from a Bash script, which defines the steps taken to access,
process, and curate the desired data files. (1) The “ggd make-recipe” command incorporates the Bash script and additional auto-generated files into a
complete data recipe. (2) The “ggd check-recipe” command executes required tests and validates the created data recipe. (3) Once a data recipe has been
tested and validated, it can be added to the GGD data recipe repository on GitHub. (4) Each data recipe is further tested via an automatic continuous
integration system. If validated, the recipe is transitioned into a data package, which is added to the Anaconda Cloud and the resulting data files are cached
on AWS storage. b Validated data packages can be found via the GGD command-line interface. For example, to find all data packages associated with
“grch38” or “hg38” and the keyword “cpg” one would use “ggd search” with “grch38”, “hg38”, and “cpg” as search terms. GGD will identify and return all
data packages within the GGD library that are associated with the search terms provided. c The desired data package is installed via the “ggd install”
command. If the data files are cached, they are downloaded directly. If the data package must be built from the recipe, GGD follows the instructions within
the recipe while accounting for both software and data dependencies. Installation ends with tracking the version of the installed data package and the
creation of local environment variables that facilitate the use of installed data packages. GGD commands are in orange, GGD data packages are in blue.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22381-z ARTICLE

NATURE COMMUNICATIONS | (2021) 12:2151 | https://doi.org/10.1038/s41467-021-22381-z | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications

GGD can be used to install data packages before, during, or after
the workflow process starts. Environment variables specific to the
installed GGD data packages or use of the GGD command-line
interface can be used to access the data files for the desired
process, including within a workflow. Whether used within a
workflow or on their own, GGD data packages provide a simple,
reproducible solution to genomic data access, curation, and use.

GGD is actively maintained in order to provide improved
functionality and increased access to genomic data. Additionally,
the maintenance of Conda by their core development team will
provide additional support for GGD. We plan to expand the

library of available data recipes within and across species in the
short term. This expansion will include recipes for expression
data, proteomic data, and many other data types commonly used
in genomics. Data recipe development will also be influenced by
user feedback and requests.

While currently focused on genomic datasets, the GGD frame-
work has the capacity to support data management across many
scientific disciplines. Future development of GGD will include the
expansion of GGD data recipes into other non-genomic scientific
disciplines. We expect that GGD will help to establish a standard,
community-driven ecosystem for reproducible access to genomic

Fig. 2 Using GGD data packages. a Data recipe environment variables allow one to use the installed data files without needing to know where the files are
stored or how to get them. For example, if one installed the grch38-coding-exons-ensembl-v1 and grch38-reference-genome-ensembl-v1 data packages,
one could identify the complement between coding exons and a reference genome using each data file’s unique environment variable with the “bedtools
complement” command. These environment variables allow one to perform any number of analyses with different bioinformatic tools or scripts. b Using
the “get-files” command, one can perform the same analysis on coding exons as seen in panel a. With data package environment variables, one needs to be
in the environment where the packages were installed in order to use them. Alternatively, the “get-files” command provides access to data files installed by
GGD and stored in either the currently active conda environment or a different non-active conda environment. Accessing data files in different
environments is supported by the “--prefix” argument. This allows a user to install and store all data packages in a single conda environment while being
able to access them from any other environment where GGD is installed. GGD commands are in orange, environment variables that refer to GGD data
package files are in blue.

Table 1 A catalog of GGD tools available via the command-line interface.

GGD CLI tool Description of functionality

ggd search Search for available data packages based on a search term(s) with genomic specific filters.
ggd predict-path Predict the installed file path for a file in a data package that has not been installed. (Useful for workflows like Snakemake).
ggd install Install one or more data package(s) to a specific Conda environment on a user’s system.
ggd uninstall Uninstall a data package from a Conda environment from a user’s system.
ggd list Report the installed data packages within a specific Conda environment (similar to conda list).
ggd get-files List the file(s) associated with an installed package on a user’s system.
ggd pkg-info Retrieve the data package information of an installed data package on a user’s system.
ggd show-env Display the GGD specific environment variables for the installed packages in a specific Conda environment on a user’s system.
ggd make-recipe Make a GGD data recipe that can be added to the GGD recipe ecosystem. The tool will transform a simple Bash script into a

ggd data recipe.
ggd make-meta-recipe Make a GGD data meta-recipe that can be added to the GGD recipe ecosystem. The tool will transform a single or group of

scripts into a GGD data meta-recipe, which can be used to install ID specific data packages.
ggd check-recipe Transform a GGD recipe that has been created from running ‘make-recipe’ into a GGD data package and test the validity of the

data package.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22381-z

4 NATURE COMMUNICATIONS | (2021) 12:2151 | https://doi.org/10.1038/s41467-021-22381-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications

and other scientific data. We encourage contributions from
researchers to provide a comprehensive collection of reproducible
data recipes to the scientific community. Further information
about GGD can be found in the GGD documentation available at
https://gogetdata.github.io/.

Methods
GGD data recipes. Data recipes contain the relevant information needed to install
and manage data on a user’s system. Data recipes are built on the framework of
Conda recipes. Conda recipes usually contain a metadata file with information
about the software being installed and a script with commands to install that
software. The metadata file describes the software, the authors, the programing
language, the version, the software dependencies required for building and
installing the software, etc. The installation script directs where and how to install
the software. Conda uses both of these files to prepare and install the software on a
user’s system. Conda also has strict regulations on how these files are formatted
and what content is provided within these files.

We adapted the Conda recipes framework for use with datasets instead of
software. To do this, we worked with Conda and Bioconda to change the
formatting requirements so that Conda recipes would work with the additional
information requirements needed for data management. This update allowed us to
incorporate information such as the data provider, data version, data type, genomic
coordinate system, applicable species and genome build. Additionally, it allowed us
to incorporate both data and software dependencies within the information file,
allowing Conda to provide data and software dependency handling for GGD data
recipes. This was particularly important because data recipes commonly go
through many data curation steps that require different software packages available
through Conda, as well as other data packages available through GGD to be used
during that process. Thus, GGD could rely on the mature framework of Conda to
provide the correct data and software for data curation without having to set up a
dependency handling framework. When creating a GGD data recipe, the user will
give data-specific information using the available input parameters in the ‘ggd
make-recipe’ command, which will fill out the data-specific information within this
information file.

In addition to the updated data-specific information file, GGD data recipes
contain three other essential files. Similar to Conda’s software installation script,
GGD uses a data curation and installation script. This Bash script is created by the
user and contains the required instructions describing where to access and install
the data, as well as data curation and data clean-up steps. GGD creates an
additional file that is used for data installation and management within a specific
Conda environment. Specifically, this script controls the installation path within
the user-defined Conda environment, controls required system-level GGD
environment variables, initiates data curation from the Conda installed GGD data
package, creates specific environment variables for the final data files, and performs
other required tasks for data management. The final file contains md5sum hash
values used to validate installed data files’ content to ensure proper installation.

These four files represent the modified Conda recipes used for data installation
and management by GGD. To reduce the amount of work for researchers creating
data recipes, GGD requires a user to provide only a Bash script with the necessary
data access and curation steps. Using the Bash script and input parameters to ‘ggd
make-recipe’, GGD will create the three additional files that comprise a complete
GGD data recipe.

Using the Conda framework. Conda (https://conda.io) is a popular software
management system that provides version tracking, dependency handling, and
environment control on a user’s system for many software packages with a wide
range of software languages. Conda also removes administrative control over
available software, allowing users to access and control needed software on their
system. The user-level control of software is defined within a Conda environment,
which is maintained and controlled by Conda. These Conda environments provide
security and stability for software access and reduce the possibly nefarious results of
installing software on a system outside of a controlled environment. Additionally,
Conda has been widely adopted within the life sciences community through Bio-
conda. Because of the popularity of Conda within the life sciences community and
Conda’s mature management framework, we adapted Conda to provide manage-
ment for data recipes.

In addition to using modified Conda recipes for GGD data recipes, we use the
Conda environment infrastructure to install and maintain data recipes within
specific Conda environments, facilitated through Conda’s software framework.
GGD utilizes most of Conda’s internal ‘core’ functionalities to access and manage
data packages. We convert GGD data recipes to data packages using Conda’s
internal ‘build’ functionality. This process ensures that the recipe is appropriately
formatted for use by Conda, and creates a Conda-usable data package. GGD data
packages created in this manner are uploaded and stored in the Anaconda cloud
using Conda’s ‘anaconda’ functionality. These packages are then installed into a
specific Conda environment through Conda’s internal ‘install’ functionality. The
Conda environment is based on Conda’s internal ‘context’, ‘envs_manager’, and
‘prefix’ functionalities. Managing installed data packages within a conda
environment is supported by Conda’s internal ‘context’, ‘list’, and ‘prefix’

functionalities. Metadata for data recipes are supported by Conda as ‘repodata’ and
Conda core ‘index’ functionality and are available on the Anaconda cloud under
specific GGD Conda channels. Utilizing the Conda framework within GGD allows
us to harness the tested and mature infrastructure of Conda without needing to
develop a separate one. It also allows for continued maintenance by the Conda core
development team, reducing the amount of work required to maintain and
improve GGD from the GoGetData development team.

GGD data management. The GGD command-line interface (CLI) allows for the
access and management of GGD data packages. Table 1 gives a brief overview
of the available commands. The GGD CLI uses the Conda software framework,
mentioned above, for data management. However, Conda’s core functionality does
not entirely support data management. Therefore, the GGD software framework
integrates elements of the existing Conda framework with additional functionality
novel to GGD to provide efficient data management within a Conda environment.

For more information about GGD, see the GGD documentation page at https://
gogetdata.github.io/

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
GGD is a data management system developed to help provide sustainable, accurate,
reproducible data. No data was used in this manuscript, but data hosted by GGD is
available at https://github.com/gogetdata/ggd-recipes2, and through the GGD command-
line interface https://github.com/gogetdata/ggd-cli1. Additional information can be
found on the documentation page at https://gogetdata.github.io/.

Code availability
All code for GGD is publicly available on the GoGetData GitHub repository: https://
github.com/gogetdata1–5.

Received: 14 October 2020; Accepted: 9 March 2021;

References
1. Cormier, M. J. et al. Go Get Data (GGD) is a framework that facilitates

reproducible access to genomic data, gogetdata/ggd-cli https://doi.org/
10.5281/zenodo.4557940 (2021).

2. Cormier, M. J. et al. Go Get Data (GGD) is a framework that facilitates
reproducible access to genomic data, gogetdata/ggd-recipes https://doi.org/
10.5281/zenodo.4557936 (2021).

3. Cormier, M. J. et al. Go Get Data (GGD) is a framework that facilitates
reproducible access to genomic data, gogetdata/gogetdata.github.io https://doi.
org/10.5281/zenodo.4557934 (2021).

4. Cormier, M. J. et al. Go Get Data (GGD) is a framework that facilitates
reproducible access to genomic data, gogetdata/ggd-metadata https://doi.org/
10.5281/zenodo.4557932 (2021).

5. Cormier, M. J. et al. Go Get Data (GGD) is a framework that facilitates
reproducible access to genomic data, gogetdata/ggd-utils https://doi.org/
10.5281/zenodo.4557930 (2021).

6. Grüning, B. et al. Bioconda: sustainable and comprehensive software
distribution for the life sciences. Nat. Methods 15, 475–476 (2018).

7. Blankenberg, D., Johnson, J. E., Galaxy Team, Taylor, J. & Nekrutenko, A.
Wrangling Galaxy’s reference data. Bioinformatics 30, 1917–1919 (2014).

8. Blankenberg, D. et al. Dissemination of scientific software with Galaxy
ToolShed. Genome Biol. 15, 403 (2014).

9. Kitts, P. A. et al. Assembly: a resource for assembled genomes at NCBI. Nucleic
Acids Res. 44, D73–D80 (2016).

10. Zerbino, D. R., Wilder, S. P., Johnson, N., Juettemann, T. & Flicek, P. R. The
ensembl regulatory build. Genome Biol. 16, 56 (2015).

11. Yates, A. et al. The Ensembl REST API: ensembl data for any language.
Bioinformatics 31, 143–145 (2015).

12. Ruffier, M. et al. Ensembl core software resources: storage and programmatic
access for DNA sequence and genome annotation. Database 2017, bax020
(2017).

13. Kodama, Y., Shumway, M. & Leinonen, R., International Nucleotide Sequence
Database Collaboration. The Sequence Read Archive: explosive growth of
sequencing data. Nucleic Acids Res. 40, D54–D56 (2012).

14. Stolarczyk, M., Reuter, V. P., Smith, J. P., Magee, N. E. & Sheffield, N. C.
Refgenie: a reference genome resource manager. Gigascience 9, giz149
(2020).

15. Morgan, M., Carlson, M., Tenenbaum, D. & Arora, S. AnnotationHub: Client
to access AnnotationHub resources. R package version 2 (2017).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22381-z ARTICLE

NATURE COMMUNICATIONS | (2021) 12:2151 | https://doi.org/10.1038/s41467-021-22381-z | www.nature.com/naturecommunications 5

https://gogetdata.github.io/
https://conda.io
https://gogetdata.github.io/
https://gogetdata.github.io/
https://github.com/gogetdata/ggd-recipes
https://github.com/gogetdata/ggd-cli
https://gogetdata.github.io/
https://github.com/gogetdata
https://github.com/gogetdata
https://doi.org/10.5281/zenodo.4557940
https://doi.org/10.5281/zenodo.4557940
https://doi.org/10.5281/zenodo.4557936
https://doi.org/10.5281/zenodo.4557936
https://doi.org/10.5281/zenodo.4557934
https://doi.org/10.5281/zenodo.4557934
https://doi.org/10.5281/zenodo.4557932
https://doi.org/10.5281/zenodo.4557932
https://doi.org/10.5281/zenodo.4557930
https://doi.org/10.5281/zenodo.4557930
www.nature.com/naturecommunications
www.nature.com/naturecommunications

16. Li, H. et al. The sequence alignment/map format and SAMtools.
Bioinformatics 25, 2078–2079 (2009).

17. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27,
2156–2158 (2011).

18. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12,
996–1006 (2002).

19. Hunt, S. E. et al. Ensembl variation resources. Database 2018, bay119 (2018).
20. Pearson, W. R. & Lipman, D. J. Improved tools for biological sequence

comparison. Proc. Natl Acad. Sci. USA 85, 2444–2448 (1988).
21. Quinlan, A. R. et al. BEDTools: a flexible suite of utilities for comparing

genomic features. Bioinformatics 26, 841–842 (2010).
22. Quinlan, A. R. BEDTools: the swiss-army tool for genomic feature analysis.

Curr. Protoc. Bioinform. 47, 11.12.1–11.12.34 (2014).
23. Di Tommaso, P. et al. Nextflow enables reproducible computational

workflows. Nat. Biotechnol. 35, 316–319 (2017).
24. Köster, J. & Rahmann, S. Snakemake–a scalable bioinformatics workflow

engine. Bioinformatics 28, 2520–2522 (2012).

Acknowledgements
Research reported in this publication was supported by funding to M.J.C. from the
National Center for Advancing Translational Sciences of the National Institutes of
Health under Award Number UL1TR002538 and TL1TR002540. Research was also
supported by the National Institutes of Health (NIH) grants: HG006693 and GM124355
to A.R.Q, as well as Essential Open Source Software funding from the Chan Zuckerberg
Institute. The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

Author contributions
A.R.Q. conceived the idea for GGD. M.J.C. developed and maintains GGD, the GGD
ecosystem, the GGD infrastructure, the GGD recipes, GGD unit and functional tests,
Cloud Services used by GGD, and other GGD assets. M.J.C. developed and maintains the
docs for GGD, examples, and other material. M.J.C. also wrote the manuscript. J.R.B.,
B.S.P., and J.B. helped in the development and testing of GGD and GGD recipes, as well
as helped in reviewing the docs. J.K. provided insight into management systems and
helpful feedback on GGD. A.R.Q. supervised the work on GGD, helped with recipe

development, and reviewed GGD assets and docs. J.R.B., B.S.P., J.B., J.K., and A.R.Q.
helped in reviews and suggestions for the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-22381-z.

Correspondence and requests for materials should be addressed to A.R.Q.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22381-z

6 NATURE COMMUNICATIONS | (2021) 12:2151 | https://doi.org/10.1038/s41467-021-22381-z | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-021-22381-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Go Get Data (GGD) is a framework that facilitates reproducible access to genomic data
	Results
	GGD data recipe content, creation, and validation
	GGD data package installation, use, and management

	Discussion
	Methods
	GGD data recipes
	Using the Conda framework
	GGD data management

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

