
©
 2

01
8

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t

o
f

S
p

ri
n

g
er

 N
at

u
re

. A
ll

ri
g

h
ts

 r
es

er
ve

d
.

brief communications

nature methods  |  ADVANCE ONLINE PUBLICATION  |  �

data. It works through command line and web interfaces, as well
as APIs in the C, Go, and Python programming languages.

GIGGLE is based on a temporal indexing scheme5 that uses a B+
tree to create a single index of the genome intervals from thousands
of annotations and genomic data files (Fig. 1a). Each interval in an
indexed file is represented by two keys in the tree that correspond
to the interval’s bounds (start and end + 1). Each key in a leaf node
contains a list of intervals that either start at a chromosomal posi-
tion (indicated by a “+”) or have ended (indicated by a “−”) just
before that position. We give an example (Fig. 1a) in which position
7 corresponds to a key in the second leaf node with the list [+T2,
−B2]. This indicates that at chromosomal position 7, the second
interval in the “Transcripts” file (T2) has started, and the second
interval in the “TF binding sites” file (B2) has ended. To find the
intervals in the index that intersect a query interval (e.g., [1,5] in
Fig. 1a), the tree is searched for the query start and end, the keys
within that range are scanned, and intervals in the lists of those keys
are identified as intersecting the query interval (see Supplementary
Fig. 1 and Online Methods for complete algorithmic details).

GIGGLE′s potential for high scalability is based on two factors.
First, identifying the number of overlaps between a query and
any given annotation file is determined entirely within the uni-
fied index, thus eliminating the inefficiencies of existing methods,
which must instead open and inspect the underlying data files.
Second, the B+ tree structure minimizes disk reads; this is vital
to performance since databases of this scale will grow beyond the
capacity of main memory and must be stored on disk. To meas-
ure GIGGLE′s query performance (Supplementary Software),
we created an index of the ChromHMM6 annotations curated
by the Roadmap Epigenomics Project (Roadmap) from 127 tis-
sues and cell lines. Each genome was segmented into 15 genomic
states, yielding over 55 million intervals in the resulting GIGGLE
index (2.2 GB index, indexed in 80 s). When testing query per-
formance with a range of 10 to 1,000,000 query intervals, GIGGLE
was 2,336× faster than TABIX and 25× faster than BEDTOOLS
(Fig. 1b; see Supplementary Data 1 for the data used to create Fig. 1)
for the largest comparison. Similarly, using an index of 5,603 anno-
tation files for the human genome (GRCh37, a total of 6.9 billion
intervals) from the UCSC Genome browser (554 GB index, indexed
in 269 min), GIGGLE was up to 345× faster than TABIX and 8×
faster than BEDTOOLS (Fig. 1c).

Speed is essential for searching data of this scale, but, as with
internet searches, it is arguably more important to rank results by
their relevance to the set of query intervals. Ranking requires a
metric that quantifies the degree of similarity between the query
intervals and each interval file in the GIGGLE index. Monte Carlo

GiGGLe: a search engine
for large-scale integrated
genome analysis
Ryan M Layer1,2 , Brent S Pedersen1,2,
Tonya DiSera1,2 , Gabor T Marth1,2, Jason Gertz3
& Aaron R Quinlan1,2,4

GiGGLe is a genomics search engine that identifies and ranks
the significance of genomic loci shared between query features
and thousands of genome interval files. GiGGLe (https://
github.com/ryanlayer/giggle) scales to billions of intervals
and is over three orders of magnitude faster than existing
methods. its speed extends the accessibility and utility of
resources such as encode, roadmap epigenomics, and Gtex by
facilitating data integration and hypothesis generation.

The results from genome-wide assays such as ChIP-seq, RNA-seq,
and variant calling are often interpreted by comparing experimen-
tally identified genomic loci to other known genomic features
such as open chromatin, enhancers, and transcribed regions.
Large-scale functional genomics projects have greatly empow-
ered this type of analysis by characterizing the genomic regions
associated with a wide range of genomic processes. However,
interpretation is complicated by the size of these data set collec-
tions, which consist of thousands of results that span hundreds of
different tissue types, assays, and biological conditions. Effectively
integrating these large, complex, and heterogeneous resources
requires the ability to rapidly search the full data set and identify
the most statistically relevant features. While existing software
such as BEDTOOLS1 and TABIX2 identify regions that are com-
mon to genome interval files, these methods were designed to
investigate a limited number of files. More recent methods3,4
describe improved statistical measures, yet they do not scale to
the vast amount of data that is now available.

We introduce GIGGLE, a fast and highly scalable genomic
interval searching strategy that, much like web search engines did
for the Internet, provides users with the ability to conduct large-
scale comparisons of their results with thousands of reference data
sets and genome annotations in seconds. GIGGLE enables the
identification of novel and unexpected relationships among local
data sets as well as the vast amount of publicly available genomics

1Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA. 2USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, Utah, USA.
3Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah, USA. 4Department of Biomedical Informatics, University of
Utah, Salt Lake City, Utah, USA. Correspondence should be addressed to R.M.L. (ryan.layer@utah.edu) or A.R.Q. (aquinlan@genetics.utah.edu).
Received 5 July 2017; accepted 6 decembeR 2017; published online 8 JanuaRy 2018; doi:10.1038/nmeth.4556

http://orcid.org/0000-0002-5823-3232
http://orcid.org/0000-0003-1259-0047
http://orcid.org/0000-0003-1756-0859
https://github.com/ryanlayer/giggle
https://github.com/ryanlayer/giggle
http://dx.doi.org/10.1038/nmeth.4556

©
 2

01
8

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t

o
f

S
p

ri
n

g
er

 N
at

u
re

. A
ll

ri
g

h
ts

 r
es

er
ve

d
.

�  |  ADVANCE ONLINE PUBLICATION  |  nature methods

brief communications

(MC) simulations are commonly used in genomics analyses7,8 to
compare the observed number of intersections to a null distri-
bution of intersections obtained by randomly shuffling intervals
thousands of times and testing the number of intersections in
each trial. While MC simulations are an effective method for pairs
of interval sets, they are computationally intractable for large-
scale data sets since thousands of permutations are required for
each interval file.

GIGGLE eliminates this complexity by estimating the sig-
nificance and enrichment between the query intervals and each
indexed interval file with a Fisher’s Exact two-tailed test and the
odds ratio of a 2 × 2 contingency table containing the number of
intervals that are in (i) both the query and indexed file, (ii) solely
the query file, (iii) solely the indexed file, and (iv) neither the
query file nor the indexed file. The first three values are directly
computed with a GIGGLE search, and the last value is estimated
by the difference between the union of the two sets and the quo-
tient of the mean interval size of both sets and the genome size.
These estimates are well correlated with the MC results (Fig. 1d,e)
and have the favorable property of near-instant computation.

GIGGLE ranks query results by a composite of the product of
−log10(P value) and log2(odds ratio). This ‘GIGGLE score’ avoids
some of the issues that arise when using only P values to select
top hits9. In MC simulations, the proportion of values that are
more extreme than the observation (i.e., the P value) is highly
dependent on the variance of the trials. When the variance of
the MC distribution is low, observations that are only margin-
ally larger than the expected value may be significant, yet not
interesting biologically. For example, one result from a search of
MyoD (a muscle differentiation transcription factor) ChIP-seq
peaks against Roadmap had a low enrichment (1.7×), but the vari-
ance of the MC simulations was also low, making the observation
significant (P < 0.001). Similarly, when the MC distribution vari-
ance is high, large enrichments may not reach significance. These
effects are mitigated by combining significance and enrichment
into the GIGGLE score.

While the GIGGLE score can be used to rank results, it is also
insightful to use all scores to visualize the full spectrum of relation-
ships between a query set and all indexed interval sets (Fig. 2; see
Supplementary Data 2 for the data used to create Fig. 2). For
example, a heatmap of GIGGLE scores from a search of MyoD
ChIP-seq peaks against the GIGGLE index of Roadmap (Fig. 2a)
illustrates MyoD’s important and specific role in muscle tis-
sues10. Similarly, a search of GWAS SNPs associated with
Crohn’s disease11 (Fig. 2b) shows that variants cluster in
immune cell enhancers. While these results illuminate the
dynamics of individual features, the speed of GIGGLE (<0.3 s
for Crohn’s SNPs) allows researchers to conduct exploratory
research on a massive scale. For example, GIGGLE can quickly
(3.5 s) query sets of GWAS SNPs for 39 different traits11 against
Roadmap to not only confirm that the enrichment of SNPs in
immune cell enhancers is present in other autoimmune diseases
and absent in nonautoimmune traits11 (Fig. 2c, left), but also to
show that there is no cell-specific pattern in transcribed regions
for either set of traits (Fig. 2c, right).

We emphasize that GIGGLE is a completely general framework
that enables researchers to efficiently explore any collection of
interval sets for any species. For example, using a GIGGLE index
of all ChIP-seq data sets available from Cistrome12 (5,992 files;

8,716,024 intervals; 521 MB index; indexed in 17 s), we quickly
(<3 min) performed a full pair-wise comparison of the 270 factors
(734,249 intervals) available for the MCF-7 breast cancer cell line.
From this comparison, distinct subsets become clear, including
coordinated genomic binding of CTCF, RAD21, and STAG1,
indicative of regions involved in long-range interactions13–15, and
estrogen receptor α (ER) co-occurrence with other transcription
factors (Group 1 and Group 2 in Supplementary Fig. 2, respec-
tively). Focusing specifically on ER (Fig. 2d) uncovers sequence-
specific transcription factors known to play important roles in ER
genomic binding (FOXA116, GATA317 and PR18) and cofactors
that are involved in estrogen-induced gene regulation (EP30019
and NCAPG20). One unexpected finding from this large-scale
analysis of MCF-7 ChIP-seq data is the strong co-occurrence of
histone variant H2AFX20,21 and ER cofactor GREB122 (Group 3

TF binding sites B1 B2

Promoters P1 P2

Transcripts T1 T2

Query

a

b c

1 2 3 4 5 6 7 8 9 5

1 2 3 4

+P1+B1+T1 −P1
−B1

5 7 8 10

+B2
+P2
−T1

+T2
−B2

−T2−P2

d e

Search(1,5) = [P1,B1,T1,B2,P2]

10

10–2

R
un

tim
e

(s
)

10–1
100
101
102
103
104
105
106

10–2

R
un

tim
e

(s
)

10–1
100
101
102
103
104
105
106

10
0

0.0
0.0 0

5

10

15

20

25

30

35

40

0.2

0.4

0.6

0.8

1.0

0.2 0.4

Fisher’s exact P value (GIGGLE) Odds ratio (GIGGLE)

GIGGLE
BEDTOOLS
TABIX

GIGGLE
BEDTOOLS
TABIX

M
C

 P
 v

al
ue

M
C

 o
bs

er
ve

d/
ex

pe
ct

ed

0.6 0.8 1.0 0 10 20 30 40 50 60 70

1,
00

0

1
×

10
4

Number query intervals

1
×

10
5

1
×

10
6 10 10

0
1,

00
0

1
×

10
4

Number query intervals

1
×

10
5

1
×

10
6

figure � | Indexing, searching, performance, and score calibration.
(a) A set of three genomic intervals files (transcription factor (TF)
binding sites, promoters, and transcripts) (left, black) is indexed using
a single (simplified) B+ tree (right). Intervals among the annotations
overlapping a query interval (left, red) are found by searching the tree
for the query start and end (right, boxed red) and scanning the keys
between these positions (right, boxed red). (b) Runtimes for GIGGLE,
BEDTOOLS, and TABIX considering random query sets with between 10
and 1 million random 100-base-pair intervals against the ChromHMM
processing of Roadmap Epigenomics (1,905 files and over 55 million
intervals). (c) Runtimes for the same method and queries against UCSC
genome browser annotations (5,603 files and over 6.9 billion intervals).
While GIGGLE and BEDTOOLS runtimes converge for query sizes exceeding
hundreds of millions of intervals, this scenario far exceeds typical
query set sizes. (d,e) A comparison between GIGGLE’s relationship
estimates using a contingency table and Monte-Carlo-based methods
for (d) significance (Fisher’s Exact two-tailed test) and (e) enrichment
considering a search of MyoD ChIP-seq peaks (631 intervals) against
ChromHMM predictions from Roadmap.

©
 2

01
8

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t

o
f

S
p

ri
n

g
er

 N
at

u
re

. A
ll

ri
g

h
ts

 r
es

er
ve

d
.

nature methods  |  ADVANCE ONLINE PUBLICATION  |  �

brief communications

a

d

Enhancers (Enh) Strong transcription (Tx)
b c

Other

Neurosph

Muscle

Mesench
Lung
Heart

HSC and B cell

Epithelial

ESC

ES deriv

Digestive

Cancer cell line

Brain

Blood and T-cell

ESR1
ESR1

A
H

R

C
T

C
F

 +
O

es
tr

og
en

C
T

C
F

 +
O

es
tr

og
en

C
T

C
F

C
T

C
F

C
T

C
F

L
C

T
C

F
L

E
2F

1
E

2F
1

E
2F

4
+

Ta
m

ox
ife

n

E
LF

1

F
O

S
L2

E
2F

1

E
G

R
1

E
P

30
0

E
P

30
0

E
P

30
0

+
P

ro
ge

st
er

on
e

E
P

30
0

+
P

ro
ge

st
er

on
e

E
P

30
0

+
R

50
20

E
P

30
0

+
R

50
20

E
P

30
0

+
R

50
20

F
O

X
A

1
+

E
2

F
O

X
A

1
+

E
2

F
O

X
A

1
+

E
TO

H

F
O

X
A

1
F

O
X

A
1

F
O

X
A

1
F

O
X

A
1

F
O

X
A

1

F
O

X
M

1

G
AT

A
3

G
AT

A
3

G
AT

A
3

G
AT

A
3

G
R

E
B

1

H
D

A
C

2

K
D

M
5B

M
Y

C
M

Y
C

M
Y

C

N
C

A
P

G
 +

E
2

N
C

A
P

G
 +

E
2

N
C

A
P

G
2

+
E

2

P
M

L

M
Y

C
 +

E
st

ro
ge

n

G
AT

A
3

JU
N

D

M
A

X

M
Y

C
 +

S
tim

ul
at

ed

N
R

2F
2

N
R

2F
2

P
O

LR
2A

 +
E

2
P

O
LR

2A
 +

E
2

P
O

LR
2A

 +
D

M
S

O

P
R

 +
P

ro
ge

st
er

on
e

P
O

LR
2A

 +
D

M
S

O
P

O
LR

2A
 +

E
2

M
Y

C
 +

S
ta

rv
ed

H
2A

F
X

 +
H

2O
2

T
FA

P
2C

T
C

F
7L

2

TA
F

1

S
R

F

P
R

 +
R

50
20

P
R

 +
R

50
20

P
R

 +
R

50
20

P
R

 +
P

ro
ge

st
er

on
e

P
R

 +
P

ro
ge

st
er

on
e

R
E

S
T

T
FA

P
2C

T
FA

P
2C

 +
E

2

S
TA

G
1

+
O

es
tr

og
en

S
TA

G
1

+
O

es
tr

og
en

S
TA

G
1

+
O

es
tr

og
en

R
A

D
21

 +
O

es
tr

og
en

R
A

D
21

R
A

D
21

R
A

D
21

 +
O

es
tr

og
en

R
A

D
21

 +
O

es
tr

og
en

S
TA

G
1

S
TA

G
1

T
FA

D
4

T
C

F
12

S
IN

3A

T
FA

P
2A

 +
E

2
T

FA
P

2A
 +

E
TO

H
T

FA
P

2A

G
AT

A
3

G
AT

A
3

+
E

2

G
AT

A
3

+
E

2
G

AT
A

3
+

E
2

F
O

X
A

1
+

E
2

F
O

X
A

1
+

E
2

F
O

X
M

1
+

D
M

S
O

F
O

X
A

1

F
O

X
A

1

G
A

B
PA

F
O

X
A

1
F

O
X

A
1

E
P

30
0

+
E

2

C
T

C
F

C
E

B
P

B

ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1
ESR1

Sm muscle
Thymus

iPSC

Other

Neurosph

Muscle

Mesench
Lung
Heart

1,237

0

–606

154.7
191.6

0.0
–11.9

3,500

3,000

2,500

2,000

1,500

1,000

500

0

0.0

–254.8

HSC and B cell

Epithelial

ESC

ES deriv

Digestive

Cancer cell line

Brain

Blood and T-cell

Sm muscle
Thymus

iPSC

Other

Neurosph

Muscle

Mesench
Lung
Heart

HSC and B cell

Epithelial

ESC

ES deriv

Digestive

Cancer cell line

Brain

Blood and T-cell

Sm muscle
Thymus

iPSC

Autoimmune Non-autoimmune Autoimmune Non-autoimmuneQ
ui

es
R

ep
rP

C
W

k
R

ep
rP

C
E

nh
B

iv
B

iv
F

ln
k

T
ss

B
iv

H
et

Z
N

F
/R

pt
s

E
nh

E
nh

G
T

xW
k

T
x

T
xF

ln
k

T
ss

A
F

ln
k

T
ss

A

Q
ui

es
R

ep
rP

C
W

k
R

ep
rP

C
E

nh
B

iv
B

iv
F

ln
k

T
ss

B
iv

H
et

Z
N

F
/R

pt
s

E
nh

E
nh

G
T

xW
k

T
x

T
xF

ln
k

T
ss

A
F

ln
k

T
ss

A

figure � | Visualization of GIGGLE scores from various searches. (a,b) The relationships between 15 genomic states across 127 different cell types
and tissues predicted by ChromHMM for Roadmap and (a) MyoD ChIP-seq peaks and (b) genome-wide significant SNPs for Crohn’s disease. Black boxes
within panels highlight (a) muscle and (b) immune tissues and cell types. (c) Results from the enhancer and strong transcription tracks from ChromHMM
for Roadmap data when considering GWAS SNPs for 21 autoimmune disorder and 18 nonautoimmune traits. The black boxes highlight immune tissues
and cell types. (d) The relationships between ESR1 ChiP-seq binding sites from 53 different experiments and the binding sites from 105 other ChIP-
seq experiments (38 different unique factors) in MCF-7 cells. Higher GIGGLE scores indicate more enrichment. Black boxes highlight the relationships
between ESR1 and FOXA1, GATA3, PR, EP300, and NCAPG. Color lookup tables indicate GIGGLE scores.

©
 2

01
8

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t

o
f

S
p

ri
n

g
er

 N
at

u
re

. A
ll

ri
g

h
ts

 r
es

er
ve

d
.

�  |  ADVANCE ONLINE PUBLICATION  |  nature methods

brief communications

in Supplementary Fig. 2), suggesting a potential physical interac-
tion between these factors.

GIGGLE also provides the infrastructure to integrate data
sources. For example, we developed a web interface that allows
users to further investigate interesting results from Roadmap
(e.g., MyoD ChIP-seq and Myoblast enhancers) by a querying a
GIGGLE index of the UCSC genome browser data (Supplementary
Fig. 3). Those results are visualized in the genome browser as
a dynamic ‘smartview’, where only the tracks with at least one
overlap are visible. Other GIGGLE indices can also be used to
verify results. For example, we recapitulated the top hits from
the GIGGLE search of both MyoD ChIP-seq peaks and Crohn’s
disease GWAS SNPs against Roadmap with similar searches
against an index of the FANTOM5 data23 (1,825 files; 11,284,790
intervals) (Supplementary Tables 1–4). This is especially promis-
ing since FANTOM5 and Roadmap are based on fundamentally
different assays and therefore provide orthogonal corroboration of
these biological relationships. These examples illustrate GIGGLE′s
ability to confirm previously characterized associations and dem-
onstrate the discovery potential afforded by GIGGLE′s rapid,
prioritized searches.

The exploratory power of a single interface from which many
data sets can be searched has the possibility to dramatically advance
large-scale, integrative analyses. GIGGLE is capable of powering a
single access point that will inform researchers and clinicians of all
known experiments and curated annotations that are associated
with a particular genomic region. In summary, GIGGLE provides
a new engine with which to conduct large-scale, in silico ‘screens’
of multidimensional genomics data sets in search of insights into
genome biology in diverse experimental contexts.

methods
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.

acknowLedGments
We are grateful to the anonymous reviewers for their suggestions and comments.
This research was funded by US National Institutes of Health awards to R.M.L.
(K99HG009532) and A.R.Q. (R01HG006693, R01GM124355, U24CA209999).

author contributions
R.M.L. conceived and designed the study, developed GIGGLE, and wrote the
manuscript. B.S.P. developed the GIGGLE score and the PYTHON and GO APIs.
T.D. developed the web interface. G.T.M. provided input in the development of
the web interface. J.G. conceived and designed the ChIP-seq experiment. A.R.Q.
conceived and designed the study and wrote the manuscript.

comPetinG financiaL interests
The authors declare no competing financial interests.

reprints and permissions information is available online at http://www.nature.
com/reprints/index.html. Publisher’s note: springer nature remains neutral
with regard to jurisdictional claims in published maps and institutional
affiliations.

1. Quinlan, A.R. & Hall, I.M. Bioinformatics �6, 841–842 (2010).
2. Li, H. Bioinformatics �7, 718–719 (2011).
3. Sheffield, N.C. & Bock, C. Bioinformatics ��, 587–589 (2016).
4. Favorov, A. et al. PLOS Comput. Biol. 8, e1002529 (2012).
5. Elmasri, R., Wuu, G.T.J. & Kim, Y.-J. The time index: an access structure for

temporal data. in Proceedings of the 16th International Conference on Very
Large Data Bases (VLDB ‘90)(eds. McLeod, D., Sacks-Davis, R. & Schek, H.-J.)
1–12 (Morgan Kaufmann, San Francisco, California, USA 1990).

6. Ernst, J. & Kellis, M. Nat. Methods 9, 215–216 (2012).
7. Layer, R.M., Skadron, K., Robins, G., Hall, I.M. & Quinlan, A.R.

Bioinformatics �9, 1–7 (2013).
8. De, S., Pedersen, B.S. & Kechris, K. Brief. Bioinform. �5, 919–928 (2014).
9. Xiao, Y. et al. Bioinformatics �0, 801–807 (2014).
10. MacQuarrie, K.L. et al. Mol. Cell. Biol. ��, 773–784 (2013).
11. Farh, K.K.-H. et al. Nature 5�8, 337–343 (2015).
12. Mei, S. et al. Nucleic Acids Res. �5, D658–D662 (2017).
13. Splinter, E. et al. Genes Dev. �0, 2349–2354 (2006).
14. Nativio, R. et al. PLoS Genet. 5, e1000739 (2009).
15. Xu, Y. et al. PLoS Genet. ��, e1005992 (2016).
16. Carroll, J.S. et al. Cell ���, 33–43 (2005).
17. Theodorou, V., Stark, R., Menon, S. & Carroll, J.S. Genome Res. ��, 12–22

(2013).
18. Mohammed, H. et al. Nature 5��, 313–317 (2015).
19. Hanstein, B. et al. Proc. Natl. Acad. Sci. USA 9�, 11540–11545 (1996).
20. Li, W. et al. Mol. Cell 59, 188–202 (2015).
21. Periyasamy, M. et al. Cell Rep. ��, 108–121 (2015).
22. Mohammed, H. et al. Cell Rep. �, 342–349 (2013).
23. Lizio, M. et al. Genome Biol. �6, 22 (2015).

http://dx.doi.org/10.1038/nmeth.4556
http://dx.doi.org/10.1038/nmeth.4556
http://dx.doi.org/10.1038/nmeth.4556
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html

©
 2

01
8

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t

o
f

S
p

ri
n

g
er

 N
at

u
re

. A
ll

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.4556 nature methods

onLine methods
The GIGGLE index. The GIGGLE index is based on a previously
described5 temporal indexing method and consists of a set of B+
Trees, one for each chromosome, represented among the database
interval files. A B+ Tree is a generalization of a binary tree where
each node can have multiple keys, internal nodes contain only keys
and facilitate tree searching, leaf nodes contain the key-value pairs,
and adjacent leaf nodes are linked. Each key in an internal node
is linked to two child nodes. The ‘left’ link points to a node with
keys that are less than the current key, and the ‘right’ link points to
a node with keys that are greater than or equal to the current key.
In the GIGGLE index, keys represent chromosomal positions, and
the values associated with keys are lists of intervals that either start
at that position (indicated by a “+” in Fig. 1a and Supplementary
Fig. 1) or have ended just before that position (indicated by a “-”
in Fig. 1a and Supplementary Fig. 1). Leaf nodes also contain a
‘leading’ key (“L” in Supplementary Fig. 1, omitted from Fig. 1a)
that stores intervals that start before the first key in the leaf, but have
not ended by the last key in the prior leaf node (e.g., interval T1 in
Supplementary Fig. 1). While the leading values contain redundant
information and require extra storage, they improve performance
by preventing queries from having to load and scan other leaf nodes
for intervals that start in some earlier leaf node (e.g., interval T1).

Bulk indexing. To improve indexing efficiency, GIGGLE per-
forms ‘bulk’ indexing across many presorted interval files (see
Supplementary Fig. 1a). In bulk indexing, a priority queue is used
to select the interval with the next lowest start position among the
full set of files. The queue is loaded with one (the first) interval
from each file; and, as intervals are removed from the queue, the
next interval from the corresponding file is added to the queue. For
example, in Supplementary Figure 1b, step 1 considers interval P1
from the Promoters file, and step 2 considers interval B1 from the
TF binding sites file. After P1 is considered, the next interval in the
Promoters file (P2) is added to the queue. Similarly, in step 2, B2
from the TF binding sites file is added after B1 is considered.

Each interval is inserted into both the B+ Tree based on its start
position and an auxiliary priority queue that is keyed by the end
coordinate (plus one). This priority queue is used to add intervals
to the leading values and insert end positions into the B+ Tree.
If the start position of the current interval has been previously
observed, then the interval start is added to the list of the existing
value (intervals B2, P2, and T2 in steps 4, 5, and 6 in Supplementary
Fig. 1b). Otherwise, a new key is added to the current leaf for the
start position (assuming the current leaf has not reached its maxi-
mum number of keys, which is set to 100 by default), and the inter-
val start (“+”) is added to the new list that is associated with that
key (intervals P1, B1, and T1 in steps 1, 2, and 3 in Supplementary
Fig. 1b). Before a key is added for a new start position, all intervals
with end values less than or equal to the start value are removed
from the priority queue, and the interval ends (”-”) are either added
to the lists of existing keys (interval B1 in step 4 in Supplementary
Fig. 1b), or new keys are created (intervals P1, T1, B2, P2, and T2 in
steps 4 and 6 in Supplementary Fig. 1b). If at any point the current
node becomes full, then a new leaf node is created, all intervals in the
priority queue are added to the leading key value of the new node, and
the new key is added to the new node (step 4 in in Supplementary
Fig. 1b). Once all files have been processed and leaf node
construction is complete, internal nodes are added by promoting

the first key in each leaf node (other than the leftmost node) to a
parent node (step 7 in Supplementary Fig. 1b). This process con-
tinues one level at a time until there is only one parent node.

Searching the GIGGLE index. A B+ Tree search starts at the root
node, proceeds down internal nodes, and terminates at a key in
a leaf node. At each node in the search path, an internal search is
performed among the keys in the node. While the current node
is not a leaf node, the result of that search determines the next
node in the path. If the matching key is less than or equal to the
query, the path will follow the key’s ‘right’ link, otherwise it will
follow the key’s ‘left’ link. When the keys of a leaf node have been
searched, the leaf and matching key are returned.

For a given query interval, GIGGLE performs a specialized
range query to find overlapping intervals (the intersecting set)
across all indexed files. First, the B+ Tree is searched for the query
interval′s start and end values, which gives the start leaf node and
start key and the end leaf node and end key, respectively (step 1 in
Supplementary Fig. 1c). Next, the intervals in the leading value
of the start leaf node are added to the intersecting set (step 2 in
Supplementary Fig. 1c). Then the keys in the leaf node are scanned
from the first value up to and including the start key. At each key,
starting intervals (“+”) are added to the intersecting set, and end-
ing intervals (“-”) are removed (steps 3 and 4 in Supplementary
Fig. 1c). Last, the remaining keys up to and including the end key
are scanned, and the starting intervals are added at each key (steps
5 and 6 in Supplementary Fig. 1c). If the start key does not equal
the end key, then the search will use the links between leaf nodes.

The main advantage of a GIGGLE index is in minimizing disk
accesses. This benefit is most apparent when the database contains
thousands of files, and query intervals overlap only a small fraction
of the database. Both BEDTOOLS and TABIX are efficient algo-
rithms that may be faster than GIGGLE when considering small
databases. BEDTOOLS does not take advantage of an index and
must, in general, perform a full scan of both the query file and the
database file. In cases where the query intervals intersect only a
small proportion of the database intervals (the most common use
case), BEDTOOLS must read and parse most of the database. In
contrast, GIGGLE only considers the intervals that either intersect
or are immediately adjacent to the query intervals. In the unlikely
case where nearly every database interval intersects a query inter-
val, BEDTOOLS may be more efficient than GIGGLE because it
does not have the overhead of the index. TABIX uses an index that
is based on an R-Tree but has fixed bin sizes. Like GIGGLE, TABIX
uses the index only to consider the database intervals near queries.
However, TABIX is less efficient for two reasons. First, TABIX is
optimized for small index files, and most queries require opening,
decompressing, and parsing the source data files. Second, TABIX
creates one index for each source data file. When taken together,
TABIX is less efficient than GIGGLE because it must perform disk
accesses on both the index and the source data file.

Several search options are available to increase GIGGLE’s
usability. First, a ‘verbose’ mode (-v) prints all overlapping intervals
along with the source file so that users can filter results. Second,
a ‘per query’ mode (-o) lists each query interval followed the
reference hits so that users can recover specific hits. Third, searches
can consider only a subset of reference files (-f) by providing a
comma-separated list of regular expressions. Results are giving for
only those files with names that match one of those expressions.

©
 2

01
8

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t

o
f

S
p

ri
n

g
er

 N
at

u
re

. A
ll

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.4556nature methods

Specific examples of each of these options are given at https://github.
com/ryanlayer/giggle/blob/master/README.md#example.

Data format and sorting requirements. For indexing, GIGGLE
supports VCF files (https://samtools.github.io/hts-specs/
VCFv4.3.pdf) and BED files (https://genome.ucsc.edu/FAQ/
FAQformat.html#format1) that have been sorted and bgzipped
(https://github.com/samtools/htslib). Sorting is ascending lexi-
cographical by chromosome, then ascending numerically by start
and then by end. For searching, GIGGLE supports bgzipped VCF
and BED files. These need not be sorted, but sorted files are likely
to perform better because of cache performance. We provide a
script in the GIGGLE repository (https://github.com/ryanlayer/
giggle/blob/master/scripts/sort_bed) that can sort and bgzip full
directories using multiple processors. Otherwise, the following
command can be used on individual, uncompressed BED files:

LC_ALL = C sort–buffer-size 2G -k1,1 -k2,2n -k3,3n track.bed
| bgzip -c > track.bed.gz

Data sources. CHROMHMM, roadmap epigenomics data source.
Tissue-based annotations were downloaded from:

http://egg2.wustl.edu/roadmap/data/byFileType/chromh-
mmSegmentations/ChmmModels/coreMarks/jointModel/final/
all.mnemonics.bedFiles.tgz

These files were subsequently split and renamed into tissue/
state-based files (e.g., Spleen/Enhancers). Detailed methods
underlying this process can be found at:

https://github.com/ryanlayer/giggle/blob/master/examples/
rme/README.md

UCSC Genome Browser data source. The full set of hg19 anno-
tations was downloaded from: http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/database. The files with identifiable chromo-
some, start, and end values are converted to BED files. Detailed
methods underlying this process can be found at:

https://github.com/ryanlayer/giggle/blob/master/examples/
ucsc/README.md

MyoD ChIP-seq data source. ChIP-seq peaks from GSM1218850
are downloaded from:

ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM1218nnn/
GSM1218850/suppl/GSM1218850_MB135DMMD.peak.txt.gz

Peaks with a q-value greater than or equal to 100 are retained;
detailed methods underlying this process can be found at:

https://github.com/ryanlayer/giggle/blob/master/examples/
myod/README.md

GWAS variants for 39 autoimmune and non-autoimmune traits
data source. A spreadsheet with a list of traits, chromosome, start,
end, and other fields was downloaded from:

https://www.nature.com/nature/journal/v518/n7539/extref/
nature13835-s1.xls

Detailed methods underlying this process can be found at:
https://github.com/ryanlayer/giggle/blob/master/examples/

gwas/README.md
Fantom5 data source. The enhance expression matrix and asso-

ciated metadata was downloaded from:
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/

Human.sample_name2library_id.txt
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/

human_permissive_enhancers_phase_1_and_2_expression_
count_matrix.txt.gz

Values were extracted from the matrix and placed in tissue-specific
files. Detailed methods underlying this process can be found at:

https://github.com/ryanlayer/giggle/blob/master/examples/
fantom/README.md

Cistrome data source. Reanalyzed ChIP-seq narrow peaks from
raw GEO data was downloaded from:

http://cistrome.org/db/interface.html
With the following fields selected: Human_TF, Human_histone,

Human_chromatin_accessibility, Human_other. Only peaks with a
q-value greater than 100 were retained. For Figure 2d, all files had
to pass two Cistrome CQ metrics: fraction of reads in peaks, and at
last 500 peaks had to have ten-fold enrichment. We also removed
files with less than 100 peaks with a q-value greater than or equal to
100. Detailed methods underlying this process can be found at:

https://github.com/ryanlayer/giggle/blob/master/examples/cis-
trome/README.md

Experiments. Speed tests. Runtimes were for counting the number
of intersections between a query set and a database set for GIGGLE
(https://github.com/ryanlayer/giggle), BEDTOOLS (https://github.
com/arq5x/bedtools2), and TABIX (https://github.com/samtools/
htslib). The query sets had between 10 and 1 million 100 base pair
intervals, and the databases were the ChromHMM predictions
from Roadmap Epigenomics and the hg19 annotations from the
UCSC genome browser. All tests were performed using a single
core on the 2. 4 GHz Intel Xeon processor (E5-2680 v4) with 25 MB
of cache and a 510 MB/s read 485 MB/s write SSD drive (SM863a).
Detailed methods underlying this process can be found at:

https://github.com/ryanlayer/giggle/blob/master/experiments/
speed_test/README.md

Relationship comparison. Two pairs of methods for quantifying
the relationship between a query interval set and a database interval
set were compared: the Fisher’s Exact two-tail test of a 2 × 2 contin-
gency table versus a Monte Carlo base P value and the odds ratio of a
2 × 2 contingency table versus a Monte Carlo base enrichment. The
query set was the GWAS variants associated with Crohn’s disease,
and the database was the ChromHMM predictions from Roadmap
Epigenomics. Monte Carlo simulations were performed using BITS
(https://github.com/arq5x/bits), a simulation was performed for the
intersection of the GWAS variants and each tissue/genomic state
interval set, and each simulation consisted of 1,000 rounds. Detailed
methods underlying this process can be found at:

https://github.com/ryanlayer/giggle/blob/master/experiments/
mc_vs_table/README.md

MyoD heat map. The GIGGLE scores for MyoD ChIP-seq peaks
searched against the ChromHMM predictions from Roadmap
Epigenomics. Only the peaks with a q-value greater than 100 were
used. The cell line and tissue names are in Supplementary File 1.
Detailed methods underlying this process can be found at:

https://github.com/ryanlayer/giggle/blob/master/experiments/
chipseq/README.md

Crohn’s disease heat map and autoimmune/nonautoimmune heat
map. The GIGGLE scores for the sets of GWAS variants associated
with Crohn’s disease and other traits were searched against the
ChromHMM predictions from Roadmap Epigenomics. For
Figure 2c, the left two columns correspond to the scores from the
Enhancer state from ChromHMM for each tissue, and the right two
columns correspond to the scores from the Strong Transcription
state. Within these major columns, the left minor column

https://github.com/ryanlayer/giggle/blob/master/README.md#example
https://github.com/ryanlayer/giggle/blob/master/README.md#example
https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://genome.ucsc.edu/FAQ/FAQformat.html#format1
https://genome.ucsc.edu/FAQ/FAQformat.html#format1
https://github.com/samtools/htslib
https://github.com/ryanlayer/giggle/blob/master/scripts/sort_bed
https://github.com/ryanlayer/giggle/blob/master/scripts/sort_bed
http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/all.mnemonics.bedFiles.tgz
http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/all.mnemonics.bedFiles.tgz
http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/all.mnemonics.bedFiles.tgz
https://github.com/ryanlayer/giggle/blob/master/examples/rme/README.md
https://github.com/ryanlayer/giggle/blob/master/examples/rme/README.md
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database
https://github.com/ryanlayer/giggle/blob/master/examples/ucsc/README.md
https://github.com/ryanlayer/giggle/blob/master/examples/ucsc/README.md
ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM1218nnn/GSM1218850/suppl/GSM1218850_MB135DMMD.peak.txt.gz
ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM1218nnn/GSM1218850/suppl/GSM1218850_MB135DMMD.peak.txt.gz
https://github.com/ryanlayer/giggle/blob/master/examples/myod/README.md
https://github.com/ryanlayer/giggle/blob/master/examples/myod/README.md
https://www.nature.com/nature/journal/v518/n7539/extref/nature13835-s1.xls
https://www.nature.com/nature/journal/v518/n7539/extref/nature13835-s1.xls
https://github.com/ryanlayer/giggle/blob/master/examples/gwas/README.md
https://github.com/ryanlayer/giggle/blob/master/examples/gwas/README.md
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/Human.sample_name2library_id.txt
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/Human.sample_name2library_id.txt
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/human_permissive_enhancers_phase_1_and_2_expression_count_matrix.txt.gz
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/human_permissive_enhancers_phase_1_and_2_expression_count_matrix.txt.gz
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/human_permissive_enhancers_phase_1_and_2_expression_count_matrix.txt.gz
https://github.com/ryanlayer/giggle/blob/master/examples/fantom/README.md
https://github.com/ryanlayer/giggle/blob/master/examples/fantom/README.md
http://cistrome.org/db/interface.html
https://github.com/ryanlayer/giggle/blob/master/examples/cistrome/README.md
https://github.com/ryanlayer/giggle/blob/master/examples/cistrome/README.md
https://github.com/ryanlayer/giggle
https://github.com/arq5x/bedtools2
https://github.com/arq5x/bedtools2
https://github.com/samtools/htslib
https://github.com/samtools/htslib
https://github.com/ryanlayer/giggle/blob/master/experiments/speed_test/README.md
https://github.com/ryanlayer/giggle/blob/master/experiments/speed_test/README.md
https://github.com/arq5x/bits
https://github.com/ryanlayer/giggle/blob/master/experiments/mc_vs_table/README.md
https://github.com/ryanlayer/giggle/blob/master/experiments/mc_vs_table/README.md
https://github.com/ryanlayer/giggle/blob/master/experiments/chipseq/README.md
https://github.com/ryanlayer/giggle/blob/master/experiments/chipseq/README.md

©
 2

01
8

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t

o
f

S
p

ri
n

g
er

 N
at

u
re

. A
ll

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.4556 nature methods

corresponds to the autoimmune disorders, and the right minor
column to the nonautoimmune traits. The categorization of
these traits was retained from Farh et al.11. The cell line and tis-
sue names are in Supplementary Data 3. The autoimmune disor-
ders and the non-autoimmune traits are listed in Supplementary
Data 3. Detailed methods underlying this process can be found at:

https://github.com/ryanlayer/giggle/blob/master/experiments/
gwas/README.md

Cistrome ER. The GIGGLE scores for the ChIP-seq peak files of
ERS1 from the MCF-7 cells line that passed quality control (described
above) were searched against all other MCF-7 cell line results that
also passed quality control. Only the peaks with a q-value greater than
100 were used. The full set of accession numbers is Supplementary
Data 3. Detailed methods underlying this process can be found at:

https://github.com/ryanlayer/giggle/blob/master/experiments/
cistrome/README.md

Cistrome MCF-7. The GIGGLE scores for all ChIP-seq peak
files from the MCF-7 cell line that passed quality control were
searched against themselves. Only the peaks with a q-value
greater than 100 were used. The full set of accession numbers
is Supplementary Data 3. Detailed methods underlying this
process can be found at:

https://github.com/ryanlayer/giggle/blob/master/experiments/
cistrome/README.md

GIGGLE command line and programming interfaces.
Command line interface.
Indexing:
giggle index \
-i “intervals/*.bed.gz” \
-o interval_index -s

Searching:
giggle search \
-i interval_index -r chr1:1000000-2000000

giggle search \
-i interval_index -q query.bed.gz

C interface.
Indexing:
#include “giggle_index.h”
int main(int argc, char **argv) {
uint64_t num_intervals =
giggle_bulk_insert(
“intervals/*.bed.gz”,
“interval_index”,
1);

return 0;
}

Searching:
#include”giggle_index.h”
int main(int argc, char **argv) {
struct giggle_index *gi =
giggle_load(
“interval_index”,
block_store_giggle_set_data_handler);

struct giggle_query_result *gqr =
giggle_query(
gi,“chr1”,1000000,2000000,NULL);

uint32_t i;
for(i = 0; i < gqr->num_files; i++) {
struct file_data *fd =
file_index_get(gi->file_idx, i);

if (giggle_get_query_len(gqr, i) > 0)) {
char *result;
struct giggle_query_iter *gqi =

 giggle_get_query_itr(gqr, i);
while (giggle_query_next(gqi,

&result) == 0)
 printf(“%s\t%s\n”,

result,
fd->file_name);

giggle_iter_destroy(&gqi);
}

}
giggle_query_result_destroy(&gqr);
giggle_index_destroy(&gi);
return 0;

}

Python interface: https://github.com/brentp/python-giggle
Indexing:
from giggle import Giggle
index = Giggle.create(’interval_index’,

’intervals/*.bed.gz’)

Searching:
from giggle import Giggle
index = Giggle(’ interval_index ’)
print(index.files)
result = index.query(’ chr1 ’ , 9999, 20000)
print(result.n_files)
print(result.n_total_hits)
print(result.n_hits(0))
for hit in result[0]:
print(hit) # hit is a string

Go interface: https://github.com/brentp/go-giggle
Indexing:
import (
giggle “github.com/brentp/go-giggle”
“fmt”

)
func main() {
index := giggle.New(“interval_indexr”,

“intervals/*.bed.gz”)
}

Searching:
import (
giggle “github.com/brentp/go-giggle”
“fmt”

)
func main() {
index:= giggle.Open(“interval_index”)
res:= index.Query(“1”, 565657, 567999)
// all files in the index
index.Files()

https://github.com/ryanlayer/giggle/blob/master/experiments/gwas/README.md
https://github.com/ryanlayer/giggle/blob/master/experiments/gwas/README.md
https://github.com/ryanlayer/giggle/blob/master/experiments/cistrome/README.md
https://github.com/ryanlayer/giggle/blob/master/experiments/cistrome/README.md
https://github.com/ryanlayer/giggle/blob/master/experiments/cistrome/README.md
https://github.com/ryanlayer/giggle/blob/master/experiments/cistrome/README.md
https://github.com/brentp/python-giggle
https://github.com/brentp/go-giggle

©
 2

01
8

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t

o
f

S
p

ri
n

g
er

 N
at

u
re

. A
ll

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.4556nature methods

// int showing total count
res.TotalHits()
// []uint32 giving number of hits for each file
res.Hits()
var lines []string
access results by index of file.
lines = res.Of(0)
fmt.Println(strings.Join(lines, “\n”))
lines = res.Of(1)

}

Code availability. All source code is available at https://github.
com/ryanlayer/giggle.

Life Sciences Reporting Summary. Further information regard-
ing the experimental design may be found in the Life Sciences
Reporting Summary.

Data availability. URLs for Roadmap Epigenomics, the UCSC
Genome browser, and Fantom5 indices and a hosted interactive
heatmap are available at https://github.com/ryanlayer/giggle/
blob/master/README.md#hosted-data-and-services.

https://github.com/ryanlayer/giggle
https://github.com/ryanlayer/giggle
https://github.com/ryanlayer/giggle/blob/master/README.md#hosted-data-and-services
https://github.com/ryanlayer/giggle/blob/master/README.md#hosted-data-and-services

1

nature research | life sciences reporting sum
m

ary
June 2017

Corresponding author(s): Ryan Layer, Aaron Quinlan

Initial submission Revised version Final submission

Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list
items might not apply to an individual manuscript, but all fields must be completed for clarity.

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research
policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist.

 Experimental design
1. Sample size

Describe how sample size was determined. N/A

2. Data exclusions

Describe any data exclusions. N/A

3. Replication

Describe whether the experimental findings were
reliably reproduced.

N/A

4. Randomization

Describe how samples/organisms/participants were
allocated into experimental groups.

N/A

5. Blinding

Describe whether the investigators were blinded to
group allocation during data collection and/or analysis.

N/A

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6. Statistical parameters
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the
Methods section if additional space is needed).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

Nature Methods: doi:10.1038/nmeth.4556

2

nature research | life sciences reporting sum
m

ary
June 2017

 Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this
study.

All source code for all analysis is available at https://github.com/ryanlayer/giggle

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for
providing algorithms and software for publication provides further information on this topic.

 Materials and reagents
Policy information about availability of materials

8. Materials availability

Indicate whether there are restrictions on availability of
unique materials or if these materials are only available
for distribution by a for-profit company.

None

9. Antibodies

Describe the antibodies used and how they were validated
for use in the system under study (i.e. assay and species).

N/A

10. Eukaryotic cell lines
a. State the source of each eukaryotic cell line used. N/A

b. Describe the method of cell line authentication used. N/A

c. Report whether the cell lines were tested for
mycoplasma contamination.

N/A

d. If any of the cell lines used are listed in the database
of commonly misidentified cell lines maintained by
ICLAC, provide a scientific rationale for their use.

N/A

 Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived
materials used in the study.

N/A

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population
characteristics of the human research participants.

N/A

Nature Methods: doi:10.1038/nmeth.4556

