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Abstract The number of de novo mutations (DNMs) found in an offspring’s genome increases

with both paternal and maternal age. But does the rate of mutation accumulation in human

gametes differ across families? Using sequencing data from 33 large, three-generation CEPH

families, we observed significant variability in parental age effects on DNM counts across families,

ranging from 0.19 to 3.24 DNMs per year. Additionally, we found that ~3% of DNMs originated

following primordial germ cell specification in a parent, and differed from non-mosaic germline

DNMs in their mutational spectra. We also discovered that nearly 10% of candidate DNMs in the

second generation were post-zygotic, and present in both somatic and germ cells; these

gonosomal mutations occurred at equivalent frequencies on both parental haplotypes. Our results

demonstrate that rates of germline mutation accumulation vary among families with similar

ancestry, and confirm that post-zygotic mosaicism is a substantial source of human DNM.

DOI: https://doi.org/10.7554/eLife.46922.001

Introduction
In a 1996 lecture at the National Academy of Sciences, James Crow noted that ‘without mutation,

evolution would be impossible’ (Crow, 1997). His remark highlights the importance of understand-

ing the rate at which germline mutations occur, the mechanisms that generate them, and the effects

of gamete-of-origin and parental age. Not surprisingly, continued investigation into the germline

mutation rate has helped to illuminate the timing and complexity of human evolution and demogra-

phy, as well as the key role of spontaneous mutation in human disease (Scally and Durbin, 2012;

Moorjani et al., 2016; Deciphering Developmental Disorders Study, 2017; Yuen et al., 2016;

Acuna-Hidalgo et al., 2016; Veltman and Brunner, 2012).

Some of the first careful investigations of human mutation rates can be attributed to J.B.S. Hal-

dane and others, who cleverly leveraged an understanding of mutation-selection balance to estimate

rates of mutation at individual disease-associated loci (Haldane, 1935; Nachman, 2008). Over half

of a century later, phylogenetic analyses inferred mutation rates from the observed sequence diver-

gence between humans and related primate species at a small number of loci (Nachman and Cro-

well, 2000; Shendure and Akey, 2015). In the last decade, whole genome sequencing of pedigrees

Sasani et al. eLife 2019;8:e46922. DOI: https://doi.org/10.7554/eLife.46922 1 of 24

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.46922.001
https://doi.org/10.7554/eLife.46922
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


has enabled direct estimates of the human germline mutation rate by identifying mutations present

in offspring yet absent from their parents (de novo mutations, DNMs) (Ségurel et al., 2014;

Scally and Durbin, 2012; Jónsson et al., 2017; Goldmann et al., 2016; Kong et al., 2012;

Roach et al., 2010; Francioli et al., 2015). Numerous studies have employed this approach to ana-

lyze the mutation rate in cohorts of small, nuclear families, producing estimates nearly two-fold lower

than those from phylogenetic comparison (Roach et al., 2010; Kong et al., 2012; Jónsson et al.,

2017; Goldmann et al., 2016; Scally and Durbin, 2012; Shendure and Akey, 2015; Turner et al.,

2017).

These studies have demonstrated that the number of DNMs increases with both maternal and

paternal ages; such age effects can likely be attributed to a number of factors, including the

increased mitotic divisions in sperm cells following puberty, an accumulation of damage-associated

mutation, and substantial epigenetic reprogramming undergone by germ cells (Jónsson et al.,

2017; Kong et al., 2012; Goldmann et al., 2016; Rahbari et al., 2016; Crow, 2000; Gao et al.,

2019). There is also evidence that the mutational spectra of de novo mutations differ in the male

and female germlines (Jónsson et al., 2017; Goldmann et al., 2016; Francioli et al., 2015;

Gao et al., 2019; Agarwal and Przeworski, 2019). Furthermore, a recent study of three two-gener-

ation pedigrees, each with 4 or five children, indicated that paternal age effects may differ across

families (Rahbari et al., 2016). However, two-generation families with few offspring provide limited

power to quantify parental age effects on mutation rates and restrict the ability to assign a gamete-

of-origin to ~20–30% of DNMs (Rahbari et al., 2016; Jónsson et al., 2017; Goldmann et al., 2016).

Here, we investigate germline mutation among families with large numbers of offspring spanning

many years of parental age. We describe de novo mutation dynamics across multiple births using

blood-derived DNA samples from large, three-generation families from Utah, which were collected

as part of the Centre d’Etude du Polymorphisme Humain (CEPH) consortium (Dausset et al., 1990).

The CEPH/Utah families have played a central role in our understanding of human genetic variation

(Prescott et al., 2008; 1000 Genomes Project Consortium et al., 2015) by guiding the

eLife digest Humans receive half of their DNA from each of their parents. However, this

inherited DNA is not identical to the corresponding half of the parents’ genetic material. Instead,

both the egg and the sperm that combine to generate an embryo carry so-called ‘germline de novo’

mutations that are not present in the rest of the parents’ cells. Although these de novo mutations

are an important source of genetic diversity, they can also cause disease.

Geneticists have a longstanding interest in how, when and at what rate germline de novo

mutations arise. These questions are commonly addressed by analyzing the DNA of large cohorts of

two-generation families. Now, Sasani et al. have used the genetic data of 33 families in Utah, United

States, which all span three generations, to determine the rate at which de novo mutations appear.

The analysis revealed that, on average, each person has around 70 de novo mutations that were

not present in their parent’s genetic code. Sasani et al. also found that sperm and egg cells from

older parents typically contain more de novo mutations. However, this effect varied substantially

across the Utah families. In some families, an increase of one year in the parents’ age resulted in

over three extra de novo mutations in their children. In others, the number of new mutations barely

increased at all.

In addition, Sasani et al. found that almost 10% of de novo mutations do not occur in the parents’

sperm or eggs, but happen in the embryo very soon after fertilization. These mutations can lead to

‘mosaicism’, resulting in a person having a mutation in some, but not all of their organs and tissues.

In some cases, this could cause an unknown number of sperm and egg cells to carry a mutation that

others do not. This makes it hard to predict how likely two or more siblings are to inherit the

mutation.

This analysis reveals that parental age affects the number of de novo mutations in children, but

this effect changes from family to family. This finding could point to genetic or environmental factors

that alter the human mutation rate.

DOI: https://doi.org/10.7554/eLife.46922.002
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construction of reference linkage maps for the Human Genome Project (Lander et al., 2001), defin-

ing haplotypes in the International HapMap Project (International HapMap Consortium, 2003), and

characterizing genome-wide variation in the 1000 Genomes Project (1000 Genomes Project Con-

sortium et al., 2015).

The CEPH/Utah pedigrees are uniquely powerful for the study of germline mutation dynamics in

that they have considerably more (min = 4, max = 16, median = 8) offspring than those used in

many prior studies of the human mutation rate (Supplementary file 1). Multiple offspring, whose

birth dates span up to 27 years, motivated our investigation of parental age effects on DNM counts

within families and allowed us to ask whether these effects differed across families. The structure of

all CEPH/Utah pedigrees (Supplementary file 1) also enables the use of haplotype sharing through

three generations to determine the parental haplotype of origin for nearly all DNMs in the second

generation. Using this large dataset of ‘phased’ DNMs, we can investigate the effects of gamete-of-

origin on human germline mutation in greater detail.

Finally, if a DNM occurs in the early cell divisions following zygote fertilization (considered gono-

somal), or during the proliferation of primordial germ cells, it may be mosaic in the germline of that

individual. This mosaicism can then present as recurrent DNMs in two or more children of that par-

ent. As DNMs are an important source of genetic disease (Campbell et al., 2014b; Campbell et al.,

2015; Biesecker and Spinner, 2013; Forsberg et al., 2017; Acuna-Hidalgo et al., 2016;

Veltman and Brunner, 2012), it is critical to understand the rates of mosaic DNM transmission in

families. The structures of the CEPH/Utah pedigrees enable the identification of these recurrent

DNMs and can allow one to distinguish mutations arising as post-zygotic gonosomal variants from

those that are mosaic in the germline of the second generation.

Results

Identifying high-confidence DNMs using transmission to a third
generation
We sequenced the genomes of 603 individuals from 33, three-generation CEPH/Utah pedigrees to a

genome-wide median depth of ~30X (Figure 1—figure supplement 1, Supplementary file 1), and

removed 10 samples from further analysis following quality control using peddy (Pedersen and

Quinlan, 2017a). After standard quality filtering, we identified a total of 4,671 germline de novo

mutations in 70 second-generation individuals, each of which was transmitted to at least one off-

spring in the third generation (Figure 1a, Supplementary file 2). Approximately 92% (4,298 of

4,671) of DNMs observed in the second generation were single nucleotide variants (SNVs), and the

remainder were small (<=10 bp) insertion/deletion variants. The eight parents of four second-gener-

ation samples were re-sequenced to a median depth of ~60X (Figure 1—figure supplement 1d),

allowing us to estimate a false positive rate of 4.5% for our de novo mutation detection strategy

(Materials and methods). Taking all second-generation samples together, we calculated median

germline mutation rates of 1.10 x 10-8 and 9.29 x 10-10 per base pair per generation for SNVs and

indels, respectively, which corroborate prior estimates based on family genome sequencing with

roughly comparable parental ages (Jónsson et al., 2017; Kong et al., 2012; Besenbacher et al.,

2016; Rahbari et al., 2016). Extrapolating to a diploid genome size of ~6.4 Gbp, we therefore esti-

mate an average number of 70.1 de novo SNVs and 5.9 de novo indels per genome, at average

paternal and maternal ages of 29.1 and 26.0 years, respectively (Sasani, 2019).

Parent-of-origin and parental age effects on de novo mutation
observed in the second generation
We determined the parental gamete-of-origin for a median of 98.5% of de novo variants per sec-

ond-generation individual (range: 90.3–100%) by leveraging haplotype sharing across all three gen-

erations in a family (Kong et al., 2012; Jónsson et al., 2017), as well as read tracing of DNMs to

informative sites in the parents (Figure 1b, Figure 1—figure supplement 2). The ratio of paternal to

maternal DNMs was 3.96:1, and 79.8% of DNMs were paternal in origin. We then measured the rela-

tionship between the number of phased DNMs observed in each child and the ages of the child’s

parents at birth (Figure 2a). After fitting Poisson regressions, we observed a significant paternal age

effect of 1.44 (95% CI: 1.12–1.77, p<2e-16) additional DNMs per year, and a significant maternal
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age effect of 0.38 (95% CI: 0.21–0.55, p=1.24e-5) DNMs per year (Figure 2a). These confirm prior

estimates of the paternal and maternal age effects on de novo mutation accumulation, and further

suggest that both older mothers and fathers contribute to increased DNM counts in children (Fig-

ure 2—figure supplement 1) (Jónsson et al., 2017; Goldmann et al., 2016; Rahbari et al.,

2016; Wong et al., 2016; Besenbacher et al., 2015).

We next compared the paternal and maternal fractions of phased autosomal DNMs identified in

the second generation across eight mutational classes (Figure 2b). In maternal mutations, there was

an enrichment of C > T transitions in a non-CpG context (p=7.65e-6, Chi-squared test of indepen-

dence), and we observed an enrichment of T > G transversions in paternal mutations (p=4.93e-3,

Chi-squared test of independence). Maternal and paternal enrichments of C > T and T > G, respec-

tively, have been reported in recent studies of de novo mutation spectra, though the mechanisms

underlying these observations are currently unclear (Goldmann et al., 2016; Jónsson et al., 2017).

We additionally stratified second-generation individuals by the ages of their parents at birth and

found no significant differences in the mutational spectra of children born to older or younger

parents, though we may be underpowered to detect these differences in our dataset (Figure 2—fig-

ure supplement 2).

Evidence for inter-family variability of parental age effects on offspring
DNM counts
A recent study of three two-generation pedigrees with multiple offspring suggested that the effect

of paternal age on DNM counts in children may differ between families (Rahbari et al., 2016). Given

the large numbers of offspring in the CEPH/Utah pedigrees, we were motivated to perform an inves-

tigation of parental age effects on mutation counts within individual families. To measure these

effects in the CEPH dataset, we first generated a high-quality set of de novo variants observed in
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Figure 1. Estimating the rate of germline mutation using multigenerational CEPH/Utah pedigrees. (a) The CEPH/Utah dataset comprises 33 three-

generation families. Summaries of sequencing coverage for CEPH/Utah individuals are presented in Figure 1—figure supplement 1. After identifying

candidate de novo mutations in the second generation (e.g., the de novo ‘T’ mutation shown in the second-generation father), it is possible to assess

their validity both by their absence in the parental (first) generation and by transmission to one or more offspring in the third generation. (b) Total

numbers of DNMs (both SNVs and indels) identified across second-generation CEPH/Utah individuals and stratified by parental gamete-of-origin.

Boxes indicate the interquartile range (IQR), and whiskers indicate 1.5 times the IQR. Diagrams of phasing strategies for germline DNMs are presented

in Figure 1—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.46922.003

The following figure supplements are available for figure 1:

Figure supplement 1. Distribution of sequencing coverage in CEPH/Utah samples (a) The fraction of bases greater than or equal to the specified

coverage in the second generation, (b) third generation, (c) first-generation parents sequenced to 30X coverage, and (d) first-generation parents re-

sequenced to 60X coverage.

DOI: https://doi.org/10.7554/eLife.46922.004

Figure supplement 2. Determining the parent-of-origin for de novo mutations using transmission.

DOI: https://doi.org/10.7554/eLife.46922.005
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the third generation, excluding recurrent (mosaic) DNMs shared by multiple third-generation sib-

lings, likely post-zygotic DNMs (Materials and methods), and ‘missed heterozygotes’ in the second

generation (0.4% of heterozygous variants). The ‘missed heterozygotes’ represent apparent DNMs

in the third generation that were, in fact, likely inherited from a second-generation parent who was

incorrectly genotyped as being homozygous for the reference allele (Materials and methods). In

total, we detected 24,975 de novo SNVs and small indels in 350 individuals in the third generation

(Supplementary file 3). Of these, we were able to confidently determine a parental gamete-of-ori-

gin for 5,336 (median of 21% per third-generation individual; range of 8–38%) using read tracing,

and assign 4,201 (78.7%) of these to fathers. Given the comparatively low phasing rate in the third

generation, we focused our age effect analysis on the relationship between paternal age only and

the total number of autosomal DNMs in each individual, regardless of parent-of-origin. Taking all

third-generation individuals into account, we estimate the slope of the paternal age effect to be

1.72 DNMs per year (95% CI: 1.58–1.85, p<2e-16). Within a given family, maternal and paternal ages

are perfectly correlated; therefore, the paternal effect approximates the combined age effects of

both parents.

When inspecting each family separately, we observed a wide range of paternal age effects among

the CEPH/Utah families (Figure 3). To test whether these observed effects varied significantly

between families, we fit a Poisson regression that incorporated the effects of paternal age, family

membership, and an interaction between paternal age and family membership, across all third-gen-

eration individuals in CEPH/Utah pedigrees. As a small number of the CEPH/Utah pedigrees com-

prise multiple three-generation families (Supplementary file 1), we assigned each unique set of

second-generation parents and their third-generation children a distinct ID, resulting in a total of 40

families (Figure 3—figure supplement 1). Overall, the effect of paternal age on offspring DNM

counts varied widely across pedigrees, from only 0.19 (95% CI: �1.05–1.44) to nearly 3.24 (95% CI:
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Figure 2. Effects of parental age and sex on autosomal DNM counts and mutation types in the second generation. (a) Numbers of phased paternal and

maternal de novo variants as a function of parental age at birth. Poisson regressions (with 95% confidence bands, calculated as 1.96 times the standard

error) were fit for mothers and fathers separately using an identity link. Germline mutation rates, as a function of both paternal and maternal ages, are

presented in Figure 2—figure supplement 1. (b) Mutation spectra in autosomal DNMs phased to the paternal (n = 3,584) and maternal (n = 880)

haplotypes. Asterisks indicate significant differences between paternal and maternal fractions at a false-discovery rate of 0.05 (Benjamini-Hochberg

procedure), using a Chi-squared test of independence. P-values for each comparison are: C > G: 0.719, T > G: 4.93e-3, T > A: 8.60e-2, T > C: 8.02e-2,

C > A: 0.159, C > T: 7.65e-6, indel: 8.01e-2, CpG >TpG: 0.835. Mutation spectra stratified by parental ages are presented in Figure 2—figure

supplement 2.

DOI: https://doi.org/10.7554/eLife.46922.006

The following figure supplements are available for figure 2:

Figure supplement 1. Contribution of maternal and paternal age to de novo mutation rates.

DOI: https://doi.org/10.7554/eLife.46922.007

Figure supplement 2. Comparison of mutation spectra in children born to older or younger parents.

DOI: https://doi.org/10.7554/eLife.46922.008
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Figure 3. Parental age effects on autosomal germline mutation counts vary significantly among CEPH/Utah

families. Illustrations of pedigrees exhibiting the smallest (family 24_C, panel a) and largest (family 16, panel b)

paternal age effects on third-generation DNM counts demonstrate the extremes of inter-family

variability. Diamonds are used to anonymize the sex of each third-generation individual. The method used to

separate CEPH/Utah pedigrees into unique groups of second-generation parents and third-generation children is

presented in Figure 3—figure supplement 1. Third-generation individuals are arranged by birth order from left

to right. The number of autosomal DNMs observed in each third-generation individual is shown within the

diamonds, and the age of the father at the third-generation individual’s birth is shown below the diamond. The

coloring for these two families is used to identify them in panels c and d. (c) The total number of autosomal DNMs

is plotted versus paternal age at birth for third-generation individuals from all CEPH/Utah families. Regression

lines and 95% confidence bands indicate the predicted number of DNMs as a function of paternal age using a

Poisson regression (identity link). Families are sorted in order of increasing slope, and families with the least and

greatest paternal age effects are highlighted in blue and red, respectively. (d) A Poisson regression (predicting

autosomal DNMs as a function of paternal age) was fit to each family separately; the slope of each family’s

Figure 3 continued on next page
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2.24–4.24) additional DNMs per year. A goodness-of-fit test supported the use of a ‘family-aware’

regression model when compared to a model that ignores family membership, even after accounting

for variable sequencing coverage across third-generation samples (median autosomal base pairs

covered = 2,582,875,060; ANOVA: p=9.36e-10). Moreover, we found that the interaction between

paternal age and family membership improved the fit of the linear model (p=0.043, Appendix 1—

table 1), suggesting that inter-family variability involves differences in paternal age effects (i.e., the

slopes of each regression). We note that the confidence intervals surrounding the slope point esti-

mates for some CEPH/Utah families are quite wide, likely due to the small number of third-genera-

tion individuals (with respect to count-based regression) in each family, as well as some stochastic

noise in the DNM counts attributed to each child (Figure 3d). Nonetheless, family rankings based

upon the effect of paternal age on DNM counts are stable and relatively insensitive to outliers (Fig-

ure 3—figure supplement 2).

Finally, when compared to a multiple regression that includes the effects of both paternal and

maternal age, a model that takes family membership into account remained a significantly better fit

(ANOVA: p=2.12e-5). The high degree of correlation between paternal and maternal ages makes it

difficult to tease out the individual contributions of each parent to the observed inter-family differen-

ces. Nonetheless, these results suggest the existence of substantial variability in parental age effects

across CEPH/Utah families, which could involve both genetic and environmental factors that differ

among families.

Identifying gonadal, post-primordial germ cell specification (PGCS)
mosaicism in the second generation
Generally, studies of de novo mutation focus on variants that arise in a single parental gamete. How-

ever, if a de novo variant arises during or after primordial germ cell specification (PGCS), that variant

may be present in multiple resulting gametes and absent from somatic cells (Rahbari et al., 2016;

Acuna-Hidalgo et al., 2015; Campbell et al., 2014b; Tang et al., 2016; Jónsson et al., 2018;

Campbell et al., 2015; Biesecker and Spinner, 2013). These variants can therefore be present in

more than one offspring as apparent de novo mutations. In each family, we searched for post-PGCS

germline mosaic variants by identifying high-confidence DNMs that were shared by two or more

third-generation individuals, and were absent from the blood DNA of any parents or grandparents

within the family (Figure 4a). Given the large number of third-generation siblings in each CEPH/Utah

family, we had substantially higher power to detect germline mosaicism that occurred in in the sec-

ond generation than in prior studies. In total, we identified 720 single-nucleotide germline mosaic

mutations at a total of 303 unique sites, which were subsequently corroborated through visual

inspection using the Integrative Genomics Viewer (IGV) (Supplementary file 4)

(Thorvaldsdóttir et al., 2013). Of the phased shared germline mosaic mutations, 124/260 (47.7%)

were paternal in origin; thus, the mutations that occurred following PGCS likely occurred irrespective

of any parental sex biases on mutation counts. Overall, approximately 3.1% (720/23,399) of all sin-

gle-nucleotide DNMs observed in the third generation likely arose during or following PGCS in a

Figure 3 continued

regression is plotted, as well as the 95% confidence interval of the regression coefficient estimate. The same two

families are highlighted as in (a). A dashed black line indicates the overall paternal age effect (estimated using all

third-generation samples). Families are ordered from top to bottom in order of increasing slope, as in (c). A

random sampling approach was used to assess the robustness of the per-family regressions to possible outliers;

the results of these simulations are shown in Figure 3—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.46922.009

The following figure supplements are available for figure 3:

Figure supplement 1. Defining unique families in the CEPH/Utah dataset.

DOI: https://doi.org/10.7554/eLife.46922.010

Figure supplement 2. Paternal age effect ranks of CEPH/Utah families are robust to outlier samples.

DOI: https://doi.org/10.7554/eLife.46922.011
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parent’s germline, confirming that these variants comprise a non-negligible fraction of all de novo

germline mutations.

The mutation spectrum for non-shared germline de novo variants was significantly different than

the spectrum for shared germline mosaic variants (Figure 4b). Specifically, we found enrichments of

CpG >TpG and C > A mutations, and a depletion of T > C mutations, in shared germline mosaic
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Figure 4. Identification of post-PGCS germline mosaicism in the second generation. (a) Mosaic variants occurring during or after primordial germ cell

specification (PGCS) were defined as DNMs present in multiple third-generation siblings, and absent from progenitors in the family. (b) Comparison of

mutation spectra in autosomal single-nucleotide germline mosaic variants (red, n = 288) and germline de novo variants observed in the third generation

(non-shared) (blue, n = 22,644). Asterisks indicate significant differences at a false-discovery rate of 0.05 (Benjamini-Hochberg procedure), using a Chi-

squared test of independence. P-values for each comparison are: C > G: 6.84e-2, T > G: 0.169, T > A: 0.236, T > C: 1.51e-2, C > A: 4.31e-3, C > T:

0.385, CpG >TpG: 2.26e-6. (c) For each third-generation individual, we calculated the number of their DNMs that was shared with at least one sibling,

and plotted this number against the individual’s paternal age at birth. The red line shows a Poisson regression (identity link) predicting the mosaic

number as a function of paternal age at birth. (d) We fit a Poisson regression predicting the total number of germline single-nucleotide DNMs observed

in the third-generation individuals as a function of paternal age at birth, and plotted the regression line (with 95% CI) in blue. In red, we plotted the line

of best fit (with 95% CI) produced by the regression detailed in (c). (e) For each third-generation individual, we divided the number of their DNMs that

occurred during or post-PGCS in a parent (i.e., that were shared with a sibling) by their total number of DNMs (germline +germline mosaic), and

plotted this fraction of shared germline mosaic DNMs against their paternal age at birth.

DOI: https://doi.org/10.7554/eLife.46922.012
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variants when compared to all unshared germline de novo variants observed in the third generation

(Figure 4b). An enrichment of CpG >TpG mutations in germline mosaic DNMs, which was also seen

in a recent report on mutations shared between siblings (Jónsson et al., 2018), is particularly intrigu-

ing, as many C > T transitions in a CG dinucleotide context are thought to occur due to spontaneous

deamination of methylated cytosine (Fryxell and Zuckerkandl, 2000). Indeed, DNA methylation pat-

terns are highly dynamic during gametogenesis; evidence in mouse demonstrates that the early pri-

mordial germ cells are highly methylated, but experience a global loss of methylation during

expansion and migration to the genital ridge, followed by a re-establishment of epigenetic marks (at

different time points in males and females) (Seisenberger et al., 2012; Reik et al., 2001).

We also tabulated the number of each third-generation individual’s DNMs that was shared with

one or more of their siblings. As reported in the recent analysis of germline mosaicism

(Jónsson et al., 2018), we observed that the number of shared germline mosaic DNMs does not

increase with paternal age (p=0.647, Figure 4c, Materials and methods). Thus, a de novo mutation

sampled from the child of a younger father is more likely to recur in a future child, as early-occurring,

potentially mosaic mutations comprise a larger proportion of all DNMs present among the younger

father’s sperm population (Figure 4d). Conversely, a de novo mutation sampled from the child of an

older father is less likely to recur, as the vast majority of DNMs in that father’s gametes will have

arisen later in life in individual spermatogonial stem cells (Figure 4d) (Campbell et al., 2014a;

Jónsson et al., 2018). Consistent with this expectation, we observed a significant age-related

decrease in the proportion of shared germline mosaic DNMs (p=1.61e-5, Figure 4e). Although fami-

lies with large numbers of siblings are expected to offer greater power to detect shared, germline

mosaic DNMs, we verified that neither the mosaic fraction nor the number of mosaic DNMs

observed in third-generation children are significantly associated with the number of siblings in a

family (Materials and methods).

Identifying gonosomal mosaicism in the second generation
We further distinguished germline mosaicism from mutations that occurred before primordial germ

cell specification, but likely following the fertilization of second-generation zygotes. De novo muta-

tions that occur prior to PGCS can be present in both blood and germ cells; we therefore sought to

characterize these ‘gonosomal’ variants that likely occurred early during the early post-zygotic devel-

opment of second-generation individuals (Besenbacher et al., 2015; Campbell et al., 2015;

Campbell et al., 2014a; Campbell et al., 2014b; Rahbari et al., 2016; Harland et al., 2017;

Jónsson et al., 2018). We assumed that these gonosomal mutations would be genotyped as hetero-

zygous in a second-generation individual, but exhibit a distinct pattern of ‘incomplete linkage’ to

informative heterozygous alleles nearby (Materials and methods, Figure 5a) (Feusier et al., 2018;

Harland et al., 2017; Jónsson et al., 2018). If these variants occurred early in development, and

were present in both the blood and germ cells, we could also validate them by identifying third-gen-

eration individuals that inherited the variants with a balanced number of reads supporting the refer-

ence and alternate alleles (Figure 5a).

In total, we identified 475 putative autosomal gonosomal DNMs, which were also validated by

visual inspection (Supplementary file 5). In contrast to single-gamete germline DNMs observed in

the second-generation, gonosomal mutations appeared to be sex-balanced with respect to the

parental haplotype on which they occurred; 52% (249/475) of all gonosomal DNMs occurred on a

paternal haplotype, as compared to ~80% of germline DNMs observed in the second generation.

Similarly, no significant enrichment of particular gonosomal mutation types was observed on either

parental haplotype at a false discovery rate of 0.05 (Figure 5b), though we found that T > A trans-

versions are enriched in gonosomal DNMs when compared to single-gamete germline DNMs

observed in the second generation (p=2.32e-3) (Figure 5c). Unlike single-gamete germline DNMs,

there were no significant effects of parental age on gonosomal DNM counts (maternal age,

p=0.132; paternal age, p=0.225) (Figure 5d). However, a recent study found tentative evidence for

a maternal age effect on de novo mutations that arise in the early stages of zygote development

(Gao et al., 2019). As noted in this previous study, we are likely underpowered to detect a possible

maternal age effect using the numbers of second-generation individuals in the CEPH/Utah dataset.

Overall, our results demonstrate that over 9% (475/5,017) of all candidate autosomal germline muta-

tions observed in the second generation were, in fact, post-zygotic in these second-generation indi-

viduals. Perhaps most importantly, approximately 6% of candidate de novo mutations detected in
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the second generation with an allele balance >= 0.2 (303/5,017) were determined to be post-

zygotic, and present in both somatic and germ cells. This suggests that a fraction of many germline

de novo mutation datasets are comprised of truly post-zygotic DNMs, rather than mutations that

occurred in a single parental gamete.
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Figure 5. Identification of gonosomal mutations in the second generation. (a) Gonosomal post-zygotic variants were identified as DNMs in a second-

generation individual that were inherited by one or more third-generation individuals, but exhibited incomplete linkage to informative heterozygous

sites nearby. (b) Comparison of mutation spectra in single-nucleotide gonosomal DNMs that occurred on the paternal (n = 249) or maternal (n = 226)

haplotypes. No significant differences were found at a false-discovery rate of 0.05 (Benjamini-Hochberg procedure), using a Chi-squared test of

independence. P-values for each comparison are: C > G: 3.05e-2, T > G: 0.972, T > A: 0.858, T > C: 0.148, C > A: 3.31e-2, C > T: 2.66e-2, indel: 0.247,

CpG >TpG: 0.932. (c) Comparison of mutation spectra in autosomal single-nucleotide germline DNMs observed in the second-generation (non-

gonosomal) (n = 4,542) and putative gonosomal mutations (n = 475) in the second generation. Asterisks indicate significant differences at a false-

discovery rate of 0.05 (Benjamini-Hochberg procedure), using a Chi-squared test of independence. P-values for each comparison are: C > G: 0.517,

T > G: 0.800, T > A: 2.32e-3, T > C: 0.255, C > A: 0.129, C > T: 0.805, indel: 0.446, CpG >TpG: 0.212. (d) Numbers of phased gonosomal variants as a

function of parental age at birth. Poisson regressions (with 95% confidence bands) were fit for the mutations phased to the maternal and paternal

haplotypes separately using an identity link. A diagram of an identification strategy for post-zygotic gonosomal DNMs (using only two generations) is

presented in Figure 5—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.46922.013

The following figure supplement is available for figure 5:

Figure supplement 1. Strategy for identifying post-zygotic DNMs using two generations.

DOI: https://doi.org/10.7554/eLife.46922.014
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We note that our analysis pipeline may erroneously classify some gonosomal and shared germline

mosaic DNMs. Namely, our count of gonosomal DNMs may be an underestimate, since our require-

ment that the second-generation individual be heterozygous precludes the detection of post-zygotic

mosaic mutations at very low frequency in blood. Also, blood cells represent only a fraction of the

total somatic cell population, and we cannot rule out the possibility that mosaicism apparently

restricted to the germline may, in fact, be present in other somatic cells that were not sampled in

this study (Biesecker and Spinner, 2013).

Discussion
Using a cohort of large, multi-generational CEPH/Utah families, we identified a high-confidence set

of germline de novo mutations that were validated by transmission to the following generation. We

determined the parental gamete-of-origin for nearly all of these DNMs observed in the second gen-

eration and produced estimates of the maternal and paternal age effects on the number of DNMs in

offspring. Then, by comparing parental age effects among pedigrees with large third generations

whose birth dates span as many as 27 years, we found that families significantly differed with respect

to these age effects. Finally, we identified gonosomal and shared germline mosaic de novo variants

which appear to differ from single-gamete germline DNMs with respect to mutational spectra and

magnitude of the sex bias.

Understanding family differences in both mutation rates and parental age effects could enable

the identification of developmental, genetic, and environmental factors that impact this variability.

The fact that there were detectable differences in parental age effects between families is striking in

light of the fact that the CEPH/Utah pedigrees comprise mostly healthy individuals, and that at the

time of collection they resided within a relatively narrow geographic area (Malhotra et al., 2005;

Dausset et al., 1990). We therefore suspect that our results understate the true extent of variability

in mutation rates and age effects among families with diverse inherited risk for mutation accumula-

tion, and who experience a wide range of exposures, diets, and other environmental factors. Sup-

porting this hypothesis, a recent report identified substantial differences in the mutation spectra of

variants in populations of varied ancestries, suggesting that genetic modifiers of the mutation rate

may exist in humans, as well as possible differences in environmental exposures (Harris and Pritch-

ard, 2017; Mathieson and Reich, 2017). Another explanation (that we are unable to explore) for

the range of de novo mutation counts in firstborn children across families is variability in the age at

which parents enter puberty. For example, a father entering puberty at an older age could result in

less elapsed time between the start of spermatogenesis and the fertilization of his first child’s

embryo. Compared to another male parent of the same age, his sperm will have accumulated fewer

mutations by the time of conception. Of course, this hypothesis assumes that for both fathers, three

parameters are identical: the mutation rate at puberty, the yearly mutation rate increase following

puberty, and age at fertilization of the first child’s embryo. Moreover, we note that replication errors

are unlikely to be the sole source of de novo germline mutations (Gao et al., 2019). Overall, the

potential sources of inter-family variability in mutation rates remain mysterious, and we anticipate

that future studies will be needed to uncover the biological underpinnings of this variability.

Our observation of germline mosaicism, a result of de novo mutations that occur during or post-

PGCS, has broad implications for the study of human disease and estimates of recurrence risks

within families (Jónsson et al., 2018; Campbell et al., 2014b; Biesecker and Spinner, 2013;

Forsberg et al., 2017; Krupp et al., 2017). If a de novo mutation is found to underlie a genetic dis-

order in a child, it is critical to understand the risk of mutation recurrence in future offspring. We esti-

mate that ~3% of germline de novo mutations originated as a mosaic in the germ cells of a parent.

This result corroborates recent reports (Rahbari et al., 2016; Jónsson et al., 2018) and demon-

strates that a substantial fraction of all germline DNMs may be recurrent within a family. We also

find that the mutation spectrum of shared germline mosaic DNMs is significantly different than the

spectrum for single-gamete germline DNMs, raising the intriguing possibility that different mecha-

nisms contribute to de novo mutation accumulation throughout the proliferation of primordial germ

cells and later stages of gametogenesis. For instance, the substantial epigenetic reprogramming

that occurs following primordial germ cell specification may predispose cells at particular develop-

mental time points to certain classes of de novo mutations, such as C > T transitions at CpG dinucle-

otide sites (Gao et al., 2019).
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Recurrent DNMs across siblings can also manifest as a consequence of gonosomal mosaicism in

parents (Biesecker and Spinner, 2013; Jónsson et al., 2018). Although it can be difficult to distin-

guish gonosomal mosaicism from both single-gamete germline de novo mutation and germline

mosaicism, we have identified a set of putative gonosomal mosaic mutations that are sex-balanced

with respect to the parental haplotype on which they occurred, and do not exhibit any detectable

dependence on parental age at birth. Both of these observations are expected if gonosomal muta-

tions arise after zygote fertilization, rather than during the process of gametogenesis. We do, how-

ever, find that T > A transversions are enriched in gonosomal DNMs, as compared to DNMs that

occurred exclusively in the germline of a parent. Overall, we estimate that approximately 10% of

candidate germline de novo mutations in our study were, in fact, gonosomal mutations that occurred

during the early cell divisions of the offspring, rather than in a single parental gamete. Prior work in

cattle has estimated the fraction of mosaic DNMs that occur during early cell divisions to be even

higher, suggesting that these mosaic mutations make up a large fraction of DNMs that are reported

to have occurred in a single parental gamete (Harland et al., 2017).

These results underscore the power of large, multi-generational pedigrees for the study of de

novo human mutation and yield new insight into the mutation dynamics that exist due to factors

such as parental age and sex, as well as family of origin. Given that we studied only 33 large pedi-

grees, the mutation rate variability we observe is very likely an underestimate of the full range of var-

iability worldwide. We therefore anticipate future studies of multi-generational pedigrees that will

help to dissect the relative contributions of genetic background, developmental timing, and myriad

environmental factors.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software, algorithm Genome Analysis
Toolkit (GATK)

DePristo et al., 2011 v3.5.0; RRID:
SCR_001876

Software, algorithm peddy Pedersen and
Quinlan, 2017a

v0.4.3; RRID:
SCR_017287

Software, algorithm cyvcf2 Pedersen and
Quinlan, 2017b

v0.11.2

Software, algorithm mosdepth Pedersen and
Quinlan, 2018

v0.2.4

Software, algorithm pysam https://github.com/
pysam-developers/
pysam

v0.15.2

Software, algorithm python https://www.
python.org/

v3.7.3; RRID:
SCR_008394

Software, algorithm R https://www.
r-project.org/

v3.4.4; RRID:
SCR_001905

Software, algorithm Integrative
Genomics
Viewer (IGV)

Thorvaldsdóttir
et al., 2013

v2.4.11; RRID:
SCR_011793

Software, algorithm samtools Li et al., 2009 RRID:
SCR_002105

Software,
algorithm

BWA-MEM Li, 2013 v0.7.15; RRID:
SCR_010910

Genome sequencing
Whole-genome DNA sequencing libraries were constructed with 500 ng of genomic DNA isolated

from blood, utilizing the KAPA HTP Library Prep Kit (KAPA Biosystems, Boston, MA) on the SciClone

NGS instrument (Perkin Elmer, Waltham, MA) targeting 350 bp inserts. Post-fragmentation (Covaris,

Woburn, MA), the genomic DNA was size selected with AMPure XP beads using a 0.6x/0.8x ratio.
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The libraries were PCR amplified with KAPA HiFi for 4–6 cycles (KAPA Biosystems, Boston, MA). The

final libraries were purified with two 0.7x AMPureXP bead cleanups. The concentration of each

library was accurately determined through qPCR (KAPA Biosystems, Boston, MA). Twenty four librar-

ies were pooled and loaded across four lanes of a HiSeqX flow cell to ensure that the libraries within

the pool were equally balanced. The final pool of balanced libraries was loaded over an additional

16 lanes of the Illumina HiSeqX (Illumina, San Diego, CA). 2 � 150 paired-end sequence data was

generated. This efficient pooling scheme targeted ~30X coverage for each sample.

DNA sequence alignment
Sequence reads were aligned to the GRCh37 reference genome (including decoy sequences from

the GATK resource bundle) using BWA-MEM v0.7.15 (Li, 2013). The aligned BAM files produced by

BWA-MEM were de-duplicated with samblaster (Faust and Hall, 2014). Realignment for regions

containing potential short insertions and deletions and base quality score recalibration was per-

formed using GATK v3.5.0 (DePristo et al., 2011). Alignment quality metrics were calculated by run-

ning samtools ‘stats’ and ‘flagstats’ (Li et al., 2009) on aligned and polished BAM files.

Variant calling
Single-nucleotide and short insertion/deletion variant calling was performed with GATK v3.5.0

(DePristo et al., 2011) to produce gVCF files for each sample. Sample gVCF files were then jointly

genotyped to produce a multi-sample project level VCF file.

Sample quality control and filtering
We used peddy (Pedersen and Quinlan, 2017a) to perform relatedness and sample sequencing

quality checks on all CEPH/Utah samples. We discovered a total of 10 samples with excess levels of

heterozygosity (proportion of heterozygous calls > 0.2). Many of these samples were also listed as

being duplicates of other samples in the cohort, indicating possible sample contamination prior to

sequencing. We therefore removed all 10 samples with a heterozygous genotype proportion

exceeding 0.2 from further analysis. In total, we were left with 593 first-, second-, and third-genera-

tion samples with high-quality sequencing data.

Identifying DNM candidates
We identified high-confidence de novo mutations from the joint-called VCF in the second and third

generations as follows, using cyvcf2 (Pedersen and Quinlan, 2017b). For each variant, we required

that the child possessed a unique genotyped allele absent from both parents; when identifying de

novo variants on the X chromosome, we required male offspring genotypes to be homozygous. We

required the aligned sequencing depth in the child and both parents to be >= 12 reads, Phred-

scaled genotype quality (GQ) to be >= 20 in the child and both parents, and no reads supporting

the de novo allele in either parent. We removed de novo variants within low-complexity regions

(Li, 2014; Turner et al., 2017), and any variants that were not listed as ‘PASS’ variants by GATK

HaplotypeCaller. Finally, we removed DNMs with likely DNM carriers in the cohort; we define car-

riers as samples that possess the DNM allele, other than the sample with the putative DNM and his/

her immediate family (i.e., siblings, parents, or grandparents). We adapted a previously published

strategy (Jónsson et al., 2017) to discriminate between ‘possible carriers’ of the DNM allele (sam-

ples genotyped as possessing the de novo allele), and ‘likely carriers’ (a subset of ‘possible carriers’

with depth >= 12, allele balance >= 0.2, and Phred-scaled genotype quality >= 20). We removed

putative DNMs for which there were any ‘likely carriers’ of the allele in the cohort. We then sepa-

rated the candidate variants observed in the second-generation into true and false positives based

on transmission to the third generation. For each candidate second-generation variant, we assessed

whether the DNM was inherited by at least one member of the third generation; to limit our identifi-

cation of false positive transmission events, we required third-generation individuals with inherited

DNMs to have a depth >= 12 reads at the site and Phred-scaled genotype quality >= 20. We

defined ‘transmitted’ second-generation variants as variants for which the median allele balance

across transmissions was >= 0.3. One CEPH/Utah family (family ID 26) contains only four sequenced

grandchildren (Supplementary file 1); therefore, we did not include the two second-generation

Sasani et al. eLife 2019;8:e46922. DOI: https://doi.org/10.7554/eLife.46922 13 of 24

Research article Genetics and Genomics

https://doi.org/10.7554/eLife.46922


individuals from this family in our analysis of DNMs observed in the second-generation, as we lacked

power to detect high-quality transmission events.

Because we were unable to validate DNMs observed in the third generation by transmission, we

applied a more stringent set of quality filters to all third-generation DNMs. We required the same fil-

ters as applied to all second-generation DNMs, but additionally required that the allele balance in

each DNM was >= 0.3. We further required that there were no possible carriers of the de novo allele

in the rest of the cohort. For each DNM in the third generation, we assessed if any of the third-gen-

eration individuals’ grandparents were genotyped as possessing the DNM allele; if so, we removed

that DNM from further analysis (see section entitled ‘Estimating a missed heterozygote rate’). Finally,

we removed a total of 319 candidate germline DNMs in the third generation after finding evidence

that these were, in fact, post-zygotic mutations (see section entitled ‘Identifying gonosomal

mutations’).

Determining the parent of origin for single-gamete germline DNMs
To determine the parent of origin for each de novo variant in the second generation, we phased

mutation alleles by transmission to a third generation, a technique which has been described previ-

ously (Jónsson et al., 2017; Kong et al., 2012; Goldmann et al., 2016; Rahbari et al., 2016) (Fig-

ure 1—figure supplement 2a). We searched 200 kbp upstream and downstream of each DNM for

informative variants, defined as alleles present as a heterozygote in the second-generation individ-

ual, observed in only one of the two parents, and observed in each of the third-generation individu-

als that inherited the DNM. For each of these informative variants, we confirmed that the

informative variant was always transmitted with the DNM; if so, we could infer that the heterozygous

variant was present on the same haplotype as the DNM (assuming recombination did not occur

between the DNM and the flanking informative variants), and assign the first-generation parent with

the informative variant as the parent of origin (Figure 1—figure supplement 2a). For each second-

generation DNM, we identified all transmission patterns (i.e., combinations of a first-generation par-

ent, second-generation child, and set of third-generation grandchildren that inherited both the infor-

mative variant and the DNM). We only assigned a confident parent-of-origin at sites where the most

frequent transmission pattern occurred at >= 75% of all informative sites.

We additionally phased de novo variants in the second generation, as well as all DNMs in the

third generation, using ‘read tracing’ (also known as ‘read-backed phasing’) (Jónsson et al., 2017;

Goldmann et al., 2016). Briefly, for each de novo variant, we first searched for nearby (within one

read fragment length, 500 bp) variants present in the proband and one of the two parents. Thus, if

the de novo variant was present on the same read as the inherited variant, we could infer haplotype

sharing, and determine that the de novo event occurred on that parent’s chromosome (Figure 1—

figure supplement 2b). Similarly, if the de novo variant was not present on the same read as the

inherited variant, we could infer that the de novo event occurred on the other parent’s

chromosome.

We were also able to determine the parent-of-origin for many of the shared germline mosaic var-

iants by leveraging haplotype sharing across three generations (Jónsson et al., 2018). If all third-

generation individuals with a post-PGCS DNM shared a haplotype with a particular first-generation

grandparent, we assigned that first-generation grandparent’s child (i.e., one of the two second-gen-

eration parents) as the parent of origin.

In the second generation, the read tracing and haplotyping sharing phasing strategies were

highly concordant, and the parent-of-origin predictions agreed at 98.8% (969/980) of all DNMs for

which both strategies could be applied.

Calculating the rate of germline mutation
Given the filters we employed to identify high-confidence de novo mutations, we needed to calcu-

late the fraction of the genome that was considered in our analysis. To this end, we used mosdepth

(Pedersen and Quinlan, 2018) to calculate per-base genome coverage in all CEPH/Utah samples,

excluding low-complexity regions (Li, 2014) and reads with mapping quality <20 (the minimum map-

ping quality threshold used by GATK HaplotypeCaller in this analysis). For each second- and third-

generation child, we then calculated the number of all genomic positions that had at least 12 aligned

sequence reads in the child’s, mother’s, and father’s genome (excluding the X chromosome). In the
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second generation, the median number of callable autosomal base pairs per sample was

2,582,336,232. For each individual, we then divided their count of autosomal de novo mutations by

the resulting number of base pairs, and divided the result by two to obtain a diploid human muta-

tion rate per base pair per generation. The median second-generation germline SNV mutation rate

was calculated to be 1.143 � 10�8 per base pair per generation. We then adjusted this mutation

rate based on our estimated false positive rate (FPR) and our estimated ‘missed heterozygote rate’

(MHR; see section entitled ‘Estimating a missed heterozygote rate’) as follows:

adj_mu = mu * (1 - FPR/1 - MHR)

adj_mu = 1.143e-8 * (1–0.045/1–0.004)

Assessing age effect variability between families
Using the full call set of de novo variants in the third generation (excluding the recurrent, post-PGCS

DNMs and likely post-zygotic DNMs) we first fit a simple Poisson regression model that calculated

the effect of paternal age on total autosomal DNM counts in the R statistical language (v3.5.1) as

follows:

glm(autosomal_dnms ~ dad_age, family = poisson(link='identity’))

This model returned a highly significant effect of paternal age on total DNM counts (1.72 DNMs

per year of paternal age, p<2e-16), but was agnostic to the family from which each third-generation

individual was ‘sampled.’ Importantly, a number of third-generation individuals in the CEPH/Utah

cohort share grandparents, and may therefore be considered members of the same family, despite

having unique second-generation parents (Figure 3—figure supplement 1). For all subsequent anal-

ysis, we defined a ‘family’ as the unique group of two second-generation parents and their third-

generation offspring (Figure 3—figure supplement 1). In the CEPH/Utah cohort, there are a total of

40 ‘families’ meeting this definition.

To test for significant variability in paternal age effects between families, we fit the following

model:

glm(autosomal_dnms ~ dad_age * family_id,

family = poisson(link='identity'))

Which can also be written in an expanded form as:

glm(autosomal_dnms ~ dad_age + family_id + dad_age:family_id,

family = poisson(link='identity'))

To assess the significance of each term in the fitted model, we performed an analysis of variance

(ANOVA) as follows:

m = glm(autosomal_dnms ~ dad_age + family_id + dad_age:family_id, family = poisson

(link='identity'))

anova(m, test='Chisq')

The results of this ANOVA are shown in Appendix 1—Table 1. In summary, this model contained

the fixed effect of paternal age, as well as different regression intercepts within each ‘grouping fac-

tor’ (i.e., family ID). Additionally, this model includes an interaction between paternal age and family

ID, allowing for the effect of paternal age (i.e., the slope of the regression) to vary within each

grouping factor.

To account for variable sequencing coverage across CEPH/Utah samples, we additionally calcu-

lated the callable autosomal fraction for all third-generation individuals by summing the total num-

ber of nucleotides covered by >= 12 reads in the third-generation individual and both of their

second-generation parents, excluding low-complexity regions and reads with mapping quality <20

(see section entitled ‘Calculating the rate of germline mutation’).
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Since we only consider the effect of paternal age on the mutation rate, we can model the muta-

tion rate (mu) as:

mu = Bp * Ap +B0

Where Bp is the paternal age effect, Ap is the paternal age, and B0 is an intercept term.

Therefore, the number of DNMs in a sample is assumed to follow a Poisson distribution, with the

expected mean of the distribution defined as:

E(# DNMs) = mu * callable_fraction

E(# DNMs) = (Bp * Ap + B0) * callable_fraction

E(# DNMs) = (Bp * Ap * callable_fraction) + (callable_fraction * B0)

As our analysis only considers the effect of paternal age on total DNM counts, we can thus scale

Ap (paternal age at birth) by the callable_fraction, generating a term called dad_age_scaled,

and fit the following model, which takes each sample’s callable fraction into account:

glm(autosomal_dnms ~ dad_age_scaled + autosomal_callable_fraction +0,

family = poisson(link='identity'))

Then, we can determine whether inter-family differences remain significant by comparing the

above null model to a model that takes family into account:

glm(autosomal_dnms ~ dad_age_scaled *

family_id + autosomal_callable_fraction + 0, family = poisson(link='identity'))

After running an ANOVA to compare the two models, we find that the model incorporating fam-

ily ID is a significantly better fit (ANOVA: p=9.359e-10).

We previously identified significant effects of both maternal and paternal age on DNM counts

(Figure 2a). Therefore, to account for the non-negligible effect of maternal age on DNM counts, we

fit a final model that incorporated the effects of both maternal and paternal age, as well as family

ID, on total DNM counts as follows:

glm(autosomal_dnms ~ dad_age +mom_age +family_id, family = poisson

(link='identity'))

We then performed an ANOVA on the model, and found that a model incorporating a family

term is a significantly better fit than a model that includes the effects of paternal and maternal age

alone (p=2.12e-5).

Identifying post-PGCS mosaic mutations
To identify post-PGCS mosaic variants, we searched the previously generated callset of single-nucle-

otide DNMs in the third generation (‘Identifying DNM candidates’) for de novo single-nucleotide

mutations that appeared in two or more third-generation siblings. As a result, all filters applied to

the germline third-generation DNM callset were also applied to the post-PGCS mosaic variants. We

validated all putative post-PGCS mosaic variants by visual inspection using the Integrative Genomics

Viewer (IGV) (Thorvaldsdóttir et al., 2013). In a small number of cases (32), we found evidence for

the post-PGCS mosaic variant in one of the two second-generation parents. Reads supporting the

post-PGCS mosaic variant were likely filtered from the joint-called CEPH/Utah VCF output following

local re-assembly with GATK, though they are clearly present in the raw BAM alignment files. We

removed these 32 variants, at which an second-generation parent possessed two or more reads of

support for the mosaic DNM allele in the aligned sequencing reads.
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Assessing age effects on post-PGCS DNMs
To identify a paternal age effect on the number of post-PGCS DNMs transmitted to third-generation

children, we tabulated the number of each third-generation individual’s DNMs that was shared with

at least one of their siblings. We then fit a Poisson regression as follows, regressing the number of

mosaic DNMs in each third-generation individual against their father’s age at birth:

glm(mosaic_number ~dad_age, family = poisson(link='identity'))

We did not find a significant effect of paternal age (p=0.647).

Using the predicted paternal age effects on germline DNM counts and post-PGCS DNM counts,

we determined that the fraction of post-PGCS DNMs should decrease non-linearly with paternal age

(Figure 4e). Therefore, to assess the effect of paternal age on the fraction of each third-generation

individual’s DNMs that occurred post-PGCS in a parent, we fit the following model:

lm(log(mosaic_fraction)~dad_age)

We found a significant effect of paternal age on the post-PGCS mosaic fraction (p=1.61e-5).

As we may be more likely to identify shared, post-PGCS DNMs in families with larger numbers of

third-generation siblings, we additionally tested whether the fraction of post-PGCS DNMs in each

child was dependent on the number of their siblings in the family by performing a correlation test as

follows:

cor.test(mosaic_fraction, n_siblings)

We did not observe a significant correlation between a third-generation individual’s number of

siblings and the fraction of their DNMs that was shared with a sibling (p=0.882). We also did not

observe a significant correlation between a third-generation individual’s number of siblings and the

total number of their DNMs shared with a sibling (p=0.426).

Identifying gonosomal mutations
To identify variants that occurred early in post-zygotic development, we identified de novo single-

nucleotide variants in the second generation using the same genotype quality and population-based

filters as described previously (‘Identifying DNM candidates’). Then, to distinguish single-gamete

germline de novo mutations from post-zygotic DNMs (de novo mutations that occurred in the cell

divisions following fertilization of the second-generation individual’s embryo), we employed a previ-

ously described method (Harland et al., 2017; Feusier et al., 2018; Jónsson et al., 2018) that relies

on linkage between DNMs and informative heterozygous alleles nearby. In this approach, which is

similar in principle to the strategy used for phasing germline second-generation DNMs, we first

search ±200 kbp up- and down-stream of the de novo allele in the second-generation individual for

‘informative’ alleles; that is, alleles that are present in only one first-generation parent, and inherited

by the second-generation child (Figure 5a). Then, we identify all of the third-generation grandchil-

dren that inherited the informative alleles. If all of the third-generation individuals that inherited the

informative alleles also inherited the DNM, we infer that the DNM occurred in the germline of the

first-generation parent with the informative allele. However, if one or more third-generation individu-

als inherited the informative alleles but did not inherit the DNM, we can infer that the DNM occurred

sometime following the fertilization of the second-generation sample’s embryo. This is because the

DNM is not always present on the background haplotype that the second-generation individual

inherited from their informative first-generation parent. Using this approach, we do not apply any

allele balance filters to putative gonosomal DNMs in the second generation, instead relying on link-

age to distinguish them from germline DNMs. As with germline de novo mutations observed in the

second-generation, to limit our identification of false positive events, we required third-generation

individuals with inherited DNMs to have a depth >= 12 reads at the site, Phred-scaled genotype

quality (GQ) >= 20, and for the median allele balance across transmissions to be >= 0.3.

Additionally, we can use an orthogonal method to distinguish single-gamete germline DNMs

from post-zygotic DNMs. In this second approach, we identify all heterozygous sites ± 500 base pairs
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(approximately one read length) from a DNM in a child. Then, by assessing the linkage of the DNM

and heterozygous alleles, we look for evidence of three distinct haplotypes in the child (Figure 5—

figure supplement 1). If we observe at least two reads supporting a third haplotype (i.e., reads that

indicate incomplete linkage between the DNM and the informative heterozygous allele), we inferred

that the DNM occurred post-zygotically in the child. We applied this method to all putative germline

DNMs identified in the third generation, and discovered that 319 of apparent germline DNMs

showed evidence of being post-zygotic mutations that occurred following the fertilization of the

third-generation embryo. We removed these DNMs from all analyses of third-generation germline

DNMs.

We validated all putative gonosomal variants in the second generation by visual inspection using

the Integrative Genomics Viewer (IGV) (Thorvaldsdóttir et al., 2013).

Estimating a ‘missed heterozygote rate’ for DNM detection
Infrequently, variant calling methods such as GATK may incorrectly assign genotypes to samples at

particular sites in the genome. When identifying de novo variants, we require that children possess

genotyped alleles that are absent from either parent; thus, genotyping errors in parents could lead

us to assign variants as being de novo, when in fact one or both parents possessed the variant and

transmitted the allele. Given the multi-generational structure of our study cohort, we were able to

estimate the rate at which our variant calling and filtering pipeline mis-genotyped a second-genera-

tion parent as being homozygous for a reference allele. To estimate this ‘missed heterozygote’ rate

in our dataset, we looked for any cases in which one or more third-generation individuals possessed

a putative de novo variant (i.e. possessed an allele absent from both second-generation parents).

Then, we looked at the sample’s grandparental (first-generation) genotypes for evidence of the

same variant. If one or more grandparents was genotyped as having high-quality evidence for the de

novo allele (depth >= 12 and Phred-scaled genotype quality >= 20), we inferred that the variant

could have been ‘missed’ in the second generation, despite being truly inherited. We estimate the

missed heterozygote rate (MHR) to be 0.4%, by dividing the total number of third-generation DNMs

with grandparental support by the total number of third-generation DNMs (100/25,075). In a small

number of CEPH/Utah pedigrees, some members of the first-generation (grandparental) generation

were not sequenced (6 grandparents in five families, Supplementary file 1). As a result these fami-

lies are underpowered to detect evidence of third-generation DNM alleles in the first generation,

and our MHR is likely a slight underestimate.

Estimating a false positive rate for de novo mutation detection
In a separate set of sequencing runs, a total of 8 first-generation grandparents were re-sequenced

to a greater genome-wide median depth of 60X (Figure 1—figure supplement 1d). However, when

variant calling and joint genotyping was performed on all 603 CEPH/Utah samples, the 30X data for

these grandparents was used. Therefore, we sought to estimate the false positive rate for our de

novo mutation detection strategy using the de novo mutation calls in the children of these eight

first-generation individuals. For each of the children (second-generation) of these high-coverage

first-generation individuals, we looked for evidence of the second-generation DNMs in the 60X

alignments from their parents. Specifically, for each second-generation DNM, we counted the num-

ber of reads supporting the DNM allele in each of the first-generation parents, excluding reads with

mapping quality <20 (the minimum mapping quality imposed by GATK HaplotypeCaller in our analy-

sis), and excluding bases with base qualities < 20 (the minimum base quality imposed by GATK Hap-

lotypeCaller in our analysis). If we observed two or more reads supporting the second-generation

DNM in a first-generation parent’s 60X alignments, we considered the second-generation DNM to

be a false positive. Of the 202 de novo mutations called in the four second-generation children of

the high-coverage first-generation parents, we find nine mutations with at least two reads of sup-

porting evidence in the 60X first-generation alignments. Thus, we estimate our false positive rate for

de novo mutation detection to be approximately 4.5% (9/202).

Data and code availability
Code used for statistical analysis and figure generation has been deposited on GitHub as a collec-

tion of annotated Jupyter Notebooks: https://github.com/quinlan-lab/ceph-dnm-
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manuscript (Sasani, 2019; copy archived at https://github.com/elifesciences-publications/ceph-dnm-

manuscript/blob/master/README.md). Data files containing high-confidence de novo mutations, as

well as the gonosomal and post-primordial germ cell specification (PGCS) mosaic mutations, are

included with these Notebooks. To mitigate compatibility issues, we have also made all notebooks

available in a Binder environment, accessible at the above GitHub repository (Sasani, 2019).
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GitHub repository. Aligned sequencing reads (in CRAM format) and variant calls (in VCF format) will

be made available at the SRA and dbGaP under controlled access, with accession phs001872.v1.p1.

The following dataset was generated:
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Supplementary Information

Appendix 1—table 1. Results of ANOVA on fitted ‘family-aware’ model.

Term (independent variable) DoF Deviance Resid. DoF Resid. Deviance Pr(>Chi)

dad_age 1 635.77 348 502.84 < 2.2e-16

family_id 39 103.43 309 399.41 9.667e-9

dad_age:family_id 39 55.34 270 344.07 0.04328
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