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Abstract

Most structural variant (SV) detection methods use clusters of discordant read-pair and split-read alignments to identify
variants yet do not integrate depth of sequence coverage as an additional means to support or refute putative events. Here,
we present ”duphold,” a new method to efficiently annotate SV calls with sequence depth information that can add (or
remove) confidence to SVs that are predicted to affect copy number. Duphold indicates not only the change in depth across
the event but also the presence of a rapid change in depth relative to the regions surrounding the break-points. It uses a
unique algorithm that allows the run time to be nearly independent of the number of variants. This performance is
important for large, jointly called projects with many samples, each of which must be evaluated at thousands of sites. We
show that filtering on duphold annotations can greatly improve the specificity of SV calls. Duphold can annotate SV
predictions made from both short-read and long-read sequencing datasets. It is available under the MIT license at
https://github.com/brentp/duphold.
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Findings
Motivation

Structural variants (SVs) are a broad class of genetic variation
including duplications, deletions, inversions, insertions, and
translocations. SVs are known to be more difficult to detect with
high accuracy than single-nucleotide and insertion-deletion
variants. As such, the false-positive rate can be high. The most
commonly used SV callers [1–5] use 2 types of sequence align-
ments to discover structural variation: paired-end reads hav-
ing an unusual orientation or insert size (so-called “discordant
pairs”), and split reads, where the sequence is aligned to differ-
ent parts of the genome. These methods work well, and while
some make use of coverage information at the break-points,
they do not directly integrate the aligned sequence depth within

and around an event to detect or filter SV calls. This is an impor-
tant limitation because, for example, we expect a true hemizy-
gous deletion to exhibit 50% of the sequence coverage of flanking
diploid regions. On the basis of our experience in evaluating the
veracity of thousands of candidate SVs with SV-plaudit [6], we
noted 2 consistent patterns that distinguished confident dele-
tion and duplication calls from apparent false-positive results.
First, events without an obvious reduction or increase in cover-
age are much less likely to appear as “real” events to the human
eye. Second, events with a rapid change in depth at (or near) the
break-points are more plausible. Obvious false-positive calls lack
either or both of those signals. We therefore developed duphold
to enforce the observations we made through manual inspection
and rapidly annotate SV calls to prioritize high-quality variant

predictions.

Received: 27 November 2018; Revised: 8 February 2019; Accepted: 19 March 2019

C© The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0003-1786-2216
http://orcid.org/0000-0003-1756-0859
mailto:bpederse@gmail.com
http://orcid.org/0000-0003-1786-2216
http://orcid.org/0000-0003-1786-2216
mailto:aaronquinlan@gmail.com
http://orcid.org/0000-0003-1756-0859
http://orcid.org/0000-0003-1756-0859
https://github.com/brentp/duphold
http://creativecommons.org/licenses/by/4.0/


2 depth-based annotation of SV calls

Implementation

The duphold software uses hts-nim [7] to quickly extract cov-
erage information from a BAM or CRAM file into an array using
the methodology described in mosdepth [8]. Once in array for-
mat, it can be queried very rapidly. The depth profiles are used
to quickly annotate a variant call format (VCF) [9] file of struc-
tural SVs with coverage calculated from a BAM or CRAM file of
alignments. Briefly, duphold operates on each chromosome se-
quentially; it allocates an (int16) array whose size is the length
of the current chromosome (this array uses ∼500 megabytes of
memory for the 249 megabase human chromosome 1), iterates
over each read in a BAM or CRAM for that chromosome, and
increments any bases where an aligned read (or segment of a
read) starts and decrements any bases where an aligned read
(or part of a read) ends. A segment of a read is defined by the
SAM [10] CIGAR operations. Once duphold has processed all seg-
ments for all alignments in a chromosome, it performs a cumu-
lative sum that results in a per-base coverage value in the array.
A 64-bit integer is used to track the actual depth, but the depth
stored on the arrays is capped at the maximum value for a 16-
bit integer (32,767) to prevent integer overflow. This algorithm is
fully detailed in Pedersen and Quinlan [8]. Once the coverage ar-
ray is filled, all remaining steps are independent of the number
of alignments. Owing to the speed of in-memory array opera-
tions, subsequent depth calculations are nearly independent of
the number of variants annotated in the VCF file.

For each SV, duphold annotates the VCF sample format field
of the variant with both the change in depth relative to the sur-
rounding 1,000 bases on either side of the event and the fold-
change in coverage in the event relative to other regions in the
genome with similar guanine-cytosine (GC) content. We have
evaluated different flanking distances, and 1,000 is sufficient to
achieve an accurate estimate of coverage but small enough to
avoid commonly unsequenced regions or gaps in coverage. To
compare the coverage observed for each variant with genomic
bins of similar GC content, duphold calculates the GC content
in each non-overlapping, 250-base window in the chromosome
along with the median depth in that window. This requires 0.55
CPU-seconds for chromosome 1. These per-window depth and
GC values are used as a distribution against which to compare
incoming variants.

Once the depths and the GC windows are calculated, duphold
uses them to annotate SV calls in VCF format. For each variant,
the GC content is calculated for the genome interval defined
by the variant, and the median depth inside the event is com-
pared to the window values with a similar GC content to cal-
culate a fold-change value (duphold bin fold-change [DHBFC]).
Duphold then compares the median depth in the event to the
median depth from the 1,000 bases on either side; this mea-
sure (named duphold flank fold-change [DHFFC]) captures the
change in depth one would observe by eye upon visual inspec-

tion. The depth fold-change values are added to the sample’s
format information in the variant’s VCF entry. Using the median
for each metric makes the value more robust even when the re-
ported break-points are inexact or shifted. Duphold is run on
a single sample at a time, but it has options to facilitate par-
allelization across samples. It can run on a 25× whole-genome
CRAM in <15 CPU-minutes and run-time will increase linearly
with coverage.

Evaluation

Deletions
We evaluated duphold by annotating the LUMPY [1] calls and
svtyper [11] genotypes we produced for the HG002 sample se-
quenced by the Genome in a Bottle [12] (GiaB). We compared
these with the GiaB truth set of deletions for the same sample.
We used the duphold annotations to filter to more stringent call
sets and evaluate both precision and recall. Because duphold
does not add any new variants, it can only improve precision,
not recall.

The duphold depth annotations enable simple filters that re-
duce the number of false-positive results while retaining most
true-positive results (Table 1). For example, requiring that the
fold-change of the deletion relative to the 1,000 bases flanking
the deletion be <0.7 (DHFFC < 0.7) removes 61% [(83 – 32)/83] of
the false-positive calls while retaining 99% (1,483/1,496) of the
true-positive calls. The DHBFC metric measures the depth fold-
change relative to bins with a similar GC content and performs
similarly. Using more stringent filtering can further reduce the
false-positive rate at the expense of the recall. The information
used in this filtering is independent of the values reported by
LUMPY and svtyper, which do not look at sequence depth met-
rics.

We examined each of the false-positive calls that remained
after duphold filtering. These included a mixture of complex re-
gions that had a loss of coverage, and some that looked as if they
could be real variants, but with minimal alignment support. We
also visually inspected each of the 13 (i.e., 1,496 – 1,483) true-
positive results that duphold marked as low confidence owing
to a flank fold-change >0.7 (DHFFC > 0.7). Most of these had a
minimal change in coverage that did not meet our threshold,
and many looked as if they did not have strong evidence for
a call. We even noted 1 variant that looked like a duplication
within a deletion, resulting in a copy-neutral event. While these
highlight the limitations of a purely depth-based approach, we
find the >2-fold reduction in false-positive results, in concert
with a retention of 99% of true-positive results, to be a convinc-
ing demonstration of duphold’s power to remove the abundant
false-positive SV predictions common to most analyses.

Table 1: Evaluating the accuracy of deletion calls filtered by duphold annotations

Method
False discovery

rate False negative False positive True positive Precision Recall F1 score

Unfiltered 0.053 276 83 1,496 0.947 0.844 0.893
DHBFC < 0.7 0.018 298 27 1,474 0.982 0.832 0.901
DHFFC < 0.7 0.021 289 32 1,483 0.979 0.837 0.902

We evaluated deletion calls from LUMPY+svtyper using truvari.py [13] with the GiaB v0.6 truth set. DHBFC: duphold bin fold-change, which compares to regions (bins)
of similar GC content. DHFFC: duphold flank fold-change (with 1,000 base flank). This shows that using either DHBFC < 0.7 or DHFFC < 0.7 as a filtering criterion for

deletions increases precision, removing 61% [(83 – 32)/83] of false-positive calls while retaining >99% (1,483/1,496) of true-positive calls in the case of using DHFFC.
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Duplications
Because LUMPY called only a single duplication in HG002 that
was not found in GiaB, we were not able to evaluate the per-
formance of duphold on duplications using that approach. Be-
cause the GiaB SV call set does not differentiate insertion events
from duplications, we first classified any GiaB insertion as a du-
plication if the entirety of the reported insertion sequence was
mapped by bwa-mem [14] with <5 mismatches to within 3 bases
(start and end) of the variant. This resulted in 805 duplications
for the truth set.

To evaluate the specificity and sensitivity of duphold, we had
to create homozygous reference variants. Specifically, for each
heterozygous (0/1) or homozygous alternate (1/1) variant, we
simulated a homozygous reference variant of the same size and
type (e.g., for a heterozygous duplication, we simulated a ho-
mozygous reference duplication) and inserted it into the VCF. We
limited the simulated variants to the high-confidence regions
provided by GiaB and then retried any variant where >10% of the
reference nucleotide sequence inside the simulated event was
unknown (“N”). This approach provided a reasonable set of ho-
mozygous reference variants of a similar size distribution within
the high-confidence GiaB regions.

We evaluated the sensitivity and specificity of duphold us-
ing both the real and simulated deletions and duplications in
Figs 1 and 2. While duphold is better able to differentiate dele-
tions from random, copy-neutral locations, it still has an area
under the curve (AUC) of 0.74 for heterozygous duplications and

0.73 for homozygous duplications. The dots in the receiver op-
erating characteristic curves show the sensitivity and specificity
of duphold at a cutoff of 0.7 for deletions and 1.3 for duplica-
tions. The reduced performance on duplications relative to dele-
tions is expected because a heterozygous deletion results in a 2-
fold change in depth while a heterozygous duplication results
in only a 1.5-fold change. In addition, it could be that a sub-
set of duplications in GiaB, which was created with a combi-
nation of technologies, cannot be detected with short-read Illu-
mina data. While the performance shown in Figs 1 and 2 reflects
all event sizes, when deletions are restricted to those >1 kilo-
base, duphold achieves AUCs of 0.97 and 1.0 for heterozygous
and homozygous alternate genotypes, respectively. At that size,
the number of duplications is too low to properly evaluate, but
we expect that larger events will enable duphold to more accu-
rately evaluate the depth inside the event, and therefore further
improve performance.

Scaling

We designed duphold with the expectation that it would be used
on large datasets where both specificity and run time are critical.
For this reason, we optimized it for situations in which it would
be used to evaluate many thousands of variants. In an effort to
measure scaling performance, we compared the times of both
svtyper and duphold on subsets of the 1,000 Genomes phase 3
SVs [15] (Figs. 1 and 2). We note that we are not interested in the

Figure 1: Evaluation of duphold on duplications and deletions of any size. We annotated 805 GiaB insertion calls as duplications and simulated homozygous reference
(Hom. Ref.) events of similar size in order to evaluate the specificity and sensitivity of duphold. We show the distribution of DHFFC (duphold flank fold-change) for
each genotype (homozygous reference [0/0] is blue, heterozygous [Het.] [0/1] is orange, and homozygous alternate [Hom. Alt.] [1/1] is green), for both duplications (A)
and deletions (C). We then used those distributions to create receiver operating characteristic curves (B and D) and calculate AUCs that indicate the ability of duphold

to differentiate 0/0 from 0/1 (orange) and 1/1 (green). The dots on the curves indicate a cutoff of 1.3 for duplications and 0.7 for deletions.
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Figure 2: Duphold scalability. The time to annotate (or genotype) for duphold and svtyper is shown (y-axis) as a function of the number of variants tested (x-axis).
While svtyper (blue) exhibits a linear increase in type with the number of variants, duphold is relatively independent of the number of variants. There is an initial cost
that makes the duphold strategy less efficient for few (less than ∼10,000) variants, but it scales well to annotating thousands of variants as we expect for large cohorts.

direct time comparison with svtyper because svtyper does more
work to genotype the variants. Instead, the relevant pattern is
the trajectory in order to demonstrate how well duphold scales.
Whereas svtyper follows a linear increase in run time with the
number of variants, duphold’s performance is nearly indepen-
dent of the number of variants, using either 1 or 3 threads. This
performance is driven by the fact that all of the alignment data
are read into efficient data structures that can be queried thou-
sands of times per second. This strategy incurs a large initial cost
to construct the data structure and therefore makes duphold
less efficient for small variant sets. We have intentionally cho-
sen to optimize for larger variant sets because this context is
where efficiency is most important.

Methods

To evaluate the ability of duphold to prioritize SV calls, we used
data from the GiaB project for sample HG002. We downloaded
all fastqs from [16], aligned with bwa-mem [14], and marked du-
plicates with samblaster [17] to generate a CRAM file with ∼25×
median sequence coverage. We used the GiaB SV calls and tier 1
regions from [18] as our truth set. We ran LUMPY (LUMPY, RRID:
SCR 003253) [1] and svtyper [11] via smoove [19] to create and
genotype SV calls. We evaluated the precision and recall before
and after applying various filtering on the duphold-annotated
variants using truvari [13]. Specifically, we used a modified ver-
sion of truvari here: [20] to allow “.” filters to be considered as
PASS. We used samplot [21] to look at individual variants that
were called as true positive, false positive, and false negative.
The truvari command used was as follows:
truvari.py –s 300 –S 270 –b HG002 SVs Tier1 v0.6.DEL.vcf.gz
–c $lumpy vcf –o eval-no-support –passonly –pctsim
= 0 –r 20 –giabreport –f $fasta –no-ref –includebed
HG002 SVs Tier1 v0.6.bed –O 0.6

To demonstrate the utility of duphold on duplication calls, we
annotated some GiaB insertion calls as duplications, using [22],

and then simulated homozgyous reference calls of the same size
and genomic distribution as the existing calls using [23].

To evaluate the scaling on realistic sites, we used duphold to
annotate the same HG002 file, but on the 68,818 variants from
the 1,000 Genomes SV calls at [24]. We limited those calls to the
variants that could be genotyped by svtyper (excluding inser-
tions). We then randomly chose 100, 1,000, 10k, 20k, 35k, and 50k
variants and ran svtyper and duphold on each set. We also ran
duphold with 3 threads to evaluate the benefit of parallelization.

We downloaded the HG002 single-nucleotide polymor-
phism/insertion and deletion calls from [25].

Conclusions

Duphold enables rapid annotation of existing SV calls with se-
quence depth information that facilitates the distinction be-
tween high- and low-confidence deletions and duplications. Us-
ing the GiaB truth set, we have shown that we can exclude
nearly 61% of false-positive SV predictions while retaining >99%
of true-positive variants using a simple filter on a duphold-
annotated VCF. Given the minimal additional run time of as few
as 25 minutes for a 30× genome, this is a substantial improve-
ment for the overall accuracy of SV call sets.

Availability of supporting source code and
requirements

Project name: duphold
Project home page: https://github.com/brentp/duphold
Operating system(s): binary available for Linux (can be built on
OSX and Windows)
Programming language: nim
Other requirements: htslib.so ≥ 1.8
License: MIT
RRID:SCR 016938

https://scicrunch.org/resolver/RRID:SCR_003253
https://github.com/brentp/duphold
https://scicrunch.org/resolver/RRID:SCR_016938
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Availability of supporting data

An archival copy of the code is available in the GigaScience GigaDB
repository [26].

Abbreviations

AUC: area under the curve; DHBFC: duphold bin fold-change;
DHFFC: duphold flank fold-change; GC: guanine-cytosine; GiaB:
Genome in a Bottle; SV: structural variant; VCF: variant call for-
mat.
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