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Abstract

Background: DNA sequencing has unveiled extensive tumor heterogeneity in several different cancer types, with
many exhibiting diverse subclonal populations. Identifying and tracing mutations throughout the expansion and
progression of a tumor represents a significant challenge. Furthermore, prioritizing the subset of such mutations
most likely to contribute to tumor evolution or that could serve as potential therapeutic targets represents an
ongoing problem.

Results: Here, we describe OncoGEMINI, a new tool designed for exploring the complex patterns and trajectory of
somatic and inherited variation observed in heterogeneous tumors biopsied over the course of treatment. This is
accomplished by creating a searchable database of variants that includes tumor sampling time points and allows
for filtering methods that reflect specific changes in variant allele frequencies over time. Additionally, by
incorporating existing annotations and resources that facilitate the interpretation of cancer mutations (e.g., CIViC,
DGIdb), OncoGEMINI enables rapid searches for, and potential identification of, mutations that may be driving
subclonal evolution.

Conclusions: By combining relevant genomic annotations alongside specific filtering tools, OncoGEMINI
provides powerful and customizable approaches that enable the quick identification of individual tumor
variants that meet specified criteria. It can be applied to a wide range of tumor-derived sequence data, but is
especially designed for studies with multiple samples, including longitudinal datasets. It is available under an
MIT license at github.com/fakedrtom/oncogemini.

Background
Cancers arise from a variety of genetic alterations and,
over time, often accumulate a substantial mutational
load leading to subclonal diversity [1, 2]. As a result,
DNA sequencing of tumors has revealed extensive het-
erogeneity within primary tumors or between primary

and subsequent occurrences [3] and that the degree of
heterogeneity is correlated with patient outcomes [4].
Prioritizing mutations in the face of this heterogeneity
relies upon accurate variant discovery and being able to
differentiate variants with potential relevance from those
that are less likely to contribute to the proliferation of a
given tumor. Nevertheless, properly deciphering which
identified variants, if any, contribute to tumor origin,
survival, and proliferation is crucial to understanding
tumor biology and determining potential treatments.
Recognizing this need, we introduce OncoGEMINI [5]

as a new software to explore genetic variation observed
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across multiple tumor biopsies and facilitate the identifi-
cation of both inherited and somatic mutations that may
be involved in tumor progression or resistance. Onco-
GEMINI is uniquely effective in the analysis of variation
observed in either a single or multiple cancer biopsies
from one or more patients. OncoGEMINI builds upon
the GEMINI framework [6], which creates a database
from a VCF [7] file and extensively annotates genetic
variants in an effort to facilitate analysis. GEMINI was
designed for the analysis of inherited variants in studies
of rare disease [8–10] and is poorly suited to the analysis
of somatic mutations, tumor heterogeneity, and the ana-
lysis of multiple biopsies that vary over time and loca-
tion in the patient’s body.
OncoGEMINI addresses these limitations and enables

rapid variant exploration in tumor sequencing studies,
especially those featuring longitudinal data across mul-
tiple time points from a single patient. To better select
or prioritize tumor variants, OncoGEMINI integrates
several cancer-relevant genomic annotations that serve
as searchable terms to differentiate variants from one

another. Additionally, OncoGEMINI provides multiple
filtering tools that search for various signatures of tumor
heterogeneity, including observable allele frequency
changes across multiple samples. These include the
bottleneck, loh, truncal, and unique tools. By using
these filtering tools in combination with specific cancer
annotations, OncoGEMINI can effectively prioritize
tumor variants that may drive tumor progression or be
potential treatment targets.

Implementation
OncoGEMINI framework
OncoGEMINI employs the same general functionality as
GEMINI and imports variant information, including
sample genotypes, from a VCF file into a searchable
SQLite database. OncoGEMINI is intended to be used
alongside the VCF annotation tool, vcfanno [11], and the
database creation tool, vcf2db [12]. Together, these allow
for efficient loading of user-specified (or created) anno-
tations to be included in the resulting database (Fig. 1).
Database creation times vary depending on the number

Fig. 1 Overview of OncoGEMINI database creation and usage. a Genetic variants from a VCF file are first annotated by the user with either SnpEff
or VEP and then additional user-determined annotations can be added to the SnpEff or VEP annotated VCF file using the vcfanno tool. b The
fully annotated VCF, along with a sample manifest file, is then used to create an OncoGEMINI database via vcf2db. Once the OncoGEMINI
database is created, users are able to c create their own customized queries with the query command or d select from built-in tools (such as
bottleneck, loh, or truncal) to filter variants. To better select and focus on specific variants, users may combine tools and queries with
included annotations to further filter the number of variants
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of variants and annotations included in the annotated
VCF file, but over a thousand variants per second can
typically be inserted into the database using vcf2db.
An important change to the existing GEMINI frame-

work that is necessary for some of OncoGEMINI’s func-
tionality is the inclusion of a tumor-specific sample
manifest file used during database loading. OncoGE-
MINI utilizes a user-generated sample manifest file to
describe the distinctive relationships that may exist be-
tween tumor samples. This manifest retains the same
basic structure of common pedigree files with additional
columns describing patient_id, time, and lastly, purity.
Given that multiple samples may be derived from the
same patient, the patient_id column ensures that sample
relatedness is properly cataloged. Since these samples
may be obtained through a series of biopsies at different
time points, the time column describes the temporal re-
lationship between samples for a given patient. While
OncoGEMINI does not compute tumor purity estimates,
if such estimates are known, they may be included in the
purity column and invoked as a command line param-
eter to alter allele frequencies accordingly. Altogether,
these extra columns give OncoGEMINI greater flexibil-
ity and specificity when performing queries or employing
different filtering schemes.

Cancer-specific annotations
Diverse databases and annotations have been developed
to help interpret identified tumor variants with their
specific relevance to various aspects of tumor origin,
growth, and treatment [13–17]. Such annotations can be
essential in determining which identified tumor variants
are actionable or otherwise merit further investigation
from those that are less relevant to tumor progression.
Many of these annotation sources exist independently of
one another and not always in formats that lend them-
selves readily to bioinformatic applications.
We have integrated a number of cancer-relevant anno-

tation resources including the Cancer Genome Inter-
preter (CGI) [18], Clinical Interpretations of Variants in
Cancer (CIViC) [19], and the Drug Gene Interaction
Database (DGIdb) [20]. Each annotation provides pertin-
ent information relating to various aspects of tumor
biology and, in some cases, has also summarized various
genome annotations from other resources. We have
made all of these annotation files, and guides to their cre-
ation, available via the Cancer Relevant Annotations Bun-
dle, CRAB, resource (https://github.com/fakedrtom/crab).
While the relevance of each annotation varies, especially
with regard to particular cancer types, they provide valu-
able insights into the pathogenicity and frequency of gen-
etic variants, the propensity for certain genes to harbor
mutations in specific cancer types, or known drug suscep-
tibilities and interactions with genes or individual variants.

From each of these, we have converted selected informa-
tion into a series of summarized files that can then be
used to annotate a VCF file in preparation for loading into
an OncoGEMINI database. Given the inherent flexibility
of vcfanno, any combination of these annotations or any
additional ones not included here may be selected and
added to a VCF. We expect that this will be a valuable re-
source even outside of use within OncoGEMINI and are
eager to add more annotations, references, and data to im-
prove its utility.

OncoGEMINI functionality
Combining tumor variants with genome annotations
into an OncoGEMINI database enables the identification
and prioritization of tumor-relevant genetic variants.
Once loaded, the database is populated with the infor-
mation contained within the selected VCF. Variants
from the VCF become rows in the database, and annota-
tions are stored as columns within the OncoGEMINI
database that can be useful for isolating variants of
interest.

The query tool
Via OncoGEMINI’s query tool, users are able to impose
specific search parameters to identify variants meeting
custom search criteria. For example, if one wanted to fil-
ter all variants in an OncoGEMINI database to only
those with the highest validated clinical association as
documented in CIViC (i.e., an evidence level of “A”), the
following query would restrict the output to the genomic
coordinates, reference and alternate alleles, and gene (if
applicable), for all variants that match those in the
CIViC database with an evidence level of “A”:

oncogemini query -q “select chrom, start, end,
ref, alt, gene from variants where civic_evi_
level = ‘A’” oncogemini.db

The query tool can take advantage of the flexibility of
OncoGEMINI’s SQL language to build sophisticated
search commands. Anticipating common searches per-
taining to tumor growth and propagation, we have also
developed a suite of tools that identify variants that fol-
low patterns of particular interest in tumor evolution
and alleviate the need to repeatedly craft lengthy search
queries. Each of the tools described in the following sec-
tions is capable of further customization with additional
tool-specific parameters and via the annotations in-
cluded in the database. Together, these options provide
the ability to design explicit search queries that can ef-
fectively reduce the list of variants, thereby narrowing in
on potential variants of interest.
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The bottleneck tool
As individual tumor cells replicate, they may acquire pri-
vate mutations that give rise to subclonal structures and
heterogeneity within tumors. Over time, owing to drift
or the selective pressure of drug and other treatments,
the prevalence of certain tumor variants can be reduced
or increased. Thus, the ability to determine the fre-
quency at which any given tumor variant exists is both a
function of sampling time and efficiency. Variants which
increase in frequency over time, especially across differ-
ent interventions, may represent potential contributors
to the proliferation and survivability of a given tumor.
We have developed the bottleneck tool to identify var-
iants exhibiting this increased allele frequency over time.
This tool relies upon having information regarding the
sequential order that tumor samples arose; therefore,
this tool is most applicable to longitudinal data, but may
be useful with other studies, including metastatic studies,
provided temporal information is otherwise appropri-
ately known or ascertained. The bottleneck tool scans
each variant in the database for samples that exhibit in-
creasing allele frequencies over the sampling time indi-
cated in the sample manifest file (Fig. 2). To accomplish
this, the bottleneck tool uses the allele frequencies of
specified samples across the sample time points and cal-
culates the slope of these values. Variants that exceed a
given slope (default 0.05) are reported in the output.

The loh tool
Loss of heterozygosity (LOH) is a common genomic al-
teration in cancer genomes that leads to the loss of one
allele. LOH events can result in functional consequences
including reduced gene expression, haploinsufficiency,
or acting as the second “hit” in a tumor suppressor gene.
LOH mutations can indicate causative variants or other-
wise serve as biomarkers for cancer identification and
potential patient care. One method for identifying LOH
relies upon observing genetic loci that appear heterozy-
gous in germline DNA but are not heterozygous in
tumor DNA. The loh tool identifies potential LOH vari-
ants by observing allele frequency changes that are con-
sistent with heterozygosity present in the normal tissue
samples, but absent in all specified tumor samples
(Fig. 2).

The truncal tool
Somatic mutations that arose early in tumor develop-
ment are likely to be present in all sequenced samples.
Such mutations may serve as important therapeutic tar-
gets since they are present throughout all samples, ra-
ther than localized and private to any specific subclones.
For example, this subset of variants may harbor potential
neoantigens which represent ideal targets for patient-
specific T cell-based cancer immunotherapy [21]. The

truncal tool was designed to identify genetic variants
that are present in all given tumor samples, but absent
from any normal samples (Fig. 2). Similar to the loh
tool, the truncal tool also requires a normal sample to
be included and accepts a defined maximum allele fre-
quency to be allowed in the normal tissue samples (default
is 0). Variants where all the tumor samples have allele fre-
quencies that are higher than the maximum normal tissue
allele frequency are included in the output.

The unique tool
While one of the key features of analyses with OncoGE-
MINI is the inclusion of multiple samples from different
spatial and temporal biopsies, the unique tool also al-
lows OncoGEMINI to highlight variants that are specific
to a single sample or group of samples. This tool re-
quires desired samples to be listed and returns all vari-
ants that are present in that samples and absent from all
others. Similar to the truncal tool, this is done by spe-
cifying a minimum allele frequency (default is 0) that
must be exceeded in the listed samples, but not be met
in all other samples.

Identifying somatic mutations
OncoGEMINI will evaluate all variants within the data-
base and select those that meet specified tool and anno-
tation filter requirements. Thus, if the VCF used to
create the database contained both germline and somatic
mutations, both mutation types would be considered by
OncoGEMINI commands. To focus solely on somatic
mutations, it is recommended that the VCF used for the
creation of a OncoGEMINI database be pre-filtered to
only include somatic mutations. Somatic mutations may
also be labeled with a specific identifier in the “INFO”
field of the VCF, thereby enabling facile filtering for such
mutations within the database. Alternatively, the set_
somatic tool may be employed to annotate variants as
somatic within an existing OncoGEMINI database,
based on genotypes or user-defined criteria regarding
normal and tumor sample sequencing depths and allele
frequencies. The set_somatic tool creates an “is_som-
atic” annotation within the database. OncoGEMINI tools
may then take advantage of the --somatic-only par-
ameter to restrict variant evaluations to only those vari-
ants that have been marked as somatic in the database
by the set_somatic tool.

Results
OncoGEMINI’s integration of genetic variants identified
across one or more biopsies with annotations relevant to
cancer enables a wide range of analyses and variant
prioritization strategies. Furthermore, the OncoGEMINI
framework can be used to study variation observed in di-
verse study designs, including studies of a single tumor
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and normal biopsy and multiple tumor and/or ascite bi-
opsies from the same patient over the course of treat-
ment. Existing tools [22–26] are well-suited to the study

of mutations found in matched tumor-normal studies
and OncoGEMINI’s primary innovation is the ability to
analyze multiple related samples alongside one another.

Fig. 2 Using OncoGEMINI filtering tools to identify variants with specific patterns. Genetic variants corresponding to all samples originating from
representative patients, #1 and #3 (further details in “Results” section), are indicated with single gray lines at their respective alternate allele
frequencies, where darker grays represent a greater accumulation of variants with similar frequencies. Samples are represented by their sampling
time as indicated in the sample manifest file, where a time of 0 indicates a normal tissue sample and values greater than 0 correspond to
subsequent tumor samples. Individual variants and their alternate allele frequency changes across multiple tumor time points are highlighted
with colored points connected by lines and were isolated from all other variants using the OncoGEMINI filtering tools: bottleneck (red), loh
(blue), and truncal (yellow). For each of these variants, the gene in which they occur and their specific mutation are listed next to the point in
the final sample for each patient
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We therefore demonstrate OncoGEMINI’s functionality
by providing example analyses that isolate variants of
interest in a recent study of longitudinal biopsies from
three breast cancer patients [27], as well as a study of
four breast cancer patients that explored somatic muta-
tions revealed from a total of 48 primary tumor and
metastatic biopsies [28].

Breast cancer longitudinal data
We first highlight OncoGEMINI’s utility with an ex-
ample analysis that identifies and filters variants of inter-
est from longitudinal biopsies obtained from three
breast cancer patients [27]. We specifically focused on
patients #1 and #3, each of which was followed for more
than 3 years and experienced multiple tumor recurrences
(4 total tumor samples in patient #1 and 2 in patient
#3), undergoing biopsies with samples taken before, dur-
ing, or after a variety of distinct drug treatments. Specific
details regarding these patients, their tumor history,
treatments, data generated, and conducted analyses were
previously reported [27]. In summary, the original study
reported 5,543,181 and 5,355,078 total unfiltered vari-
ants (40,853 and 28,647 were identified as being som-
atic) in patients #1 and #3, respectively, from whole-
genome sequencing that were further filtered through a
combination of manual curation, analysis, and validation.
Automating similar future analyses as much as possible
was a key motivation for the development of OncoGE-
MINI. Of these previously reported somatic mutations,
the authors of the original study identified nine total
SNV or small indel variants (8 mutations and 1 inherited
variant) in patients #1 and #3 as cancer drivers or other-
wise biologically relevant variants (for specific variant
details, see Fig. 2). These variants serve as ideal candi-
dates for the types of variants of interest that OncoGE-
MINI should be able to prioritize using its improved
annotations and filtering tools.
For each VCF, variants were annotated in two distinct

steps. First, consistent with GEMINI, OncoGEMINI
also incorporates standard variant effect predictions
made by SnpEff [29] or VEP [30], and in this case, ini-
tial annotations were added via SnpEff. Second, we
downloaded additional cancer-relevant features from
various databases, including CGI, CIViC, and DGIdb,
via the CRAB and subsequently added them as variant
annotations to the VCFs using vcfanno. A sample
manifest file was prepared that listed all of the samples,
their names, the patients they corresponded to (either
patient #1 or #3), and time points where the normal
samples were given a time of 0 and subsequent tumor
samples were given times greater than 0 with each con-
secutive sample time increasing by 1. The optional pur-
ity column was not included for either of these
patients. With the sample manifest file, OncoGEMINI

databases, including all of the added annotations, were
then created for each patient’s VCF using vcf2db. The
resulting databases contained all unfiltered variants for
patients #1 and #3, which are reduced to 4,986,519 and
4,928,034 total variants (32,840 and 26,106 that are marked
as somatic variants), respectively, if we require a minimum
sequencing depth threshold of 10 for all samples.
To further reduce this number and reveal potential vari-

ants of interest (i.e., the previously reported variants), we
required certain filters via the included annotations to be
met and utilized many of the previously described Onco-
GEMINI tools. As expected, the count of variants that
OncoGEMINI returns depends upon the number of anno-
tation filters and tools that are specified where, generally
speaking, the more filters alongside tools that are required,
the more the list of returned variants is reduced.
Specifying that variants be filtered to only those

with a SnpEff impact prediction of “medium” or
“high” (impact_severity != ‘LOW’) drastically re-
duced the number of returned variants to 20,580
and 19,516, respectively. Also, restricting variants to
those found in genes with previous implications to-
wards tumorigenesis in certain cancer types via
CGI’s Catalog of Cancer Genes (cgi_gene != ‘’)
and genes with high CIViC evidence levels or ratings
(civic_gene_max_level == ‘A’ or civic_gene_
max_level == ‘B’ or civic_gene_max_rating
>= 4) refined the number of variants to 140 and
149. Combining these annotation filters with each of
the OncoGEMINI bottleneck, loh, and truncal
tools resulted in a total of three variants from pa-
tient #1 and 2 variants from patient #3 being
returned which accounted for three of the nine pre-
viously reported variants. To try and recover the
remaining 6 previously reported variants, we relaxed
the filter requirements by removing the CIViC evi-
dence level and rating annotation filters. This in-
creased the number of resulting variants to 1245 and
1253, respectively, but by once again passing them
through the bottleneck, loh, and truncal tools
only 17 and 27 variants remained, including eight of
the nine previously reported variants. Altogether
with just a few commands that returned results in
seconds of time, we were able to filter millions of
tumor variants to a much more manageable number
in each patient, which included nearly all of the pre-
viously reported variants (Fig. 3). We note that dis-
tinct annotations from SnpEff, CGI, and CIViC are
each capable of substantially reducing the number of
variants, but by combining these annotation filters
with one another and each of the OncoGEMINI fil-
tering tools the number of variants is refined to a
specific few. We also identified in each patient add-
itional mutations that were not previously reported,
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but that meet the same parameters as those that
were. While these variants are not validated and
their potential role in the subclonal tumorigenesis in
each of the patients is unknown, they may be worth
further consideration.
It is important to note that while this filtering scheme

has been described in a sequential manner, all of the
searches, including the application of multiple filters
with individual tools, can be accomplished with a single
command. For example, using the truncal tool along-
side all of the previously described filters can be done
like so:

oncogemini truncal --minDP 10 --columns
“chrom,start,end,ref,alt,gene” --filter “im-
pact_severity != ‘LOW’ and cgi_gene != “ and

(civic_gene_max_level == ‘A’ or civic_gene_
max_level == ‘B’ or civic_gene_max_rating >=
4)” patient1.db
This command will return the chromosome, start and

end positions, reference and alternate alleles, and the gene
for the two truncal variants in patient #1 that meet these
criteria. This allows for maximum customization into a
single command when devising search specifications.

Breast cancer regional metastatic data
OncoGEMINI also provides a means to evaluate mul-
tiple tumor samples as is common for many metastatic
and other regional tumor studies. Here, we demonstrate
an example spatial analysis that focuses on four individ-
ual breast cancer patients, identified as ER1, ER2, ER3,
and TN1, that each exhibited extensive metastatic

Fig. 3 Schematic of an OncoGEMINI workflow for filtering variants. Variants are filtered using a combination of OncoGEMINI tools and included
annotations as filter requirements. For each set of numbers, those listed on the left belong to patient #1, and those on the right are from patient
#3. On the leftmost side of the figure, the total number of variants for each patient is listed with an increasing number of cancer annotation filter
requirements being added from top to bottom, and the corresponding number of variants that meet those requirements, being specified as
individual rows. Below each of these values, colored in orange, are the total number of variants that are flagged as somatic for that given
combination of annotation filters. For each row, the number of variants is further restricted by individual OncoGEMINI tools listed towards the
right side of the figure, highlighted in light gray boxes. The number of variants returned by different combinations of OncoGEMINI tools and
cancer annotation filters are continued as rows within each of the gray boxes corresponding to different tool types. All variant counts listed in
the gray boxes correspond to the total number of somatic and inherited variants. However, the majority of returned variants are somatic in the
bottleneck and truncal boxes, especially as more annotation filters are used. Given that LOH variants are present in the germline, they are not
labeled as somatic mutations in the same manner as bottleneck or truncal variants. Thus, variants identified in the loh box are not necessarily
labeled as somatic. Any combinations of OncoGEMINI tools and cancer annotation filters that return any of the previously identified somatic
variants are specified with the genes in which the variants were found and their specific mutations
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expansions from a primary tumor to other organs while
receiving various treatments and interventions over the
course of several months or years [28]. Multiple biopsies
were obtained from each patient, including multiple
sampling of the primary tumor and post-mortem meta-
static samples. For some patients, pre-mortem metastatic
samples were also acquired (Table 1). The previously
published study highlights specific mutations identified
in each patient, including truncal mutations found in all
tumor samples that are reported as metastatic drivers.
Additionally, subclonal mutations that are only present
in specific metastatic samples are also identified. By fo-
cusing on only SNV and indel variants, we established,
for each patient, a list of variants that we expect to be
present in all tumor samples as well as those that we ex-
pect to be present in all metastatic samples for each pa-
tient (Tables 2 and 3). We further demonstrate that by
using appropriate tools from OncoGEMINI, we can
quickly identify these truncal and metastatic mutations
from data corresponding to multiregional biopsies.

In total, 48 tumor sample biopsies were obtained from
these four patients. Whole-exome sequencing was per-
formed for all samples, including a blood sample from
each patient, and patient-specific, joint-called VCFs were
generated for all patient biopsies using FreeBayes [31].
FreeBayes parameters were relaxed to maximize sensitiv-
ity in variant calling in the multiple samples (see Add-
itional file 1: Supplementary Methods). Each VCF was
then annotated as previously described for the longitu-
dinal example using SnpEff and vcfanno with data from
the CGI, CIViC, and DGIdb databases. Sample manifests
were created for each patient with the blood sample be-
ing treated as a normal or germline sample and assigned
a time value of 0. Primary tumor samples were treated
as the next subsequent time point and given the value of
1 with pre-mortem metastatic samples following with a
time value of 2 and post-mortem samples given the
value of 3. The ER3 patient was exceptional in that a
pre-mortem metastatic sample was actually obtained be-
fore any of the primary tumor biopsies. In this case, the

Table 1 Summary of breast metastatic samples and called variants

Patient Primary tumor biopsies Pre-mortem metastatic biopsies Post-mortem metastatic biopsies Total variants Somatic variants

ER1 3 0 5 1,593,541 71,987

ER2 4 1 8 1,363,283 170,695

ER3 2 2 12 2,796,856 67,354

TN1 4 1 6 2,628,149 152,713

Table 2 Summary of OncoGEMINI truncal filtering of breast metastatic samples

Patient Expected
truncal
mutations

OncoGEMINI truncal

Tool only With filtersa

ER1 3 1,158 27

CDH1 (indel) CDH1 (indel) CDH1 (indel)

PIK3CA (E545K) PIK3CA (E545K) PIK3CA (E545K)

PIK3CA (E726K) PIK3CA (E726K) PIK3CA (E726K)

ER2 3 1,582 50

AKT1 (E17K) AKT1 (E17K) AKT1 (E17K)

ARID1A (W1844X) ARID1A (W1844X) ARID1A (W1844X)

PAX6 (splice)

ER3 2 1,474 32

SPEN (K1838X)

TP53 (splice)

TN1 4 1,930 29

DIDO1 (R2008X) DIDO1 (R2008X) PIK3CA (H1047R)

ITPR1 (R170X) PIK3CA (H1047R) TP53 (T118fs)

PIK3CA (H1047R) TP53 (T118fs)

TP53 (T118fs)
aRequires impact_severity ! = ‘LOW’ and the cgi_gene ! = “
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pre-mortem sample was given a time point of 1 with the
primary tumor, an additional pre-mortem biopsy, and
the post-mortem samples then given values of 2, 3, and
4, respectively. Purity values that were previously calcu-
lated by the authors using FACETS [32] were also in-
cluded in the manifests for each patient, thus enabling
the use of the optional --purity allele frequency cor-
rection parameter. Using the annotated VCFs and the
sample manifests, an OncoGEMINI database was then
created for each patient using vcf2db. The set_somatic
tool was then applied to each database to differentiate
variants as somatic or not. Parameters for set_somatic
required a minimum sequencing depth of 10 for all sam-
ples and allowed an allele frequency of 0.05 in the nor-
mal samples while simultaneously requiring that at least
a single tumor sample had an allele frequency of 0.2 or
higher. The --purity parameter was also invoked, result-
ing in purity-adjusted allele frequencies being used for all
determinations by the set_somatic tool. All subsequent
analyses focused on only the variants marked somatic by
the set_somatic tool which substantially reduces the
number of variants under consideration (Table 1).
The truncal tool is ideally suited to recover variants

that are present in all tumor samples, but absent from
any other samples included. For each patient, the trun-
cal tool (with the --maxNorm parameter set to 0.05) re-
covered nearly all previously reported mutations that fit
this expected mutation profile with a few exceptions
(Table 2). The four unrecovered mutations are present
in the VCF, but did not pass the OncoGEMINI specifi-
cations, generally by not meeting either minimum depth
or allele frequency thresholds. Some exceptions failed to
meet the truncal definition of being present in all tumor
samples while being absent from the normal samples,
unless certain samples were omitted from the analysis.
For example, the SPEN (K1838X) mutation in the ER3
patient does appear as truncal, but only if the first

metastatic sample, ER3_M1, is omitted from the analysis.
As mentioned previously, ER3_M1 was the first biopsy
taken from this patient, and it would appear that this
SPEN mutation was either not sampled in ER3_M1 or it
developed later and persisted in all subsequent biopsies.
Similarly, an ITPR1 mutation in TN1 fails to be recov-
ered by the truncal tool, because it appears in only two
of the four primary tumor samples that were included,
and is also absent from one metastatic sample. It is pos-
sible that the lack of evidence for these mutations in
these samples can be attributed to variant calling differ-
ences employed here versus the original publication. By
removing the samples in question using the --samples
parameter, these mutations are then recovered by the
truncal tool.
Identifying mutations specific to groups of samples is

precisely what the unique tool is designed to do and is
therefore appropriate for the identification of subclonal
mutations that are specific to certain metastatic samples,
but absent from all others (including the primary tumor
samples). For example, ER1 has five metastatic samples
labeled as ER1_A1, ER1_A2, ER3_A3, ER1_A4, and
ER1_A5 within the ER1 OncoGEMINI database, and the
following command can use the unique tool to identify
variants with a minimum sequencing depth of 10 across
all samples and that are present in all indicated meta-
static biopsies, but absent from all other included
samples:

oncogemini unique --minDP 10 --specific ER1_A1,
ER1_A2,ER3_A3,ER1_A4,ER1_A5 --columns “chrom,
start,end,ref,alt,gene” ER1.db
This command returns the chromosome, start and end

positions, reference and alternate alleles, and the gene
name (if the variant is within a gene region) for all vari-
ants that are found in the indicated metastatic samples
from ER1. By using similarly structured commands (in-
cluding the --maxOthers parameter set at 0.05) that

Table 3 Summary of OncoGEMINI unique filtering of breast metastatic samples

Patient Expected
metastatic
mutations

OncoGEMINI unique

Tool only With filtersa

ER1 3 100 2

CTPS2 (D153E) CTPS2 (D153E) FGFR4 (N495K)

FGFR4 (N495K) FGFR4 (N495K) MGA (splice)

MGA (splice) MGA (splice)

ER2 1 181 6

SPEN (E2151K) SPEN (E2151K) SPEN (E2151K)

ER3 0 4 0

TN1 0 17 0
aRequires impact_severity ! = ‘LOW’ and the cgi_gene ! = “
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specify only the metastatic samples for each patient, we
expect to find certain alterations in the metastatic sam-
ples of ER1 and ER2 and we are able to recover all of
these using the unique tool (Table 3). The unique tool
can also enable further refinement of subclonal muta-
tions present within subsets of metastatic samples. Previ-
ous work in ER1 indicated additional mutational
signatures shared by metastatic samples ER1_A1, ER1_
A2, and ER1_A4 that suggest a shared origin between
them. Indeed, using the unique tool to specify only these
samples reveals mutations that appear to be unique to
these samples including the previously reported SPOP
(Y87F) variant.
Consistent with the previous longitudinal data analysis,

the tools provided by OncoGEMINI are capable of
greatly reducing the number of variants, but when used
alongside annotation filters, the number of returned var-
iants is further refined (Tables 2 and 3). We emphasize
that the OncoGEMINI tools and filters used to identify
these previously reported variants also return additional
variants that meet the same parameters and thus may be
of interest. In this manner, OncoGEMINI serves as a
comprehensive tool to report all variants that meet bio-
logically relevant criteria in a variety of tumor studies.

Conclusions
Building upon the GEMINI framework, OncoGEMINI is
ideally suited to the exploration and prioritization of
tumor mutations. Cancer research increasingly requires
the integration of data from not only multiple biological
samples, but also the accumulated genomic information
that is found in a variety of distinct databases. We have
designed OncoGEMINI to combine information from
numerous sources alongside longitudinal tumor se-
quence data to enable the rapid identification of variants
that match specific patterns and criteria. Therefore,
OncoGEMINI provides a unique tool that assists in
complex cancer analyses.
While much of OncoGEMINI’s functionality is applic-

able to a variety of data from different tumor studies, it
is optimized to incorporate and analyze data from mul-
tiple tumor samples belonging to the same patient and is
thus most powerful when used with longitudinal data
that has been collected over various time points and
treatments. OncoGEMINI offers a number of specific fil-
tering tools that focus on variant allele frequency
changes between samples and each tool can be further
adjusted with included options and parameters. Add-
itionally, using the vcfanno tool, user-defined OncoGE-
MINI databases can be built that enable different
genomic annotations to be incorporated and used in
identifying relevant tumor mutations, thus empowering
powerful cancer-specific queries. We have suggested and
prepared specific cancer annotations, but given the

inherent flexibility afforded by vcfanno, custom annota-
tions provided or created by users can be included. This
allows OncoGEMINI greater versatility and suitability to
a wide range of cancer analysis projects. By combining
annotation information with OncoGEMINI tools, we
demonstrated that individual tumor variants can be
identified with simple commands that run quickly in a
matter of seconds.
Even though OncoGEMINI is not clinically determin-

istic, it can help rapidly sort through tumor variants
from sequencing data and identify individual variants fit-
ting specific requirements that may be indicative of vari-
ants with potential clinical significance. The default
settings of the OncoGEMINI tools aim to pinpoint such
likely relevant variants, but being primarily an explora-
tory tool, OncoGEMINI’s individual tool settings can be
adjusted, as is appropriate, to expand query criteria. For
example, the last remaining variant from the previously
discussed longitudinal example was not recovered in the
described analysis (patient #3, APC V1822D) because it
was a germline variant that increased in frequency over
the time course of the tumor samples (Fig. 2). This vari-
ant follows the allele frequency pattern that is similar to
what is expected to be found by the bottleneck tool;
however, the default settings of the bottleneck tool
would ignore this variant because of its high allele fre-
quency in the included germline (normal) tissue. By
adjusting the defaults and allowing for a larger initial
normal tissue allele frequency using the --maxNorm par-
ameter (or by omitting the normal sample altogether
from the analysis using the --samples parameter), we are
able to recover that previously reported variant as well,
but further filtering would be required to narrow in on
this specific mutation. In this manner, OncoGEMINI
enjoys further flexibility that enhances its capabilities as
a tool for surveying tumor heterogeneity from sequen-
cing data.
OncoGEMINI is an open-source software package,

and it is freely available. Source code and further docu-
mentat ion can be found at https ://gi thub.com/
fakedrtom/oncogemini.
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