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Abstract: Cone snails (genus Conus) are venomous marine snails that inject prey with a lethal cocktail
of conotoxins, small, secreted, and cysteine-rich peptides. Given the diversity and often high affinity
for their molecular targets, consisting of ion channels, receptors or transporters, many conotoxins
have become invaluable pharmacological probes, drug leads, and therapeutics. Transcriptome
sequencing of Conus venom glands followed by de novo assembly and homology-based toxin
identification and annotation is currently the state-of-the-art for discovery of new conotoxins.
However, homology-based search techniques, by definition, can only detect novel toxins that are
homologous to previously reported conotoxins. To overcome these obstacles for discovery, we have
created ConusPipe, a machine learning tool that utilizes prominent chemical characters of conotoxins
to predict whether a certain transcript in a Conus transcriptome, which has no otherwise detectable
homologs in current reference databases, is a putative conotoxin. By using ConusPipe on RNASeq
data of 10 species, we report 5148 new putative conotoxin transcripts that have no homologues in
current reference databases. 896 of these were identified by at least three out of four models used.
These data significantly expand current publicly available conotoxin datasets and our approach
provides a new computational avenue for the discovery of novel toxin families.

Keywords: machine learning; conotoxins; cone snails; venom; drug discovery

Key Contribution: By using ensemble methods, we report 5148 new candidate conotoxins that
have no homologues in current reference databases and provide a unique dataset for future
pharmacotherapeutic exploration.

1. Introduction

Predatory marine cone snails (genus Conus) have attracted the attention of biologists and
pharmacologists for the great neuropharmacological potential of their venom toxins [1–3]. It is
estimated that each of the ~750 extant Conus species produces ~100–400 distinct venom toxins
(conotoxins) with almost no overlap in the toxin repertoire between the ~750 species, not even between
sister species [4]. Despite the tremendous diversity and drug discovery potential of Conus venoms,
only ~5000 nucleotide sequences of conotoxin-encoding transcripts have been reported from 100 Conus
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species over the past decades, with most sequences having been discovered in recent years [5,6].
Traditional methods, such as isolation of conotoxins from venom and subsequent Edman- or de
novo mass spectrometric (MS) sequencing are time-consuming and limited by sample availability.
In contrast, high throughput transcriptome sequencing can achieve greater sequencing depth and only
requires small amounts of biological sample [7]. Recent studies on the venom gland transcriptomes
of several cone snail species, using next generation sequencing technologies (NGS), have discovered
~100–400 conotoxin genes per Conus species [4,8–12]. Other authors have reported larger diversities
but these are likely to have resulted from inappropriate analyses of NGS datasets, as previously
discussed [4,10].

Conotoxins can be classified into different gene superfamilies based on their conserved N-terminal
signal sequence [13]. To date, more than 53 conotoxin gene superfamilies have been described for
Conus [14]. After NGS sequencing and de novo transcriptome assembly, candidate conotoxin genes
are usually assigned to different superfamilies using BlastX, regular expression-based techniques,
and profile hidden Markov model (HMMER) analysis against a local reference database of known
conotoxins from the Uniprot and/or ConoServer databases. Available tools include ConoPrec,
ConoDictor, and Conosorter [5,15–17]. However, these approaches can only detect novel toxins
that are similar to previously reported sequences. An approach that could overcome the limitations of
homology based-searches would thus be highly desirable.

Most conotoxin transcripts can be readily divided into three distinct regions: (1) an N-terminal
signal sequence for targeting to the endoplasmic reticulum; (2) an intermediate propeptide region that
has been suggested to play a role in secretion, posttranslational modification, and folding; and (3) a
single copy of the mature toxin region, located at the C terminus [18–20]. We hypothesized that even
though conotoxin sequences evolve very rapidly [14], conotoxin retain these three traits even when
their sequence similarities become too low to allow detection by alignment-based methods such as Blast
and HMMER. If this were true, even highly divergent conotoxins might be identifiable using machine
learning methods trained to identify these three traits as features. With this in mind, we implemented
three machine learning models for data mining of 12 Conus transcriptomes from 10 different species:
logistic regression (logit), semi-supervised learning (labelspreading), and an artificial neural network
(perceptron) [21–25]. The resulting tool for conotoxin discovery is called ConusPipe.

Generalized linear models (GLMs) are versatile, powerful, commonly used statistical
approaches to model relationship between scalar response variables given several predictor
variables/features [21,26]. In particular, the logistic regression model computes a weighted sum
of the input features (plus a bias term), but instead of outputting the result directly like the linear
regression model does, it outputs the logistic of this result [21,25]. This approach often outperforms
simple linear regression for binary outcome prediction [26].

Unlike GLMs which completely employ ‘labeled data’ for training, in semi-supervised learning
only some of the training data is labeled. In the models utilized in the current study, the term
‘labeled data’ refers to known training sequences labeled as either toxin or non-toxin. Unlabeled
data refers to sequences of unknown category. Graph-based methods are then used to make use of
unlabeled data in order to better capture the shape of the underlying data distribution and generalize
the method to apply to new samples [27]. The assumption is that unlabeled data with features that
render them neighbors of labeled data are likely to have a common label. In keeping with general
practice, we used the K-nearest neighbors method to connect each data point [28]. Semi-supervised
learning approaches can perform well when only a small number of labeled data but large amounts of
unlabeled data is available.

The perceptron is one of the simplest artificial neural network ANN architectures, which is
composed of a single layer of linear threshold unit (LTU). The LTU computes a weighted sum of its
inputs and then applies a step function to that sum and outputs the result [22]. Unlike regression-based
approaches, ANNs can capture dependencies within the data, potentially resulting more
accurate classification.
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The nature of the Conus training sets and input data also needs to be considered. For example,
the true-positive (labeled) training data is limited in scale and is incomplete, as many conotoxins
presumably remain uncatalogued [29]. Moreover, the input data is very large, with RNA-seq datasets
typically exceeding five million reads and tens of thousands of assembled transcripts. Given these
features, logistic regression provides a well-established base-line approach, whereas semi-supervised
learning (labelspreading) provides a means to further leverage unlabeled true positives during training.
Finally, the Perceptron model scales well to very large training sets and is widely used for pattern
recognition with good results [30–33]. Both the logit and perceptron models are supervised and
model-based, in contrast, the label spreading model is semi-supervised and instance-based. Given these
machine learning models have intrinsic strengths and weaknesses and are complementary to one
another, using an ensemble of these methods is likely to provide best discovery outcomes. Additionally,
since using these machine learning models are based on the hypothesis that conotoxins will retain
all three traits in sequence evolution, we added cross-species Blastp to search for similar unknown
sequences (if they contain a signal sequence) between different Conus species to rescue potential
conotoxins that only have one trait (signal sequence) based on the knowledge that the signal peptide
sequences of conotoxins from the same superfamilies are highly similar to each other even if they are
from different Conus species [4].

By employing three different machine learning models plus Blastp, ConusPipe allows users to
take an ensemble approach for discovery to maximize the prediction power. All four methods were
applied to 12 RNAseq datasets from 10 different species of Conus. The pipeline discovered 5148 new
conotoxin candidates that provide a unique dataset for future pharmacotherapeutic exploration.

2. Results

2.1. The ConusPipe Toolkit

ConusPipe is implemented in Perl and Python as a complete conotoxin discovery package.
It is available at https://github.com/Yandell-Lab/ConusPipe. ConusPipe takes six-frame-translated
peptide sequences from nucleotide sequences which have no hit in current reference database and
extracts conotoxin sequence features to train datasets (Figure 1A). In addition to three machine learning
models, cross-species Blastp is used as the fourth method to retrieve putative toxin candidates that
have a signal sequence but may not have all features used in machine learning (Figure 1B).

https://github.com/Yandell-Lab/ConusPipe
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Figure 1. (A) Overview of feature selection for machine learning models (B) and cross-species Blastp
methodology used in addition to the machine learning model.

ConusPipe then generates different combinations (single method, union or overlap) of the four
methods to predict candidate conotoxins (Figure 2). Users can change the settings in sample.config file
to use different cut-off options for transcript per million (tpm) values, blast e-values, signalP D-values,
and provide paths to input and output fasta files and databases used. It took 2 h 34 min 20 s on a single
CPU core to run ConusPipe for 757,932 Conus transcripts from 12 samples of 10 species.
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Figure 2. Venn diagram illustrates the different combinations of methodologies used (single method,
overlap, or union of methods) and the total number of putative toxin candidates identified by
each method (unique number of toxin candidates are shown in parentheses). A union of methods
means that a conotoxin is predicted by one or more methods, for example, Union.4methods =
predicted by perceptron or logit or label spreading or blast. An overlap of methods means that
the conotoxin is predicted by all the applied methods, for example, Overlap.4methods = predicted
by perceptron and logit and label spreading and blast. Abbreviations used: blast—B; logit—L;
labelspreading—S; perceptron—P.

2.2. Building and Cross-Validation of the Machine Learning Models

4950 known conotoxin sequences (from the ConoServer [5] and Uniprot databases [34],
and 52,613 randomly selected non-conotoxin Conus transcripts were used to build the machine learning
models. In order to assess the performance of the models, 10-fold cross validation was applied to
the same dataset [35]. The main measures of performance were sensitivity, specificity and accuracy
under different regularization parameters. Sensitivity was defined as the fraction of known conotoxins
predicted as conotoxin divided by the number of known conotoxins in the test dataset. Specificity was
defined as the fraction of known non-conotoxins predicted as non-conotoxin divided by the number of
known non-conotoxins in the test dataset. Accuracy was defined as the fraction of known sequences
(conotoxin/non-conotoxin) predicted divided by the total number of sequences in the test dataset.
The regularized parameter settings were chosen by plotting accuracy vs. parameter settings for
each model to make sure the trained model has the best accuracy with minimum overfitting/under
fitting. Since the prevalence of conotoxins in the training dataset is only 9.97%, sensitivity is an
important performance measure in consideration when choosing regularization parameter settings.
The sensitivity, specificity, and accuracy for the chosen regularization parameter settings for each
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model is shown in Table 1. The highest overall testing accuracy and sensitivity were 98.2% and 90.93%,
respectively, achieved by the label spreading model.

Table 1. Maximized sensitivity, specificity, and accuracy for chosen regularization parameter settings
for three machine learning models in 10-fold cross validation.

Machine Learning Model
Performance Measure

Sensitivity Specificity Accuracy

Logit 82.85% 99.30% 97.78%
Label spreading 90.93% 99.07% 98.32%

Perceptron 83.24% 97.65% 96.32%

2.3. Benchmark by Identifying Known Superfamilies

To assess the sensitivity of ConusPipe in identifying conotoxin transcripts, we performed a
benchmark analysis for sequences belonging to known conotoxin gene superfamilies [6]. For these
analyses, we deleted an entire superfamily from the training set and then tried to re-discover
this superfamily as a putative new superfamily using ConusPipe. The specificity of ConusPipe
(i.e., the ability to distinguish between known conotoxins and non-conotoxin proteins from various
organisms) was assessed by screening hits against the entire UniProtKB/Swiss-Prot database.

We found that the sensitivity varied among different superfamilies and combinations of models
used. The highest sensitivity was achieved by the union of the four methods (logit, labelspreading,
perceptron and blastp, mean sensitivity = 95.7%, SD = 0.11) and the union of three methods
(logit, perceptron and blastp or labelspreading, perceptron and Blastp, mean sensitivity = 95.7%,
SD = 0.11) across all superfamilies. A union of methods means that a conotoxin predicted by one
or more methods is a putative positive. A graphical overview of the different groups is provided in
Figure 2. Results are shown in Figure S1 and Tables 1 and 2.

Table 2. Specificity of the individual machine learning methods and their unions/combinations when
searching results against the Uniprot/Swissprot non-conotoxin database and mean sensitivity for
recovering all known conotoxin superfamilies. Methods are ordered as follows: Overlap between
different methods, single methods, and union of methods. Methods with the highest sensitivities
(≥99.7%) and specificities (≥99.9%) are shown in bold. Abbreviations used: blast—B; logit—L;
label spreading—S; perceptron—P.

Methods Mean Sensitivity Specificity

Overlap.4methods 34.19% ± 0.32% 99.92%
Overlap.LSP 41.53% ± 0.35% 99.90%
Overlap.LSB 35.15% ± 0.32% 99.87%
Overlap.LPB 76.25% ± 0.37% 99.57%
Overlap.SPB 34.22% ± 0.32% 99.92%
Overlap.LS 43.18% ± 0.34% 99.85%
Overlap.LP 83.61% ± 0.32% 99.53%
Overlap.SP 41.68% ± 0.35% 99.90%
Overlap.LB 79.57% ± 0.35% 98.32%
Overlap.SB 35.52% ± 0.32% 99.86%
Overlap.PB 78.02% ± 0.36% 99.57%

Logit 87.61% ± 0.26% 99.83%
Labelspreading (SemiS) 43.67% ± 0.34% 99.49%

Perceptron (NeuroNetWork) 85.96% ± 0.29% 94.02%
Blastp 87.10% ± 0.28% 98.19%

Union.4methods 95.73% ± 0.11% 93.89%
Union.LSP 90.31% ± 0.22% 98.15%
Union.LSB 95.25% ± 0.12% 93.89%
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Table 2. Cont.

Methods Mean Sensitivity Specificity

Union.LPB 95.73% ± 0.11% 93.90%
Union.SPB 95.73% ± 0.11% 93.97%
Union.LS 88.10% ± 0.26% 98.17%
Union.LP 89.96% ± 0.23% 98.17%
Union.SP 87.95% ± 0.25% 99.41%
Union.LB 95.14% ± 0.12% 93.90%
Union.SB 95.24% ± 0.12% 93.99%
Union.PB 95.05% ± 0.15% 93.98%

In addition to machine learning, using cross-species Blastp to search candidate sequences
from different Conus species against each other provides better performance for conotoxin
superfamilies that contain sequences which do not satisfy the hypothesis of having all three traits
(signal sequence, propeptide, and mature toxin at the C-terminus), such as the SF-mi2 (Superfamily-2
Conus miles), I4, B4 and Prohormone gene families. However, this approach is less powerful for
superfamilies that are limited to a small number of species, such as conorfamides, DivMTFLLLLVSV
(Diverse MTFLLLLVSV), teretoxins, and conocaps. The sensitivity for recovering all known conotoxin
superfamilies by different combinations of methods is provided in Supplementary Table 1.

The ability of ConusPipe to distinguish between conotoxins and other proteins from various
organisms was assessed by screening the entire UniProtKB/Swiss-Prot database. Using the version
released on June 2013 we examined a total of 540,261 protein sequences isolated from diverse organisms.
The overall highest specificity was achieved using an overlap of the four methods (logit, labelspreading,
perceptron, and blastp, specificity = 99.92%) and the overlap of three methods (labelspreading,
perceptron, and blastp, specificity = 99.92%). These results are shown in Table 2.

2.4. Identification of New Conotoxin Candidates

To identify new conotoxin candidates, we assembled Conus transcripts from RNA-seq datasets
derived from venom glands of 10 different Conus species using our previously published methods [4]
(see Table 3 for species used in this study). The resulting transcripts were prescreened for conotoxin
homology against the Uniprot and ConoServer databases as previously published [4] and described
under the methods section. The remaining transcripts were then used as inputs to ConusPipe.
New conotoxin candidates were defined as those which were predicted as conotoxins by at least
one of the four models in ConusPipe, but lacked significant homology to known conotoxins using Blast
against the Uniprot/ConoServer database [17].

Since conotoxin gene superfamilies are generally found across multiple Conus species (hence,
the term superfamily) we considered those sequences that lacked significant homology to known
conotoxins but had high homology (blastp e-value < 1 × 10−10 to sequences from at least two other
Conus species examined here, as members of a new putative superfamily. 5479 transcripts passed these
criteria. In order to validate our predictions, we used NCBI-Blastp to search the 5479 transcripts
against the NCBI non-redundant (NR) protein database (August 2018 Version), which includes
recently published conotoxin sequences that were not yet available in Uniprot/ConoServer at
the time of original analysis (and even now) and also includes large numbers of uncharacterized
molluscan sequences not available in Uniprot. Out of 5479 transcripts, 331 had significant blastp hits
(e-values < 1 × 10−4) against the NCBI-NR database. 99 transcripts had hits against other molluscan
transcripts. As the majority of conotoxins are not found outside of the genus Conus and these transcripts
could encode endogenous signaling/housekeeping polypeptides rather than polypeptides used
for envenomation, these were removed from our final datasets. 198 sequences were identified as
conotoxins. These were also removed from the final machine learning dataset and are provided in
Supplementary File 1. Finally, 34 sequences had blastp hits against non-molluscan species such as fish,
tardigrade, sea anemone, worm, plant, and bird. These were removed from the final dataset.
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Table 3. Conotoxin candidates expressed in 12 samples from 10 Conus species identified by blastp and
machine learning (ML).

Conus Species

No. of Conotoxins
Identified by Blastp

against Uniprot/
ConoServer Database

No. of Conotoxins
Identified by Blastp

against Uniprot/
ConoServer Database

Also Retrieved Using ML

No. of Conotoxins
Identified by ML and

Subsequently
Identified as

Conotoxins by Blastp
against NCBI

No. of Conotoxin
Candidates

Identified by
ML Only

C. magu 49 29 13 984
C. striatus 34 25 10 1069

C. marmoreus 21 13 9 522
C. marmoreus2 [10] 16 10 3 61

C. textile 95 58 19 532
C. gloriamaris 62 38 15 529

C. imperialis [10] 29 24 17 61
C. virgo 54 31 23 739

C. virgo2 [10] 37 22 6 44
C. terebra 67 46 21 389

C. coronatus [10] 94 59 38 97
C. ebraeus [10] 17 13 24 121

A total of 5148 sequences were left in our final dataset as new conotoxin candidates, 187 of these
were identified by all four models, 709 of these were identified by three models, 1666 of these were
identified by two models, 2586 of these were identified by one model (see Figure 1 for toxin candidates
identified by each model and their overlap and unions). The logit model did not uniquely identify
any toxin candidates; all its 1396 newly discovered putative toxins are overlapped with other models.
The labelspreading model, perceptron model, and blastp uniquely discovered 56, 1480, and 1089
new potential toxins, respectively. These results highlight that using an ensemble of different models
takes advantage of the complementary aspects of each model to maximize discovery. All of the 5148
transcripts are provided in Supplementary File 2. Using single linkage cluster analysis with a Jaccard
Index of 0.5 [36,37] grouped 299 of sequences identified by at least three models into 114 clusters that
are likely to represent novel conotoxin gene superfamilies (Supplementary File 3).

The highest number of putative new sequences were identified in C. striatus. Blastp against
Uniprot/ConoServer identified 34 toxin transcripts in C. striatus and 25 of these were also retrieved
using the machine learning method (i.e., 9 of these were missed by machine learning, see discussion
section below). 1079 additional putative toxins were subsequently identified by machine learning,
10 of these were confirmed as toxins by Blastp against the NCBI-NR database (Table 3). All toxins
identified per species are provided in Supplementary File 4 (“sp.all.tar.gz”), including toxins with
Blast hits against NCBI/Uniprot/ConoServer and toxin candidates identified by ConusPipe.

2.5. Transcripts Identified Using Three or Four out of Four Methods

In this study, we provide a list of all new conotoxin candidates from the venom gland
transcriptomes of several cone snail species. We emphasize that these sequences require further
experimental validation to confirm their designation as genuine conotoxins. This is discussed in
more detail below. However, we propose that many of the transcripts identified by three out of four
methods (709 sequences) or by a combination of all four methods (187 sequences) are likely to represent
genuine conotoxin sequences since they were independently identified using different approaches.
Several of these sequences exhibit clear hallmarks of conotoxins (presence of propeptides, found in
multiple species, similar but distinct sequences found in different species, multiple cysteines in mature
toxin region). An alignment of some of these is shown in Figure 3. Several sequences that were
identified by three or more models but seem unlikely to represent genuine conotoxins are also shown.
These typically exhibit a long series of cysteine repeats, several vicinal cysteines, and/or series of
methionines (M) in the signal sequence. In the future, our model could be further refined to exclude
such sequences as candidates.
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Figure 3. Comparative alignments of selected sequences identified by at least three out of four methods
that are (A) likely or (B) not likely to represent genuine novel conotoxins. Cysteines are highlighted in
yellow, signal sequences, pro- and postpeptides and predicted mature toxins are underlined in purple,
green, and blue, respectively, as shown on top of panel A. Sequence labels (contigs) correspond to those
provided in Supplementary File 2.

3. Discussion

Previous approaches for toxin discovery have been alignment based, using regular expressions,
blast, and/or HMMER to identify new members of known conotoxin superfamilies [5,15–17].
Because conotoxins are hyperdiverse, these approaches are intrinsically limited. In an attempt to cast a
wider net for discovery, we have created a machine learning based pipeline, ConusPipe, that utilizes
functional characteristics of conotoxins to identify new conotoxin candidates that have no significant
sequence homology to conotoxin sequences currently available in reference databases.

By using more than one machine learning model, we expected to see that an ensemble of different
models can maximize the prediction power. Indeed, as determined by benchmark analyses, the highest
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sensitivity is achieved by the union of three or more methods and the highest specificity is achieved in
the overlap of three or more methods.

ConusPipe allows users to choose different combinations of methods according to their
requirement on discovery specificity and sensitivity (Table 1). In addition to developing machine
learning, we demonstrate that using blast to search candidate sequences from different Conus species
against each other provides better performance for conotoxin superfamilies that contain sequences
that do not satisfy the hypothesis of having all three traits. However, this approach is less powerful
for superfamilies that are limited to a small number of species and only works if more than one
transcriptome is to be analyzed.

We would like to note that, for best performance, ConusPipe should be used in combination with
currently used homology-based search algorithm, such as blast, as ConusPipe relies on the presence of
full-length sequences (containing N-terminal signal sequences) and will not work for truncated contigs.
Furthermore, several conotoxin gene superfamilies reported in Uniprot/ConoServer have low SignalP
values (D value of <0.45). These would also be missed by our pipeline. Table 3 provides information on
how many conotoxins which have significant homology to sequences in Uniprot/ConoServer database
could also be retrieved by ConusPipe (average value for recovery: 65%, ranging from 57% for C. virgo
to 82% for C. imperialis).

We provide a large set of new conotoxin candidates and a bioinformatic pipeline that is freely
available and can be applied to any newly sequenced Conus venom gland. No doubt our approach also
identifies false positives, particularly when only a single or a combination of two methods is employed.
Thus, using our method without further validation is not suitable for defining the venom composition
of a species. What it provides is a new tool to identify candidate toxin transcripts that are not able to
be detected by homology-based methods. Generating comprehensive databases of all putative toxin
candidates expressed in a venom gland will empower current mass spectrometric toxin sequencing
approaches [7]. Using mass spectrometry, candidate transcripts can then be verified and subjected to
functional characterizations.

4. Conclusions

Using ConusPipe, we identified 5148 new conotoxin candidates from 757,932 transcripts derived
from venom gland transcriptomes of 10 Conus species. None of these candidate conotoxins has
significant homology to any known conotoxin in the Uniprot/ConoServer database, although like
known conotoxins, most candidates have an N-terminal signal sequence, a characteristic propeptide
spacer region, and a single copy of a mature peptide at the C-terminus. Moreover, we have shown
that several of these candidates share high homology to newly published conotoxins in the NCBI-NR
molluscan database. In conclusion, our approach opens new avenues for the discovery of novel
conotoxin transcripts from cone snails and other venomous animals with similar venom repertoires.

5. Materials and Methods

5.1. Transcriptome Sequencing

Specimen were collected in the central Philippines during several collection expeditions in
2011–2015. Specimen identification was initially performed by morphological examination and later
verified by sequence analysis of the cytochrome oxidase c subunit 1 (COI) gene. Venom glands
were dissected and stored in RNAlater at −80 ◦C until further processing. Total RNA was isolated
from venom glands using TRIzol® Reagent (Invitrogen, ThermoFisher Scientific, Waltham, MA, USA)
or the RNeasy kit (Qiagen, Germantown, MD, USA) following the manufacturers’ instructions.
RNA integrity, quantity, and purity were determined on a 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA). cDNA libraries were prepared and sequenced on an Illumina HiSeq 2000
instrument (Sanger/Illumina 1.9 reads, 101 bp or 125 bp paired-end, Illumina, San Diego, CA, USA).
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Publicly available Illumina datasets were used for the venom gland transcriptomes of C. marmoreus
(specimen 2), C. virgo (specimen 2), C. coronatus, and C. ebraeus [10].

Adapter clipping and quality trimming of raw reads were performed using fqtrim
software (Version 0.9.4, http://ccb.jhu.edu/software/fqtrim/) and PRINSEQ (Version 0.20.4 [38]).
After processing, sequences shorter than 70 bps and those containing more than 5% ambiguous bases
(Ns) were discarded. De novo transcriptome assembly was performed using Trinity Version 2.0.5 [39]
with a kmer size for building De Bruijn Graphs of 31, a minimum kmer coverage of 10, and a minimum
glue of 10. Assembled transcripts were annotated using Blastx ((NCBI-Blast-2.2.28+, [40]) against
conotoxin sequences extracted from the ConoServer [5] and UniProt databases [34].

5.2. Development of ConusPipe

ConusPipe proceeds by first extracting 16 features (see feature explanation below) from known
conotoxin sequences (from the ConoServer [6] and Uniprot databases) and non-conotoxin Conus
transcripts to make the training dataset. Sequences are required to contain a signal sequence as
determined by SignalP [41]. Next, the 16 features extracted from Conus transcripts of 10 species,
which have no homologues in current reference database (the combined ConoServer and UniProtKB
database) are used as real test data to run the machine learning methods to predict whether a certain
input transcript is conotoxin. All the transcripts predicted by any of the four methods are output by
the pipeline as putative new conotoxins.

5.2.1. Feature Selection and Classifiers

We employed 16 features for the machine learning models: signalP D value for signal sequence;
cysteine percentage; molecular weight; percentage of positively/negatively charged amino acids;
and isoelectric point for all three regions of the precursor sequence (signal sequence, propeptide,
and mature toxin). All features are continuous re-normalized to lie between 0 and 1 (Figure 1A).
The features are mainly chemical characters of amino acids in the three different parts of conotoxin
sequence. The motivating hypothesis is that even though conotoxins evolve very rapidly they must
still share similar chemical characters in amino acid composition, since they carry out similar functions,
e.g., bind transporters and receptors. For example, the three parts of conotoxin sequence-signal
sequence, propeptide, and mature toxin carry out different functions in conotoxin secretion process in
the cell, so their charge distributions are stereotypical and different. The signal sequence is mainly
hydrophobic, while the amino acids in propeptide are mainly charged, and the mature toxin is
somewhat intermediate as regards charge distribution. To train the models we first ran signalP
on a training dataset consisting of known conotoxin/nonconotoxin sequences to get the signalP D
value for each known sequence [41]. Next, we calculated the cysteine percentage, molecular weight,
percentage of positively/negatively charged amino acids and isoelectric point for signal sequence,
propeptide and mature toxin, respectively. The pipeline uses the 16 extracted features in training
dataset to train the logistic regression model, labelspreading model, and perceptron model using
the Python scikit learn package [42]. The accuracy under different regularization parameters of
the three models were tested by cross validation with training dataset from known conotoxin and
nonconotoxin sequences.

5.2.2. Cross Validation

4950 known conotoxin sequences (from ConoServer and Uniprot/Swissprot) and 52,613
non-conotoxin Conus transcripts with matched sequence length were first split into 10 equal bins,
and then sequentially one-tenth of the data was taken as the test set and the remaining other nine-tenths
were used for the training set. The three models were trained under different regularization parameters
and evaluated with the test set in 10 iterations. For the logistic regression model, the regularization
parameter we tested is slack number C, which is the inverse of regularization strength. We tested this
parameter from 0.001 to 1 × 1010. For the labelspreading model, we chose knn as the kernel function,

http://ccb.jhu.edu/software/fqtrim/
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so the regularization parameter we tested is n_neighbors, which was tested from 1 to 15. For the
perceptron model, the regularization parameter we tested is n_iter, the number of passes over the
training data, which we tested from 5 to 70. The plots of accuracy versus regularization parameter of
different models are shown in Figure S2.

5.2.3. Discovering New Putative Conotoxins and Conotoxin Gene Families

Paired-end RNAseq data from 10 Conus species were generated by Illumina HiSeq 2000 platform
(Table 4). RNAseq reads were assembled using best practice Trinity settings, annotated with Blastx
against our reference dataset, and all the Conus transcripts which do not have homologous sequences
in the current reference databases were selected and six-frame-translated into peptide sequences.
These peptide sequences were then used as the input dataset for ConusPipe to drive machine learning
models built in previous steps to predict whether they are conotoxins. Cross-species Blastp is also
used on all putative peptide sequences that have a signal sequence as an independent method to
predict putative conotoxin candidates. The pipeline output all input transcripts which were predicted
as conotoxins.

Table 4. RNAseq Data sets from 12 samples in 10 Conus species used in the discovery pipeline.

Conus Species
Illumina HiSeq 2000

SRA Accession Number
Number of Reads Read Length (nt)

C. magus 85,877,500 101 SRX5015024
C. striatus 101,170,402 101 SRX5015022

C. marmoreus 53,901,510 125 SRX5015020
C. marmoreus2 [10] 50,652,396 101 SRX1323884

C. textile 63,365,620 125 SRX5015023
C. gloriamaris 28,783,428 125 SRX2779517

C. imperialis [10] 30,784,548 125 SRX1323891
C. virgo 30,038,902 125 SRX5015021

C. virgo2 [10] 31,056,732 125 SRX1323883
C. terebra 31,180,460 125 SRX5015025

C. coronatus [10] 27,927,952 125 SRX1323894
C. ebraeus [10] 19,556,244 125 SRX1323887

We then used NCBI-Blastp to search all putative toxin transcripts against the NCBI non-redundant
(NR) protein database (August 2018 version), which includes recently published conotoxin sequences
that were not yet available in Uniprot/ConoServer at the time of original analysis. Sequences with
significant Blastp hits were excluded from final datasets (e-values < 1 × 10−4).

Then all by all Blastp and single linkage cluster analysis were conducted among the new
conotoxins, and the new conotoxins that shared at least 50% hit connections with one another were
designated as to be in the same superfamily.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/10/12/
503/s1, Figure S1: Box plot shows that the sensitivity varied among different combinations (single method,
overlap or union of methods) of methods used. Figure S2: Plot of accuracy vs. regularization parameter
settings in each machine learning model. Supplementary Table 1. The sensitivity for recovering all known
conotoxin superfamilies by different combinations of methods. Supplementary File 1. ConusPipe discovered
198 putative novel conotoxins confirmed by Blastp against the NCBI NR database. Supplementary File 2.
ConusPipe discovered 5148 putative novel conotoxins with no significant sequence homology in any current
reference database (Unipro/ConoServer/NCBI NR). Supplementary File 3. Cluster analysis of putative new gene
superfamilies. Supplementary File 4 (“sp.all.tar.gz”). All sequences identified for each Conus species in this study.
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