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ABSTRACT

High-throughput sequencing data are increasingly
being made available to the research community
for secondary analyses, providing new opportunities
for large-scale association studies. However, hetero-
geneity in target capture and sequencing technolo-
gies often introduce strong technological stratifica-
tion biases that overwhelm subtle signals of associ-
ation in studies of complex traits. Here, we introduce
the Cross-Platform Association Toolkit, XPAT, which
provides a suite of tools designed to support and
conduct large-scale association studies with hetero-
geneous sequencing datasets. XPAT includes tools
to support cross-platform aware variant calling, qual-
ity control filtering, gene-based association testing
and rare variant effect size estimation. To evaluate
the performance of XPAT, we conducted case-control
association studies for three diseases, including 783
breast cancer cases, 272 ovarian cancer cases, 205
Crohn disease cases and 3507 shared controls (in-
cluding 1722 females) using sequencing data from
multiple sources. XPAT greatly reduced Type I error
inflation in the case-control analyses, while replicat-
ing many previously identified disease–gene asso-
ciations. We also show that association tests con-
ducted with XPAT using cross-platform data have
comparable performance to tests using matched
platform data. XPAT enables new association studies
that combine existing sequencing datasets to iden-
tify genetic loci associated with common diseases
and other complex traits.

INTRODUCTION

The rapid development pace of high-throughput sequenc-
ing technology is enabling large-sequencing studies at a
scale that was previously only obtainable for genome-wide
association studies (GWAS) based on high-density Single
Nucleotide Polymorphisms (SNP) arrays (1). The resulting
sequencing datasets from these primary studies are increas-
ingly being deposited into public repositories available to
the research community. As a result, there is a broad inter-
est in combined association analyses that merge data from
multiple studies, which involve a variety of sequencing plat-
forms and laboratory protocols. Meta-analyses, which com-
bine summary statistics from individual association stud-
ies, are used regularly in SNP-based GWAS and provide
an effective means of controlling for technological hetero-
geneity between studies (2,3). However, for a variety of rea-
sons, pooled analyses or ‘mega-analyses’ are often inher-
ently preferable in sequence-based association studies, re-
sulting in increased signal for low-frequency and rare vari-
ants (4), particularly when combined with rare variant as-
sociation tests (5). Pooled analyses have been employed
extensively in SNP-based GWAS (6–9). However, analysis
of cross-platform sequencing data is far more challenging
than for SNP-based GWAS due to technological stratifi-
cation biases caused by differences in sample preparation,
target capture, sequencing platforms and various bioinfor-
matics pipelines. Although pooled cross-platform sequence-
based association studies have been conducted (10,11), due
to technological stratification, these studies have required
balanced case and control proportions across each sequenc-
ing platform and laboratory. Consequently, such studies are
generally unable to incorporate datasets that have been se-
quenced outside of the context of a case-control study spe-
cific to the disease of interest. This limitation is particularly
consequential given the inability to leverage public repos-
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itories to increase control sample sizes and thus statisti-
cal power. The lack of effective tools to control for cross-
platform heterogeneity have therefore greatly limited the
impact of cross-platform sequencing association studies.

To address the need for improved support for cross-
platform sequencing studies, we have developed the Cross-
Platform Association Toolkit (XPAT) (Figure 1; Supple-
mentary Figures S1 and 2). XPAT includes a suite of tools
designed to support and conduct sequencing association
studies involving technologically heterogeneous datasets.
We demonstrate the utility of XPAT by conducting whole-
exome case–control association studies in breast and ovar-
ian cancer involving 272 ovarian cancer cases, 873 breast
cancer cases and 1722 female controls. We consider the per-
formance of XPAT using single marker tests and four gene-
based tests, SKAT-O, variable threshold (VT), weighted
sum statistic (WSS) and VAAST 2, evaluating control of
Type I error and statistical power to detect known associ-
ations. To demonstrate the applicability of XPAT to other
human diseases, we also conducted an additional sequence-
based case-control analysis involving 205 Crohn Disease
cases and 3507 controls.

MATERIALS AND METHODS

XPAT is comprised of four major modules designed to sup-
port and conduct cross-platform sequencing studies (Figure
1). The features supported include data alignment and vari-
ant calling, quality control (QC), association testing, and
rare variant effect size estimation. The inputs, outputs and
runtime of XPAT’s components are summarized in Figure
1; Supplementary Tables S1 and 2. Users specify the plat-
form for each sample using a PED input file; platform is
then treated as a categorical variable by XPAT throughout
the analysis. Here, platform can refer to any detail of sam-
ple processing which could produce technological stratifi-
cation bias, which includes but is not limited to input DNA
type or quality, target capture designs or protocols, sequenc-
ing technologies or protocols, experiment batches and other
laboratory protocols.

Sequencing reads alignment and variant genotype calling

The data alignment and variant calling module in XPAT
provides automated parallel computing workflows that
interface with the Burrows-Wheeler Aligner (BWA) (12)
(v0.7.9a), the Genome Analysis Toolkit (GATK) (13)
(v3.3), and other tools to filter low quality sequencing reads
and to align cleaned reads to a reference genome (14,15).
For each individual, XPAT uses BWA to align the se-
quencing reads onto a reference genome, generating a SAM
file for each individual. XPAT uses Picard tools (http://
broadinstitute.github.io/picard) to clean SAM files by soft-
clipping beyond-end-of-reference alignments and setting
MAPQ to 0 for unmapped reads. XPAT calls Samtools (16)
to convert the cleaned SAM files into BAM files and sorts
the BAM files. XPAT calls Picard’s MarkDuplicates module
to de-duplicate redundant reads from PCR amplification or
non-random genome fragmentation. XPAT performs local
realignment, minimizing the number of mismatched bases
across reads using GATK’s IndelRealigner module. XPAT

recalibrates the base score quality using GATK’s BaseRe-
calibrator module to generate the final clean BAM file for
each individual for genotype calling.

XPAT calls GATK HaplotypeCaller to conduct variant
genotyping, either by calling each sample individually or
jointly calling all samples together. Joint variant genotyping
is particularly beneficial in cross-platform association stud-
ies, as demonstrated in other cohort and pedigree studies
(17,18) and our analyses (Supplementary Figures S3 and 4).
To optimize the runtime speed of joint calling, XPAT com-
bines per-sample gVCF files produced by HaplotypeCaller
into a multi-sample gVCF file using CombineGVCFs by co-
hort and then performs joint genotype calling on the com-
bined gVCF files. To conduct cross-platform aware variant
genotyping, XPAT interfaces with GATK to perform Vari-
ant Quality Score Recalibration (VQSR) with variants lo-
cated in the union (default) or intersection of genomic re-
gions targeted by each platform.

XPAT’s QC metrics

The automated QC procedures in XPAT involve a series
of analyses to identify and filter problematic samples and
variants due to cross-platform biases. For sample level QC,
XPAT infers gender information based on the ratio of the
homozygote and heterozygote counts on chromosome X
for each individual and reports possible misidentification of
gender. XPAT also identifies low quality samples based pri-
marily on NC90 scores. NC90 is a sample-level platform-
specific missing genotype rate, defined as the proportion of
missing genotypes in a sample among all variants with call
rates of 0.9 or greater among all samples from that plat-
form. By default, XPAT excludes individuals with NC90 >
25%. For variant level QC, XPAT provides platform-aware
QC metrics to control for cross-platform biases. XPAT will
mask a variant if it meets any of the following criteria: (i)
VQSR tranche sensitivity score >99.9 for SNP and >98.0
for INDEL, (ii) genotype quality score <5, (iii) fraction of
reads supporting minor alleles <20%, (iv) P < 10−6 in a
Hardy-Weinberg equilibrium test (19) in the control popu-
lation, (v) platform-wide missing-genotype rate >10%, (vi)
P < 0.05 in a differential missing-genotype rate test across
platforms and (vii) P < 0.05 in a differential allele frequency
test across platforms. The cross-platform missing-genotype
rate and differential allele frequency tests are conducted us-
ing χ2 tests. XPAT conducts missing-genotype rate across
all platforms involved in the study including both cases
and controls. XPAT conducts differential allele frequency
tests across case platforms or across control platforms, sep-
arately, avoiding comparisons between cases and controls.
For quantitative traits, XPAT first defines groups by quan-
tiles of the trait of interest and then conducts within group
cross-platform tests.

Population and technological stratification

The detection and characterization of population and tech-
nological stratification in XPAT relies on two consecutive
steps of Principle Component Analysis (PCA) (20): an ex-
ternal step and an internal step. XPAT first performs an ex-
ternal PCA to select cases and controls with matched ge-
netic ancestry, a procedure termed ‘PCA projection’ (21,22).
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Figure 1. Diagram of the components of XPAT. The four modules in XPAT are shown in blue boxes. The input, output and intermediate files are shown
in black.

XPAT uses the 1000 Genomes project (phase3-20130502)
(23) as the default reference panel, including 427 samples
from 8 population groups (i.e. CEU, CHS, KHV, LWK,
PEL, PJL, PUR and YRI). XPAT constructs a reference
Principal Component (PC) space with common variants
(Minor Allele Frequency, MAF > 20%) from the reference
panel, and then projects cases and controls onto the PC
space. This PCA enables the identification and exclusion of
population outliers that are poorly matched to the case and
control groups with respect to genetic ancestry. In our study,
we manually selected samples clustering with CEU from the
1000 Genomes project, according to the results from the
external PCA. XPAT then excludes the external reference
panel, conducting an internal PCA with selected cases and
controls, using well-behaved markers that are selected based
on the allele frequency in an external reference database. By
default, XPAT includes variants with MAF > 10% in non-
Finnish Europeans reported in Exome Aggregation Con-
sortium (ExAC) (24). XPAT performs linkage disequilib-
rium pruning to obtain a set of unlinked markers (i.e. ap-
proximately statistically independent) markers with r2 < 0.2
to conduct the PCA, which is an approach that has been
employed frequently in previous studies (25,26). The inter-
nal PCA is more sensitive to population and technological
stratification compared the external PCA, enabling better
control of residual cross-platform biases or sub-population
stratification. We included the first two PCs from the inter-
nal PCA as covariates in each association test. Note that
the allele frequency filters described above apply only to the
PCA steps; lower allele frequency filters are typically ap-
plied to gene-based association tests, as described below.

Gene-based association tests

After completing QC and calculating PCs, XPAT can con-
duct one or more association tests throughout the se-
quenced regions. Currently, XPAT supports single marker

tests using linear and logistic regression as well as 29 rare
variant association tests. In this study, we evaluated VAAST
2 (27), SKAT-O (28), VT (29) and WSS (30) (full list in
Supplementary Table S3). One of the most common ap-
plications of a rare variant association test is a gene-based
test of rare, protein-coding variants. To support this appli-
cation, XPAT annotates all variants using the variant an-
notation tool (VAT) in VAAST 2 to identify variants that
may impact protein function. By default, XPAT tests all
missense, nonsense, splicing, and coding INDEL variants
in each gene (in VAAST 2, rare variants with sufficiently
low conservation-controlled amino acid substitution matrix
scores (CASM scores) may also be excluded from the test,
as previously described (27)). XPAT calculates P-values us-
ing a covariate adjusted permutation test (31), which en-
ables the analysis to control for PCs and other covariate
information, even if the test statistic cannot incorporate
covariates (e.g. WSS and VAAST 2). XPAT also supports
analytical calculation of P-values for tests that can incor-
porate covariates without a permutation test (e.g. SKAT-
O). Optionally, XPAT can incorporate variant prioritiza-
tion scores in association tests that support variant weight-
ing. In XPAT, the default variant prioritization method in
VAAST 2 analysis is CASM (27). For SKAT-O (32) and
VT (29), XPAT can use either PolyPhen-2 (PP2) (33) or
transformed CASM scores (34) as weights. XPAT uses the
R package ‘SKAT’ to implement SKAT-O. XPAT inte-
grates VT Test Software (http://genetics.bwh.harvard.edu/
rare variants/) to implement VT. XPAT uses the R pack-
age ‘AssotesteR’ (https://cran.r-project.org/web/packages/
AssotesteR/index.html) to implement WSS and 24 other
test statistics. XPAT uses the software ‘RAML’ (http://ccge.
medschl.cam.ac.uk/software/raml/) to implement the rare
admixture maximum likelihood test (35). In our study, we
conducted gene-based association tests using rare variant
with MAF < 0.5% in each case-control dataset.
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XPAT uses a permutation-based test for genes with
multiple isoforms, called the Multiple Gene Isoform Test
(MGIT), which can be applied using any gene-based asso-
ciation test (Supplementary Figure S2). MGIT simultane-
ously tests all known isoforms in a gene and conducts a per-
mutation procedure to calculate a single gene-level P-value.
MGIT first calculates the test statistic, Si (defined by the
gene-based test statistic), for each transcript Ti of a given
gene using any of the 30 supported rare variant associa-
tion tests. The significance level of Si, denoted as Pi, is as-
sessed with individual permutation tests, using BiasedUrn
sampling (31), which incorporates the covariate matrix from
the internal PCA. During permutation, MGIT calculates
statistics sij, where i indexes the transcript and j indexes the
permutation, then transforms sij into its empirical p value
pij. For the jth permutation, MGIT selects the minimum pij
among all transcripts of a given gene, denoted as min-pj.
The minimum Pi among all transcripts is compared with
the distribution of min-pj, to generate the overall gene-level
p value. All XPAT gene-based results from this study were
generated using MGIT, except where specifically noted.

Odds ratio estimation

Once a significant gene association is identified, XPAT can
estimate odds ratios (ORs) for particular classes of vari-
ants in a gene, including likely gene disrupting (LGD) vari-
ants (e.g. stop gain, splice donor/acceptor and frame shift
INDELs), missense variants, rare variants with a spec-
ified MAF, damaging variants (as measured by amino
acid substitution (AAS) score (27), PP2, or SIFT (36))
and variants belonging to specific functional domains
(according to annotation from InterPro database (37)).
XPAT conducts variant annotation using the refGene,
ljb23 pp2hvar, ljb23 sift and dbnsfp31a interpro (for pro-
tein domain information) databases from ANNOVAR (38)
(version: 2015Nov02). XPAT calculates ORs using logis-
tic regression, accounting for population stratification and
cross-platform biases by incorporating PCs and other po-
tential covariates, using the following formula:

log i t [E (Pi )] = β0 + βG Gi +
∑

j
β j ci j .

Pi is an indicator variable for the phenotype (disease af-
fected status) of an individual i, with 0 for control and 1 for
case. Gi indicates whether individual i carries at least one
variant of interest (Gi = 1) or not (Gi = 0). ci j is the j-th
covariate within the i-th individual. β0 is the intercept; β j
is the coefficient of the j-th covariate; βG is the coefficient
for the genetic variant. The OR is calculated as the expo-
nential of the estimated βG . For functional categories with
zero variant counts in either cases or controls, XPAT uses
a Fisher’s exact test to estimate ORs and confidence inter-
vals. In our study, we estimated ORs using rare variant with
MAF < 0.5% in each case-control dataset.

Benchmark QC

We compared the XPAT’s QC with benchmark QC met-
rics adopted from a recent whole-exome association study
(10). Both QC metrics were applied to the genotypes gener-
ated from the same jointly called multi-sample VCF files.

The benchmark QC metrics included the following vari-
ant level QC filters: (i) VQSR tranche scores >99.75 for
SNPs and >99.50 for INDELs, (ii) genotype quality scores
<30 for SNPs and <90 for INDELs, (iii) Fewer than 20 or
25% of reads supporting the minor allele for SNPs and IN-
DELs, respectively (iv) alternate allele read depth <2 for
both SNPs and INDELs, (v) study-wide missing-genotype
call rates >20%, (vi) P < 10−8 in a Hardy-Weinberg equi-
librium test within the control population (19), (vii) locat-
ing within low-complexity regions predicted by mdust (http:
//compbio.dfci.harvard.edu/tgi/) and (viii) INDELs with
more than two alternate alleles or within three base pairs of
another INDEL. A detailed comparison between the XPAT
and benchmark QC procedures is provided in Supplemen-
tary Table S4.

Ovarian and breast cancer analyses

We downloaded the whole-exome sequencing data of 395
samples with ovarian serous cystadenocarcinoma (39,40)
and 1100 samples with breast invasive carcinoma (41) from
the Cancer Genome Atlas (TCGA) project through the
Cancer Genomics Hub (https://cghub.ucsc.edu/). We down-
loaded the whole-exome sequencing data of a shared con-
trol set of 4677 samples in the Simons Simplex Collec-
tion (42) from the National Database for Autism Research
(NDAR) (43). All samples were sequenced from blood-
derived normal samples. We excluded all self-reported His-
panic or Latino samples, and related individuals reported
by KING (44). Using PCA in XPAT, we selected female
cases and controls of European ancestry, including 272
ovarian cancer cases, 873 breast cancer case and 1722 con-
trols unaffected mothers of offspring with Autism Spectrum
Disorder (ASD) from NDAR. We conducted read align-
ment, variant calling and QC using XPAT with default pa-
rameters.

Crohn disease analysis

We designed a target sequencing panel, consisting of 101
genes in genomic regions with established associations with
Crohn disease from GWAS. We used Agilent SureDesign
to design probes for targeted enrichment using the Halo-
Plex Target Enrichment System. The targeted regions con-
stituted 1076 targets and 17 912 amplicons for a total of
497.3 kb of coding sequence. We sequenced 205 cases with
early disease onset (≤18 years). DNA was obtained from
whole blood using standard procedures. Target sequencing
libraries were constructed per the manufacturer’s protocol,
and sequenced using an Illumina HiSeq 2500 with a depth
of 300× on average. We conducted read alignment, vari-
ant calling and QC using the procedures described above
for the TCGA data, with two exceptions: variants outside
of the targeted region were excluded (capture intersection),
and VQSR filtering was not applied to INDELs due to their
limited number. We used 3507 NDAR samples of European
ancestry as controls in this case-control analysis, and per-
formed gene-based tests for the genes in target regions with
VAAST2-MGIT using the first two internal PCs as covari-
ates.
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Figure 2. Q–Q plots of observed versus expected gene-based P-values in VAAST 2 for genes with eight or more tested variants. Cases and controls include
(A) 272 ovarian cancer cases and 1722 shared controls, and (B) 783 breast cancer cases and 1722 shared controls. Blue dots: benchmark QC (see ‘Materials
and Methods’ section). Red dots: XPAT. The gray band represents a 95% (pointwise) confidence region. The Q–Q plots were generated with R package
‘Haplin’.

RESULTS

We evaluated the performance of XPAT by conducting two
whole-exome case-control analyses involving 272 women
with ovarian cancer and 783 women with breast cancer,
and a shared control set of 1722 women. The controls from
NDAR were unaffected mothers of offspring with ASD.
Other than ASD status, phenotype information was un-
available for the controls and thus a small proportion may
have been misclassified, although the potential misclassifi-
cation bias would have only a modest effect on power and
effect size estimates (45). The cross-platform heterogene-
ity within and between datasets includes differences in se-
quence centers, target capture designs and sequencing cov-
erages (Supplementary Table S5).

We performed sequencing reads alignment, joint vari-
ant calling, QC and case–control association testing using
the XPAT workflow described in Figure 1. For each cancer
type, we conducted single marker logistic regression anal-
ysis and four rare variant association tests, both with and
without variant prioritization information. For compari-
son, we mirrored each XPAT case-control analysis with an
analysis based on QC metrics and procedures from a re-
cent whole-exome association study (10). In this study, the
authors conducted a case-control mega-analysis using ex-
ome sequencing data involving multiple capture technolo-
gies, sequencing platforms and laboratories. The study ap-
plied stringent thresholds for QC, balancing sensitivity and
specificity by training on several datasets (10). The associ-
ation results exhibited no inflation or deflation of Type I
error, with the caveat that the numbers of cases and con-
trols were balanced in each platform. The QC metrics used
in this study (see ‘Materials and Methods’ section) provide
a benchmark that is representative of state-of-the-art cross-
platform sequencing association studies.

The quantile–quantile (Q–Q) plots in Figure 2 demon-
strate that the association results generated with benchmark

QC metrics were characterized by high levels of Type I er-
ror inflation. For example, with an ! level of 0.001, the num-
ber of significant genes exceeded the expected number under
the null hypothesis by between 3- and 26-fold (Figure 3 and
Supplementary Table S6). In comparison, the association
results generated with XPAT were largely consistent with
theoretical expectations under the null (red dots in Figure
2 and Supplementary Figure S5). XPAT reduced the pro-
portion of significant associations in all association tests for
both ovarian and breast cancer at ! levels of 0.001, 0.01 and
0.05, and the proportions of significant associations were
substantially closer to the nominal ! levels. We then com-
pared association test results using internal PCs or external
PCs as covariates, observing inconsistent control of Type I
error using external PCs in contrast to stable performance
with internal PCs (Supplementary Figures S6 and 7), sug-
gesting that internal PCAs are more sensitive to technolog-
ical stratification. We also extended covariates to the first
ten internal PCs and observed equivalent control of Type I
error (see Supplementary Figure S7E and F).

To evaluate XPAT’s influence on statistical power, we ex-
amined the difference in P-values and genome-wide rank-
ings of 16 well-established breast and ovarian cancer suscep-
tibility genes (Supplementary Table S7) for association re-
sults generated with and without XPAT. Established suscep-
tibility gene associations that replicated at P < 0.05 in one
or more tests include BRCA1 (46), BRCA2 (46), RAD51C
(47), RAD51D (48) and BRIP1 (49) in ovarian cancer, and
BRCA1 (46), BRCA2 (46), RAD51B (50), CHEK2 (51) and
ATM (52) in breast cancer (Figure 4 and Supplementary
Table S7). In general, tests that incorporated variant pri-
oritization weights (VAAST 2, SKAT-O with PP2, and VT
with PP2) exhibited higher power than those without vari-
ant prioritization (VAAST 2 without CASM, SKAT-O, VT
and WSS). In the ovarian cancer analysis, all tests repli-
cated the association between ovarian cancer and BRCA1,
which reached exome-wide significance (P = 2.4 × 10−6) in
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Figure 3. Observed proportion of significant associations at different ! levels. We conducted association tests for ovarian (A–C) and breast (D–F) cancer,
using eight association tests supported in XPAT. We calculated the proportions of significant associations at ! levels of 0.001, 0.01 and 0.05 (dashed lines
in each sub panel), and compared the performance of XPAT’s QC metrics versus benchmark QC metrics for each method and dataset.

VAAST 2. PALB2, which has been proposed as an ovarian
cancer susceptibility gene (53), showed nominal association
(P = 0.044) with ovarian cancer risk in our VAAST 2 anal-
ysis (Supplementary Table S7).

We then compared our cross-platform XPAT results with
platform-matched ovarian cancer case-control sequencing
datasets with 1089 ovarian cases and 1133 controls from
the studies of Epidemiology and Risk Factors in Cancer
Heredity (SEARCH) (50,54) to assess whether the addi-
tional QC in XPAT resulted in a loss of statistical power.
These datasets provide high coverage case-control sequenc-
ing data for four established ovarian cancer susceptibility
genes, BRCA1, BRCA2, RAD51C and RAD51D (50,54).
We performed variant calling and QC following the proce-

dures in their original papers. To ensure that sample sizes
were identical in the cross-platform and matched platform
datasets, we repeatedly sampled 250 cases and 1000 controls
with replacement to generate 1000 bootstrap replicates. We
then conducted association tests using VAAST 2 on each
bootstrap replicate. We estimated statistical power from the
proportion of significant tests among all 1000 bootstrapped
datasets for a given ! level. As shown in Figure 5, the power
from these two datasets was comparable for α levels between
1 × 10−5 and 0.1, demonstrating that the additional QC
in XPAT did not substantially compromise power. The P-
value distributions and OR estimates from the two datasets
were also highly similar (Supplementary Figures S5 and 8).
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Figure 4. Observed gene-based P-values for known cancer–gene associations. The heatmap depicts the P-values of known cancer–gene associations in
ovarian cancer and breast cancer for genes with P < 0.05 in one or more association tests.

Figure 5. Power estimation for association tests using XPAT. The lines
depict the power comparisons with VAAST 2 analysis with XPAT using
TCGA ovarian cancer cases and NDAR controls (solid lines) and using
platform-matched ovarian cancer cases and controls (dashed lines), for
four genes: BRCA1 (red), BRCA2 (orange), RAD51D (blue), RAD51C
(green). The x-axis shows the ! level and the y-axis shows the statistical
power. The power was calculated based on 1000 bootstraps. For each boot-
strap, we sampled 250 cases and 1000 controls with replacement from each
dataset.

To investigate the contribution of different functional
categories of variants to cancer risk in specific genes, we
conducted association tests with a subset of the variants
by excluding all LGD variants for TCGA datasets. No-
tably, though we observed attenuation of the signal after
excluding LGD variants, five gene–cancer associations re-
mained nominally significant (P < 0.05): BRCA1, BRCA2,
RAD51B and CHEK2 in breast cancer and BRCA1 in ovar-
ian cancer, (Figure 4 and Supplementary Table S8). We then

applied XPAT to estimate ORs for various functional cat-
egories of rare variants in each of these genes (Figure 6).
We used XPAT to investigate effect sizes of the following
four types of variants: LGD variants, rare (MAF < 0.5%)
predicted non-damaging missense (CASM score < 2) vari-
ants, rare predicted damaging missense variants (CASM
score ≥ 2) and rare damaging missense variants belonging
to functional domains. The OR estimates for LGD variants
in BRCA1, BRCA2 and RAD51B for breast cancer were
5.50 (Confidence Intervals, CI: 1.01 to 29.76), 5.27 (CI: 1.76
to 15.80) and ∞ (CI: 0.41 to ∞), respectively, supporting
the findings from previous studies (40,55,56) (Supplemen-
tary Table S9).

Alternative splicing can generate multiple transcripts of
the same gene, which code protein products with various
functions. In the transcript-based association tests, we ob-
served that the effect sizes of missense variants from two
small BRCA1 transcripts were larger than those from the
three large transcripts, especially for missense variants pre-
dicted to be damaging (Supplementary Table S10). We also
observed that rare missense variants in the RING and
BRCT protein domains of BRCA1 exhibited effect sizes
comparable with LGD variants, although with wide con-
fidence intervals (OR = 16.30, 95% C.I, 1.47 to 180.97 for
ovarian cancer and OR = 11.70, 95% C.I, 1.34 to 102.10 for
breast cancer) (Supplementary Table S11).

To demonstrate the applicability of XPAT to other hu-
man diseases, we conducted an additional sequence-based
case-control analysis involving 205 Crohn Disease cases and
3507 controls from NDAR. The case data were generated
from a targeted sequencing panel of 101 genes near Crohn
disease susceptibility loci previously identified in GWAS,
while the control dataset was generated from whole-exome
capture and sequencing. XPAT was able to successfully
eliminate Type I error rate inflation in this study, while repli-
cating a well-established Crohn Disease susceptibility gene,
NOD2 (57,58), with P = 1.0 × 10−6 (Supplementary Figure
S9).
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Figure 6. OR estimates for ovarian cancer susceptibility genes. We esti-
mated the ORs with TCGA-NDAR data and platform-matched data. Dot-
ted lines indicate null value (OR = 1.0). Each sub panel contains the OR
estimates for four categories of variants on cancer risk: LGD (black), mis-
sense and non-damaging (green), missense and damaging (blue), and mis-
sense and damaging and domain region variants (red). For variant cate-
gories with zero counts in either cases or controls, we estimated the OR
using a Fisher’s exact test (indicated by star).

DISCUSSION

Given the sample sizes typically needed to identify new
rare variant associations, the appeal of mega-analysis ef-
forts that combine sequencing data from multiple sources
is clear. However, in practice, the increase in power gained
by merging sequencing datasets can easily be overwhelmed
by the increase in false positives resulting from batch ef-
fects between datasets. In this study, we consistently ob-
served major batch effect biases when using QC metrics
and procedures typically applied in sequencing association
studies, regardless of the test statistic used (blue lines in
Figure 2 and Supplementary Figure S5). XPAT addresses
this problem with a highly automated platform aware QC
pipeline designed to identify and control for cross-platform
biases, with support for parallelized sequencing data align-
ment, cross-platform aware joint variant genotype calling,
case–control association testing and gene-based effect size
estimation. The inputs and outputs of each module in
XPAT are summarized in Figure 1 and Supplementary Ta-
ble S1. After applying XPAT, we observed very little evi-
dence of cross-platform bias with any of the tests we evalu-

ated (VAAST 2, SKAT-O, VT, WSS and single marker lo-
gistic regression, see Figures 2 and 3; Supplementary Figure
S5).

Throughout our analyses, successful control of Type I er-
ror relied critically on jointly called genotypes. With indi-
vidually called genotypes, we observed near complete sep-
aration of cases and controls in the internal PCA (Sup-
plementary Figures S3 and 4). This separation is indica-
tive of high levels of technological stratification, and is in
sharp contrast to the internal PCAs generated from jointly
called genotypes (Supplementary Figure S6). We attribute
the reduction in technological stratification resulting from
joint calling to two major factors: first, because joint calling
improves variant detection sensitivity and specificity (18),
the approach can reduce differences in variant sensitivity
and specificity between platforms. Second, joint calling pro-
duces missing genotype data for all variants detected by any
platform, which can then be used to identify variants with
systematic biases between platforms. In some situations, it
may be logistically difficult or computationally infeasible to
obtain and process all raw sequencing data. If gVCF files are
available for each sample, an alternative approach is to con-
duct joint calling directly from the initial gVCF files, skip-
ping the data realignment step. This approach is only feasi-
ble if the gVCF files were generated using the same genome
reference version, and the process may introduce additional
cross-platform artifacts due to potential parameter differ-
ences in the GATK pipeline. However, when appropriate,
joint calling from pre-generated gVCF files results in a one-
to-two order of magnitude reduction in runtime. Supple-
mentary Table S2 estimates the runtime, in CPU hours, for
each step in XPAT, with sample sizes ranging from 1000
to 100,000 samples. In all cases, the QC, association test-
ing and effect size estimation procedures should consume
only a fraction of the CPU hours required for data align-
ment and variant calling. All results presented in this study
were generated from jointly-called genotypes, except where
specifically noted.

To characterize the behavior of the individual QC steps
in XPAT, we compared the numbers of variants masked by
each of XPAT’s QC criteria and the benchmark QC criteria
used by Singh et al. (10) (Supplementary Figure S10). Al-
though XPAT was far more effective at eliminating cross-
platform artifacts, XPAT actually filtered out far fewer
SNVs than the benchmark QC pipeline, due to the relatively
relaxed VQSR thresholds for SNVs (99.9 in XPAT versus
99.75 in the benchmark). In total, 689,844 and 956,437 cod-
ing SNVs passed all QC steps in XPAT compared to 244,843
and 252,251 SNVs with benchmark QC, for ovarian can-
cer and breast cancer, respectively. These observations sug-
gest that, for many heterogeneous sequencing studies, cross-
platform biases cannot be avoided by restricting the anal-
ysis to high confidence variants based solely on VQSR or
other variant quality metrics. However, by incorporating
the cross-platform QC metrics used in XPAT (e.g. differ-
ential missing genotype rate test and differential allele fre-
quency test among platforms), most cross-platform biases
can be eliminated, even with relatively relaxed baseline SNV
QC metrics. In contrast, the VQSR threshold for INDELs
was more stringent in XPAT compared to the benchmark
pipeline (98.0 versus 99.5), which was necessary to fully con-
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trol for Type I error inflation (Supplementary Figure S11).
However, due to using relaxed thresholds for INDEL geno-
type quality, sequencing depth and allelic balance, XPAT
still filtered out fewer INDELs than the benchmark QC
pipeline. In total, 10,594 and 14,414 coding INDELs passed
all QC steps in XPAT compared to 4,547 and 4,570 IN-
DELs with the benchmark QC pipeline, for ovarian can-
cer and breast cancer, respectively. The additional INDELs
and SNVs included in the XPAT pipeline resulted in a 25%
to 170% increase in the number of testable genes (Supple-
mentary Figure S12).

For cross-platform association studies involving data
generated from DNA target capture, an additional QC con-
sideration involves the potential pre-filtering of variants de-
tected in regions of the genome that fall outside of the de-
signed capture regions. During the development of XPAT,
we evaluated three approaches to capture-aware QC: (i) in-
clusion of all detected variants (capture naı̈ve), (ii) inclusion
of variants covered by the capture design of every platform
(capture intersection) and (iii) inclusion of variants covered
by the capture design of any platform (capture union). With
capture naı̈ve filtering, we were unable to fully control for
Type I error with XPAT QC. In contrast, capture intersec-
tion and union filtering both exhibited no signs of Type I
error inflation with XPAT QC. However, capture intersec-
tion filtering was overly conservative, detecting 381,231 and
531,102 fewer coding variants with XPAT QC relative to
the capture union filtering, for ovarian and breast cancer,
respectively. This reduction in variant detection sensitivity
resulted in a considerable loss of signal for known breast
and ovarian cancer susceptibility genes, as shown in Sup-
plementary Table S12. Based on these observations, we em-
ployed capture union filtering throughout this study. Cap-
ture union filtering is also the default option in XPAT, al-
though all three options are supported. During the vari-
ant recalibration QC step, XPAT will only include variants
that pass the specified capture filter. The inclusion of vari-
ants in regions that were unintentionally sequenced may ini-
tially seem counterintuitive. However, the majority of vari-
ants (98%) that passed XPAT QC and were present in the
capture union but absent in the capture intersection were
located within 100 bp of a capture region in every sequenc-
ing platform. These variants could be expected to achieve
reliable coverage depth, assuming typical read lengths and
DNA fragment sizes.

Several factors will influence the number of variants that
pass cross-platform QC metrics, including the number of
platforms included in the analysis, and differences in exome
capture design and data quality within each platform. In
general, platforms with lower data quality will have a dis-
proportionate influence on the number of variants that fail
QC. In this study, variants lost due to cross-platform QC
did not noticeably decrease the power to detect known ovar-
ian cancer–gene associations, based on comparisons with
matched platform case-control data for BRCA1, BRCA2,
RAD51C and RAD51D (Figure 5). We expect similar per-
formance on other whole-exome sequencing datasets, but
our findings are not fully generalizable given the depen-
dence on platform data quality. In each new study, we rec-
ommend careful assessment of the data quality of each plat-

form and the proportion of variants that fail QC using the
reports generated by XPAT.

In evaluating the power to replicate known cancer–gene
associations, we observed that tests which incorporated
variant prioritization weights (i.e. VAAST 2, SKAT-O +
PP2 and VT + PP2) generally outperformed their alter-
native versions without variant prioritization (i.e. VAAST
2 without CASM scores, SKAT-O and VT) (Figure 4).
This result is consistent with previous work, which has
shown that variant prioritization typically increases power
to identify rare variant disease associations in sequencing
association studies (27,59,60). Among the tests we eval-
uated, VAAST 2 had the highest power to replicate es-
tablished cancer–gene associations (27). In the VAAST 2
breast cancer results, we observed nominally significant
gene–cancer associations (BRCA1, BRCA2, RAD51B and
CHEK2) when only considering missense variants (Figure
4). This result adds to the growing evidence of a substantial
contribution of rare missense variants to cancer susceptibil-
ity (50,61).

XPAT incorporates a novel method, MGIT. Gene-based
tests typically include variants from all coding exons in
a gene, irrespective of gene isoform. For genes with mul-
tiple isoforms, this test is often essentially equivalent to
a test of the largest isoform in the gene (see Supplemen-
tary Table S10). Because smaller isoforms tend to be en-
riched for the core functional domains of a gene, they may
also be enriched for susceptibility variants with larger ef-
fect sizes. MGIT employs a permutation approach to test
each isoform of a gene, summarizing the contribution of
each transcript without the need to explicitly model cor-
relation between transcripts, which can increase statistical
power in scenarios where variant effect sizes vary between
transcripts. MGIT can be applied in conjunction with any
gene-based association test to assess gene level significance;
XPAT offers MGIT functionality for each of the 29 gene-
based tests included in the toolkit.

The examples presented in this study all involve case–
control association analyses with cross-platform whole-
exome sequencing data. XPAT can be applied to other se-
quencing datasets as well, including targeted gene panel and
whole genome sequencing data. In addition to case-control
study designs, XPAT also supports family-based and quan-
titative trait analyses. The toolkit also produces variant out-
put in a variety of commonly used data formats, and thus
can be easily incorporated into other association test frame-
works.

CONCLUSION

XPAT is a toolkit designed to support cross-platform as-
sociation studies with heterogeneous sequencing datasets.
We have demonstrated that XPAT can greatly reduce Type
I error inflation resulting from cross-platform biases with-
out reducing power to detect true disease–gene associations.
XPAT enables new studies that leverage heterogeneous se-
quencing datasets from public repositories to search for
novel genetic loci associated with common human diseases
and other complex traits.
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