
Despite the power of DNA sequencing for genetic dis-
covery1 and the many computational tools and online 
resources available, fewer than 50% of Mendelian  
disorders are resolved after sequencing affected families2. 
The reasons are manifold: there are new disease pheno-
types, new genes for known diseases and many unknown 
disease-causing variants still await discovery. To under-
stand the scope of the challenge, consider that the genetic 
causes underlying more than 3,000 known Mendelian 
disorders remain unknown2. Variant prioritization  
is central to every Mendelian disease discovery and 
diagnosis effort. Put simply, it is the process of deter-
mining which variants identified in the course of genetic 
testing, whole-exome sequencing (WES) and whole- 
genome sequencing (WGS) are most likely to damage 
gene function and underlie the disease phenotype.

With the advent of WES and WGS, variant prior-
itization has grown ever more critical to discovery and 
diagnosis. It has also grown more complicated because of 
the sheer number of variants. Every individual’s genome 
contains millions of variants, many of which will never 
have been seen before3,4. The identification of the one or 
two variants responsible for a patient’s Mendelian disease 
is a classic ‘needle in the haystack’ problem5. Whereas 
early tools addressed this complexity by using the scant 
means at their disposal for prioritization — phylogenetic 
conservation and protein structures — the latest tools 
combine these data with other information such as pop-
ulation allele frequencies, functional genomics data and 
other genome annotations. Some even use the predic-
tions of other tools to inform their own. The scope of 
prioritization has also been widened. Some tools have 
expanded their scope beyond single nucleotide variants 

(SNVs) to prioritize more complex forms of variation 
such as insertions, deletions and structural variants, 
and others provide the means to prioritize variants in 
non-coding regions. These approaches lead to greater 
accuracy, but they can also complicate interpreta-
tion; therefore, understanding how these approaches 
work is essential for those engaged in genome-based  
diagnostic activities.

Although variant prioritization is central to 
Mendelian disease discovery and diagnosis, it is only 
part of a bigger picture that includes gene prioritization. 
Gene prioritization tools use information such as vari-
ant allele frequencies, genotype frequencies, inheritance 
models, family histories and patient phenotypes to iden-
tify and prioritize likely damaged genes associated with a 
phenotype, as opposed to simply identifying potentially 
damaging variants. Although this may seem a subtle 
distinction, it is, in fact, a fundamental difference from 
the perspective of the underlying algorithms. Many gene 
prioritization tools use an approach called burden testing 
— a key concept that is increasingly central to WES- and 
WGS-driven discovery and diagnostic efforts6–11.

The manner in which the results of variant and gene 
prioritization tools are delivered to users is also changing. 
The last several years have seen a proliferation of decision 
support frameworks for variant interpretation12–15. These 
interactive, often web-based, platforms are a big step 
forwards from simple command line-based analyses.  
Within these interactive environments, variant and 
gene prioritization scores are only one component of 
a dynamic, multifactorial approach to discovery and 
diagnosis that uses population-scale variation resources, 
such as the Exome Aggregation Consortium (ExAC)4, 
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Mendelian disorders
Diseases or conditions that 
result from mutation at a 
genomic locus and are 
inherited according to 
Mendel’s laws.

Variant prioritization
The process of ranking the 
variants observed in an 
individual genome on the basis 
of factors such as the predicted 
consequence of each variant 
and the observed frequency in 
a population.
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Abstract | When investigating Mendelian disease using exome or genome sequencing, 
distinguishing disease-causing genetic variants from the multitude of candidate variants is a 
complex, multidimensional task. Many prioritization tools and online interpretation resources 
exist, and professional organizations have offered clinical guidelines for review and return of 
prioritization results. In this Review, we describe the strengths and weaknesses of widely used 
computational approaches, explain their roles in the diagnostic and discovery process and 
discuss how they can inform (and misinform) expert reviewers. We place variant prioritization in 
the wider context of gene prioritization, burden testing and genotype–phenotype association, 
and we discuss opportunities and challenges introduced by whole-genome sequencing.
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the genome Aggregation Database (gnomAD; see 
Further information), the 1000 Genomes Project3, dis-
ease genotype–phenotype associations such as Online 
Mendelian Inheritance in Man (OMIM)16 and ClinVar17, 

and workflows based on guidelines established by 
the American College of Medical Genetics and the 
Association for Clinical Genetic Science of the United 
Kingdom15.

Despite all of these advances, attributing disease 
causation to prioritized variants remains an inexact 
process. No phrase better summarizes the current state 
of affairs than ‘variant of uncertain significance’ (VUS). 
The key to understanding this phrase is to grasp that a 
variant that damages a gene is not necessarily damaging 
to an individual’s health (BOX 1). Understanding the cas-
cading steps underlying variant and gene prioritization, 
how prioritization scores are combined with adjunct 
information such as phenotype and family history, and 
how they are judged to be medically significant are the 
subjects of this Review.

Describing variants
Variant annotation. We define a genetic variant (or, for 
brevity, ‘variant’) as a specific allele at a particular locus. 
Although variant discovery is outside the scope of this 
article, reviews are available elsewhere18–21. The first step 
of variant prioritization is annotation, which is the pro-
cess of describing the nature and the effect of the DNA 
alterations produced by a variant. With this goal in 
mind, the variant call format (VCF)22 has standardized 
the reporting of genetic variation observed in a cohort 
and formalized a syntax with which to describe anno-
tations that are vital to variant prioritization. Variant 
annotation tools such as the Variant Effect Predictor 
(VEP)23, the Variant Annotation, Analysis and Search 
Tool (VAAST) suite’s Variant Annotation Tool (VAT)24 
and single nucleotide polymorphism effect (SnpEff)25 
relate variants to annotated gene models in order to 
determine their location and effect on a transcript. For 
example, an SNV may result in a missense codon that 
alters the translated amino acid or it may result in a 
stop codon that terminates translation prematurely. 
Most variant prioritization tools use controlled vocabu-
laries for variant annotation because of the scale of the 
data and to maximize reproducibility and interoper-
ability between tools. The Sequence Ontology26 (SO) 
provides a widely used terminology for variant anno-
tation, describing a variant in terms of the ‘sequence 
alteration’ it causes. Examples of sequence alterations 
include insertions, deletions and substitutions. Once the 
variant alteration has been described, the next step is to 
describe its effect.

Variant effects. A variant’s effect describes how it 
changes the annotated reference sequence features 
that contain it. Examples include a missense variant 
(SO:0001583), which induces an amino acid change, 
or a splice donor variant (SO:0001575), in which the 
alteration disrupts the dinucleotide at the 5ʹ end of an 
intron27. The Sequence Ontology can also describe 
changes caused by more exotic forms of alterations, 
including structural variants that may introduce effects 
such as transcript ablation (that is, a deletion of a 
sequence encoding a transcript) and transcript ampli-
fication (that is, a duplication of a sequence encoding a 

Box 1 | Damaging does not mean pathogenic

Variant prioritization tools such as SIFT (Sorts Intolerant From Tolerant) and PolyPhen2 
(polymorphism phenotyping version 2) use the terms ‘damaging’ and ‘tolerated’ to 
describe whether a variant is predicted to affect protein function or be functionally 
neutral, respectively. We emphasize that the term damaging should never be logically 
equated with causal for a disease phenotype, because a variant that damages a gene is 
not necessary damaging to an individual’s health.

The term ‘pathogenic’ has become widely used to describe a damaging variant that is 
(potentially) disease-causing. This is straightforward for dominant Mendelian disorders for 
which pathogenic variants typically cause the disease phenotype but more complex  
for recessive disorders for which both copies of the gene must harbour variants for 
pathogenicity (see the figure). Consider a variant producing a stop codon, p.Arg510Ter, in 
hexosaminidase subunit-α (HEXA), which is a gene that is implicated in Tay–Sachs disease. 
Obviously, this variant changes the transcript in which it resides: the resulting protein is 
probably nonfunctional due to truncation and may be subject to nonsense-mediated decay. 
However, this does not mean that it will necessarily be pathogenic to the individual, as 
many Mendelian diseases such as Tay–Sachs disease, are recessive. Cystic fibrosis is another 
well-known example, for which the genomes of approximately 1 in 20 healthy Western 
Europeans contain a damaging variant in the cystic fibrosis transmembrane conductance 
regulator (CFTR) gene. As the disease is recessive, there are no negative health 
consequences to carriers of damaging variants. For recessive diseases, two copies of the 
pathogenic variant must be present, or it must be in trans to another pathogenic variant,  
as a so‑called compound heterozygote (see the figure).

The association of damaging variants with pathogenicity has other pitfalls as well.  
A variant elsewhere in the genome may introduce a seemingly minor and conservative 
amino acid substitution that may nonetheless damage the patient’s health, thereby 
causing a dominant Mendelian disease. For example, the semi-conservative amino 
acid-changing variant p.Arg143Gln in the gap junction protein‑β2 (GJB2) gene is 
implicated with non-syndromic hearing loss. This variant has been shown in functional 
studies to encode a protein with impaired function and curated by multiple laboratories  
in the ClinVar database to be pathogenic.

In a study from 2010, variants implicated in cystic fibrosis and related disorders were 
assessed using three prediction tools107. This study shed light on the differences between 
predictions and causative alleles. For example, the CFTR variant p.Arg75Gln is predicted  
to be damaging because it alters a highly conserved position in the protein, but the 
phenotypic effect is mild. The converse was shown by p.Val520Phe, a deleterious mutation 
at a non-conserved position in the CFTR protein. In another example, the truncating breast 
cancer type 2 susceptibility protein (BRCA2) variant p.Tyr791Phe is seemingly damaging — 
it causes the loss of the 93 C-terminal amino acids of the protein implicated in hereditary 
breast cancer, but does not cause the disease phenotype (see ClinVar database where it is 
curated as benign by multiple laboratories and an expert panel). BRCA2 provides another 
example of the complex relationship between damaging and pathogenic variants. 
Damaging BRCA2 alleles are typically classified as pathogenic, but they are not 
immediately disease-causing; instead, they increase cancer risk over a lifetime.
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Variant 
allele

Gene Transcript 
change

RefSeq Protein 
change

Molecular 
consequence

Population allele 
frequencies
The proportion of 
chromosomes within a 
population that carry  
a particular change  
at a given locus.

Gene prioritization
The process of associating  
a gene with a disease 
phenotype; this strategy is 
often used during variant 
prioritization.

Burden testing
A gene prioritization approach 
that scores, ranks and 
prioritizes genes based on 
genotypes rather than on single 
variants. The observed (or for 
some methods, the theoretical) 
distribution of burden scores 
within the wider population is 
often used to rank a proband’s 
genotype score. Many burden 
tests can also incorporate 
adjunct information into their 
calculations such as 
phylogenetic conservation, 
mode of inheritance and 
variant frequency data. Unlike 
variant prioritization tools, 
burden tests require access  
to genotype data for their 
calculations.

transcript). The Sequence Ontology variant effect terms 
have been created in collaboration with Ensembl, and 
many variant annotation tools23,24,25 have adopted them. 
The common terminology that the Sequence Ontology 
provides for describing variant effects enables the 
comparison of annotations across tools, and Sequence 
Ontology terms are used by most genetic variant data-
bases, such as ClinVar, dbVar, dbSNP and Ensembl 
Variation17,28–30.

Complications. Gene models describe the intron–exon 
structure of a gene’s transcripts and, for protein-coding 
genes, their start and stop codons. Variant annotations 
are wholly dependent on the gene models within which 
they reside. However, gene models are often incom-
plete and change over time31. Moreover, the number of 
human genes is still unknown32,33, and the precise struc-
ture of many genes is still being debated. GenBank and 
Ensembl both provide reference gene models for the 
human genome. In general, Ensembl tries to be inclu-
sive, whereas GenBank is more conservative, requiring 
more peer-reviewed evidence for its gene models. At the 
time of writing, Ensembl contains 26,998 protein-coding 
genes and 81,787 mRNA transcripts, whereas GenBank’s 
RefSeq collection has 21,104 protein-coding genes and 
34,799 mRNA transcripts. Even when both data sets 
have a model for a gene, its exon coordinates, transcript 
numbers, and start and stop codons often vary. Thus, a 
variant may lie in a coding exon in one provider’s gene 
model but reside in the intron or even an intergenic 
region in the other model.

Alternative splicing further complicates variant anno-
tation, because the effect of a variant can vary on a tran-
script-by‑transcript basis. For example, it may occur in 
an intron of one transcript but within an exon of another 
(FIG. 1). A common strategy to deal with this complica-
tion is to annotate the variant based on the transcript (or 
transcripts) with the most severe effect. The rationale 
for this approach is to avoid missing potentially causal 
variants (false negatives) at the expense of enriching for 
false positives that could be eliminated through other 
means of prioritization (for example, population allele 
frequency) and manual inspection.

Prioritizing variants
Identifying the genetic cause of a Mendelian disease 
requires the systematic prioritization of the one or 
two causative variants from among the thousands  
or millions of variants identified in a typical exome or  
genome, respectively. The simplest imaginable approach 
is to use Sequence Ontology terms to quickly prioritize 
variants in an ad hoc manner under the assumption 
that, for example, a variant creating a premature stop 
codon is typically more damaging than a missense 
variant. However, this is a poor approach because 
the average human harbours hundreds of putative  
loss‑of‑function alleles in both heterozygous and 
homozygous states4,22,34,35 (TABLE 1). Such a simplistic fil-
tering approach is also ill-advised because a stop codon 
in a poorly conserved gene may be more tolerated than 
a missense variant in another highly conserved gene. 
Furthermore, synonymous changes (those that do not 

Figure 1 | A demonstration of the multiple possible effects of a single variant across transcripts and genes.  
The complexity of genomic annotation adds to the complexity of variant annotation. In this example, two genes, 
coiled-coil domain-containing 113 (CCDC113) and protease serine 54 (PRSS54) overlap on different strands of the 
genome, and both have multiple observed transcripts. Variants intersecting this extent of the genome show different 
effects depending on the gene and the transcript inspected. For example, the rs780162055 variant from the single 
nucleotide polymorphism database (dbSNP) is a missense variant with a protein effect for PRSS54 and a 3ʹ 
untranslated region (3ʹ UTR) variant for CCDC113. This proliferation of effects has data management implications for 
variant interpretation.
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Decision support 
frameworks
Interactive, dynamic tools to 
guide medical decision-making 
by displaying and integrating 
patient data.

Nonsense-mediated decay
(NMD). A conserved eukaryotic 
pathway, the role of which is  
to detect and eliminate the 
translation of mRNAs that have 
premature stop codons. 

Variant of uncertain 
significance
(VUS). Also known as variant of 
unknown significance. The 
canonical definition of a VUS  
is a variant in a disease- 
associated gene, the specific 
effect of which is unknown or 
uncertain. More generally, VUS 
can also be applied to variants 
in genes that lack direct disease 
association but are plausible 
given the biological function of 
the resulting protein.

Controlled vocabularies
Sets of agreed upon terms  
and definitions.

Exome
Generally, the portion of the 
genome that is translated  
into proteins.

alter the amino acid encoded) have been implicated 
in human diseases by affecting splicing36 and mRNA 
stability37, and by altering protein conformation38.

Identifying pathogenic variants given the vast can-
didate pool of benign variants in a human exome or 
genome is a fundamentally challenging problem that 
has given rise to diverse variant prioritization tools. 
Traditional approaches use conservation and protein 
structure to predict the consequence of a missense 
change on protein function. More powerful tech-
niques39,40 have recently been developed that widen 
the scope of prioritization (that is, not just missense 
changes) and improve accuracy. These performance 
gains are achieved by integrating population allele fre-
quency, and gene conservation and constraint into pri-
oritization calculations. In the following paragraphs, we 
explain how these data are used for variant prioritiza-
tion. TABLE 2 provides an overview of the tools that use 
them, their scope of application and which information 
sources they use.

Conservation. As missense variants are the most com-
monly observed non-synonymous alteration in a typical 
exome (TABLE 1), a long-standing variant prioritization 
strategy is to use phylogenetic conservation to distin-
guish damaging from tolerated missense variants. The 
degree of conservation is ascertained by aligning human 
protein sequences to homologous protein sequences 
from other organisms. The rationale behind this is sim-
ple: the more conserved a column is within the multiple 
alignment, the more damaging an amino acid-changing 
variant at that position will be. The corollary is that the 
less conserved the column, the more likely it will be tol-
erated. These assumptions are generally correct but not 
always. Just because a variant is predicted to be dam-
aging by tools, such as Sorts Intolerant From Tolerant 
(SIFT)41, does not mean that it is pathogenic (BOX 1).

Users should also bear in mind that conservation- 
based approaches to prioritization suffer from two  
systematic limitations. First, although most human  
proteins are at least partially conserved across verte-
brates, they frequently contain one or more poorly 
or non-conserved regions. Although many known 
disease-causing alleles reside in such regions, 

conservation-based approaches often fail to identify 
them as deleterious. An alternative approach used by 
polymorphism phenotyping version 2 (PolyPhen2) 
is to use protein structure information for improved 
accuracy, especially in less well-conserved regions, 
but the gains are modest42. A second major limita-
tion is that phylogenetic conservation provides poor 
means for determining the impact of stop codons 
and frameshift-inducing variants. This is because 
the protein sequences from other organisms used to 
make the multiple alignments do not contain them. 
Instead, stop codon and frameshift-inducing variants 
are either not prioritized at all or assigned maximally 
damaging scores by default. One might be tempted to 
assume that such variants are necessarily damaging, 
but the truth is much more complex. It is now recog-
nized that some proteins are tolerant to stop codons 
and frameshifts (especially when they occur near the 
protein’s carboxyl terminus)34. Moreover, in loci such 
as the ABO blood group gene43, a significant propor-
tion of the human population has inherited at least one 
frameshifting variant. In many cases, even though these 
highly damaging alleles destroy protein function, they 
seem to have little (if any) impact on health, even when 
homozygous44. Obviously, other approaches beyond 
sequence conservation are needed for prioritization of 
stop codons and frameshifts. The advent of WES and 
WGS has also placed additional demands on prioritiza-
tion tools regarding accuracy. High false-positive rates 
can dramatically lengthen the time required for manual 
review of potential disease-causing variants. SIFT and 
PolyPhen2, for example, predict on average between 
154 and 219 deleterious changes, respectively, in a typ-
ical human exome from a healthy individual (TABLE 1); 
hence, the majority of these ‘deleterious’ changes are 
unlikely to be pathogenic. Given these facts, it is no 
wonder that variant prioritization tools have sought to 
improve accuracy by incorporating additional sources 
of information such as population allele frequency and 
gene constraint.

Population allele frequency. Although inter-species 
conservation has proved to be a useful, though imper-
fect, tool for variant prioritization, recent catalogues of 

Table 1 | Median number of protein-coding variants and effects among world super-populations*

Super-
population 
code

Synonymous 
(het; hom alt)

Missense 
(het; hom alt)

Frameshift 
(het; hom alt)

Stop gain 
(het; hom alt)

Start lost 
(het;  
hom alt)

Splice 
donor 
(het;  
hom alt)

Splice 
acceptor 
(het; 
hom alt)Total SIFT Del PP Del

EUR 6961; 4317 7220; 4452 116; 55 116; 38 151; 146 93; 35 61; 52 184; 99 114; 72

AFR 9296; 4673 9347; 4820 163; 56 156; 31 196; 150 123; 32 78; 51 231; 116 150; 80

AMR 7257; 4314 7449; 4479 121; 56 121; 38 154; 145 96; 34 62; 50 187; 101 117; 76

SAS 7180; 4397 7366; 4550 123; 56 121; 39 159; 148 93; 36 68; 49 186; 103 117; 78

EAS 6502; 4759 6802; 4908 105; 66 113; 45 143; 149 89; 38 62; 54 171; 112 115; 86

AFR, individuals of African descent; AMR, individuals of admixed descent from the Americas; EAS, individuals of East-Asian descent; EUR, individuals of European 
descent; PP Del, PolyPhen2 predicted the missense variant to be deleterious; SAS, individuals of South-Asian descent; SIFT Del, SIFT predicted the missense variant 
to be deleterious. *We measured the average number of heterozygous (het) and homozygous alternate (hom alt) genotype counts among the 2,504 individuals 
sequenced by the 1000 Genomes Project. All genetic variants affecting genes were annotated with the Variant Effect Predictor and categorized by their most 
deleterious predicted effect.
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Population stratification
The difference in allele 
frequencies across 
subpopulations.

genetic variation within the human population provide 
powerful and complementary means for prioritization 
(BOX 2). Large-scale genome and exome sequencing 
efforts such as the 1000 Genomes Project3,45–47, the US 
National Heart, Lung and Blood Institute (NHLBI) 
Exome Sequencing Project48 and, more recently, the 
ExAC4 and gnomAD (see Further Information) pro-
jects, have catalogued protein-coding variation observed 
among the exomes of more than 60,000 individuals. 
The use of these resources cannot be overstated, as they 
provide an exquisitely detailed map of the landscape 
of human genetic variation from the common to the 
incredibly rare. Indeed, the ExAC consortium showed 
the extent of coding variation that exists in the human 
exome, observing an average of 1 coding variant every 8 
base pairs. Further still, more than half of the 9 million 
variants uncovered were so rare that they were observed 
only once, as a heterozygote in a single individual (that 
is, an allele frequency of 1 out of 121,412 chromo-
somes on average among all subpopulations measured). 
Recognizing the power of these resources to establish 

an a priori expectation for a variant’s relevance to dis-
ease, variant prioritization tools such as VAAST24 and 
ANNOVAR49 use these allele frequencies to prioritize 
rare variants.

Population stratification. Although allele frequencies 
are a powerful tool for variant prioritization, population 
stratification can confound the fundamental assumption 
that rare variants are, a priori, more likely to be damag-
ing than common ones. In many cases, the average fre-
quency of a variant allele across populations is markedly 
lower than the maximum allele frequencies observed 
within individual subpopulations. For example, a variant 
that is very rare in individuals of European ancestry may 
be far more common in those of African ancestry, or vice 
versa (FIG. 2a). Further complicating interpretation, many 
ethnicities are still underrepresented in publicly available 
genetic variation resources. Indeed, population strati-
fication is a particular problem for Central American 
individuals of mixed ancestry50, whose genomes often 
contain rare variants of presumably Native American 

Table 2 | Commonly used software for assessing variant impact

Tool Category Coding 
(missense 
only)

Indel Non-
coding

Method summary

SIFT112 Missense 
prediction

Y (Y) N N The degree of protein sequence conservation is used to predict the 
impact of a missense variant

PolyPhen2 (REF. 113) Missense 
prediction

Y (Y) N N Uses protein sequence and structure to predict the impact of a 
missense variant

FATHMM114 Missense 
prediction

Y (Y) N N Uses protein sequence homology identified with HMMER3 (REF. 115) 
to predict the impact of a missense variant

PROVEAN116 Missense and 
indel prediction

Y (N) Y N The degree of protein sequence conservation is used to predict the 
impact of an amino acid change or an indel

REVEL117 Missense 
prediction 
(ensemble 
method)

Y (Y) N N Incorporates 18 individual scores from 13 different tools to produce 
an ensemble ‘pathogenicity’ score for missense variants

PhastCons118 Sequence 
conservation

Y (N) Y Y Uses multiple sequence alignments from diverse species to identify 
conserved elements

PhyloP92,118 Sequence 
conservation

Y (N) Y Y Uses multiple sequence alignments from diverse species to assign 
per-base P values of conservation

GERP++93 Sequence 
conservation

Y (N) Y Y Measures sequence conservation in the human genome through 
alignments to 43 other vertebrate genomes

MutationTaster2 
(REF. 119)

Multi-data 
integration

Y (N) Y Y 
(intronic)

Integrates sequence conservation, as well as data from the 1000 
Genomes Project, ENCODE90 and ClinVar, to predict the consequence 
of variants within a gene model

VAAST6,24,66 Multi-data 
integration

Y (N) Y Y Integrates variant frequency data with phylogenetic conservation for 
variant prioritization and burden testing

CADD39 Multi-data 
integration

Y (N) Y (short 
indels)

Y Integration of conservation metrics, functional data (for example, 
DNase I hypersensitivity and transcription factor binding) and 
scores such as SIFT and PolyPhen2 to predict the deleteriousness of 
nucleotide or short indel change in the genome

FitCons40 Multi-data 
integration

Y (N) Y (short 
indels)

Y Integrates functional genomic data from the ENCODE project to 
cluster genomic regions and to predict the probability of a fitness 
consequence based on sequence conservation and the degree of 
regional polymorphism in the human genome

CADD, Combined Annotation-Dependent Depletion; ENCODE, Encyclopedia of DNA Elements; FATHMM, Functional Analysis Through Hidden Markov Models; 
FitCons, fitness consequence; GERP, Genomic Evolutionary Rate Profiling; HMMER3, a tool based on a hidden Markov Model (HMM) for searching sequence 
databases for homologues of protein or DNA sequences; indel, small insertion or deletion; PolyPhen2, polymorphism phenotyping version 2; PROVEAN, Protein 
Variation Effect Analyzer; REVEL, rare exome variant ensemble learner; SIFT, Sorts Intolerant From Tolerant; VAAST, Variant Annotation, Analysis and Search Tool.
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origin. These alleles superficially meet the requirement 
of being rare in all populations sampled so far and are 
therefore often predicted to be relevant to a rare disease 
phenotype. However, the fact that genomes of admixed 
Central Americans have not been sequenced as exten-
sively as individuals of European ancestry increases the 
likelihood that the allele is, in fact, relatively common in 
Central Americans.

An established maxim of human genetics is that 
alleles causing Mendelian diseases do not discriminate: 
they should be rare in all ancestries. Therefore, allele 
frequencies among diverse ancestries should always 
be examined when prioritizing candidate variants for 
Mendelian disease. It is important to note that diseases 
such as cystic fibrosis and sickle cell anaemia repre-
sent well-known exceptions to this maxim and reflect 

Box 2 | Variant interpretation resources

Genomic data repositories
Multiple catalogues of observed variants assembled from cohorts of thousands of genomes and/or exomes are now 
available. These resources are absolutely crucial adjuncts to the variant interpretation process.

The 1000 Genomes Project. The 1000 Genomes Project3 sequenced 2,504 individuals using whole-genome sequencing 
(WGS) to catalogue variants and their frequencies genome-wide in 26 different population groups. The individuals in this 
study are self-declared as healthy and no further phenotype data were collected.

The NHLBI Exome Sequencing Project. The US National Heart, Lung and Blood Institute (NHLBI) Exome Sequencing 
Project sequenced the exomes of ~6,500 individuals with phenotypes pertinent to heart, lung and blood disorders and 
provided the first glimpse into the extent of extremely rare protein-coding variation that exists in the human population.

ExAC. The Exome Aggregation Consortium (ExAC)4 is an aggregation of 60,706 exomes, the goal of which is to provide a 
deep catalogue of protein-coding variation for both population studies and for the clinical interpretation of variants. 
ExAC represents 6 broad populations and 14 disease cohorts, although individuals with severe paediatric phenotypes 
were removed.

gnomAD. The genome Aggregation Database (gnomAD) is the successor to ExAC and, at the time of writing, comprises 
genetic variation observed from 123,136 whole-exome sequencing (WES) and 15,496 WGS data sets collected from 
unrelated individuals.

Data-sharing initiatives
Aside from centralized repositories of genomic data, there are also many efforts underway to address the urgent need for 
data sharing across institutions and borders. Data sharing can range from the simple (for example, discovery of a 
previously observed variant) to the more complex, in which parties endeavour to match patient genotypes, phenotypes 
and ancestries in an effort to corroborate a potential Mendelian disease discovery.

The GA4GH Beacon Project. The Global Alliance for Genomics and Health (GA4GH) Beacon Project108 allows researchers 
to search for a particular variant across a host of individual hospital and research facilities using the same interface.

Geno2MP and MyGene2. Similarly to the GA4GH Beacon Project, Genotype to Mendelian Phenotype (Geno2MP) is a 
service that houses anonymized and aggregated data that enable phenotypic querying. MyGene2 allows researchers and 
clinicians to identify and contact other researchers, clinicians or families who have shared both raw data and summary 
information about the same rare condition or candidate.

Databases of variant–disease and gene–disease associations
Comprehensive variant–phenotype databases. ClinVar17 and the Human Gene Mutation Database (HGMD)109,110 
catalogue ever-increasing connections between variants and disease. ClinVar, as part of the larger ClinGen Resource88, 
is an open archive of variants, with clinical phenotypes, evidence and the interpreted clinical significance. Submitted 
variants are classified by type of submitter, number of agreeing submissions and the variant interpretation guidelines 
used. A key strength of this archive is the aggregation of data from multiple clinical laboratories, providing a growing 
record of support for each interpretation, in which the provenance for each interpretation is maintained. A benefit of 
this aggregation process is that disagreements about the significance of variants are collated and reported17. This is the 
first time such conflicts have been openly used as a tool to improve global understanding of the clinical significance of 
genetic variants.

Locus-specific databases. Many genes have established historical connections to disease and interpreting a variant that 
falls into one of these genes may be supported by evidence collected in genetic databases. The most established of these 
resources is Online Mendelian Inheritance in Man (OMIM)16, which covers more than 15,000 genes with literature-based 
curation. It also provides phenotypic terminology in the form of more than 5,000 condition names. Similarly, Orphanet111, 
a European rare disease network, also distributes sets of rare conditions and lists of associated genes.

Genes of uncertain significance
Genes that have not previously been associated with a disease or have limited evidence for association are often termed 
‘genes of uncertain significance’ (GUS). Variants in this class of gene are assigned research status according to the 
American College of Medical Genetics (ACMG) and Association for Clinical Genetic Science (ACGS) guidelines and they 
are not often reported back to patients. PanelApp is a crowdsourcing tool that has been developed via the Genomics 
England project that supports the development of evidence-based gene panels to encourage standardization across 
genetic tests offered by different sites. It is hoped that through curation of evidence (currently unreportable) GUS will 
transition to clinical grade.
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Balancing selection
Under balancing selection, 
multiple alleles exist in a 
population when natural 
selection favours heterozygous 
genotypes.

Disease prevalence
The number of cases of a 
disease that are present in a 
population at a given point  
in time.

Purifying selection
Under purifying selection, 
deleterious alleles are 
selectively removed from  
a population.

situations in which the causal polymorphisms are under 
balancing selection, which keeps these alleles at higher 
frequency, because they confer protection (when in a 
heterozygous state) from illnesses such as cholera51 and 
malaria52, respectively.

Population-scale variant catalogues from diverse 
ancestries enable increased scrutiny of variants for which 
rare disease association was ascertained from small sam-
ple sizes or from single-ancestry cohorts (for example, 
European descent). A recent analysis showed that many 
reportedly pathogenic variants in ClinVar have markedly 
higher allele frequencies than predicted by the disease 
prevalence, suggesting that they may reflect spurious 
associations53. The majority of these discrepancies are 
observed for ClinVar ‘zero star submissions’, emphasiz-
ing the need for ClinVar users to understand submis-
sion guidelines and classification procedures (BOX 2). 

Similarly, resources such as ExAC have been used to 
refute the implication of new variants in rare diseases on 
the basis of the overly high frequency of the implicated 
allele in healthy individuals53,54.

Gene constraint. Using population-scale measure-
ments of variant density and allele frequencies, multiple 
groups have developed statistical models of gene-wide 
constraint that model the tolerance of a gene to amino 
acid-changing or loss‑of‑function (LOF) variation rela-
tive to all other genes in the human genome. Such tools 
are essentially ranking genes on the strength of purifying 
selection. For example, the Residual Variation Intolerance 
Score (RVIS) uses ~6,500 exomes from the NHLBI 
Exome Sequencing Project and a linear model compar-
ing the number of common functional variants observed 
in a gene against the total number of variants observed in 
the gene55. Genes with significantly more common func-
tional variants than expected are inferred to have low 
constraint, whereas constrained genes have less com-
mon functional variation than expected. More recently, 
ExAC used 60,706 exomes to measure the probability of 
loss‑of‑function intolerance (pLI) for each gene in the 
human genome. Building on previous work56, modelling 
the expected number of de novo mutations per gene, pLI 
compares the observed and expected numbers of LOF 
variants to derive a probability that each gene is intol-
erant of LOF mutations4. The closer the pLI is to 1, the 
more intolerant to variation the gene is predicted to be. 
Gene-wide measures of constraint are effectively assum-
ing a dominant model of inheritance; for example, the 
most LOF-intolerant genes (that is, pLI >0.9) encompass 
the majority of known severe haploinsufficient human 
disease genes. However, such measures have limited 
use for recessive disease genes and pLI is by no means 
a perfect predictor of the disease association of a gene4. 
This is especially true for adult-onset hereditary cancer, 
in which the disease often manifests after reproduction 
(for example, the pLI for BRCA1, BRCA2 and ATM is 
0.0, despite the occurrence of well-known pathogenic 
variants in these genes).

A logical improvement on gene-wide constraint 
measures is the calculation of regional constraint along 
the gene. The rationale for regional measures is simple: 
genic ‘regions’ (that is, exons or portions of an exon) that 
encode crucial domains or subunits of a protein will be 
under stronger purifying selection than other regions of 
the protein. For example, the ExAC data set shows high 
constraint within the ion transport domain of sodium and  
potassium channel genes underlying both seizure  
and heart disorders (for example, early infantile epileptic 
encephalopathy and long QT syndrome), whereas other 
regions in these genes show far less constraint (FIG. 2b). 
Therefore, although gene-wide constraint measures are 
informative, prioritizing candidate variants on the basis 
of regional constraint is more nuanced and reduces both 
false-negative and false-positive predictions.

Caveats. Those engaged in variant and gene prioriti-
zation should also bear in mind that no two genes are 
alike. Large genes (for example, titin (TTN), filaggrin 

Figure 2 | Population stratification and regional constraint within a gene are critical 
to variant interpretation. a | For a particular variant, although the overall allele frequency 
may be low enough to be a plausible candidate with respect to a disease phenotype, the 
allele frequency is often substantially higher in specific subpopulations, thereby casting 
doubt on its relevance to rare disease phenotypes. In the example shown (source: http://
gnomad.broadinstitute.org/variant/1-216172299-C-G), the rs79444516 variant of usherin 
(USH2A) is low in European populations but considerably higher in African populations. 
b | Constraint (that is, tolerance to genetic variation) can vary dramatically from region to 
region in a given gene. In this example, potassium voltage-gated channel subfamily Q 
member 2 (KCNQ2) shows higher constraint in the functionally important ion transport 
domain, as indicated by the scarcity of missense and loss‑of‑function (LOF) variants, 
relative to regions of lower functional importance in the same gene.
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Functional variants
Variants that alter gene 
function or expression.

Probands
The proband is the initial 
person of study in a genetics 
investigation. In the case of a 
family trio, the proband is 
usually the affected child.

De novo variant
A spontaneous mutation in a 
proband that is missing from 
the parents.

Phase
For a single variant, phase 
involves the determination of 
the parental chromosome on 
which a variant allele exists. 
When a proband and both 
parents have been sequenced, 
this can be directly determined 
for ‘informative sites’ where  
the allele transmission is 
unambiguous (for example, the 
proband is heterozygous A/G, 
the father is homozygous A/A, 
and the mother heterozygous 
A/G; in this case the G allele 
was clearly transmitted from 
the mother). More generally, 
phasing refers to the 
assignment of alleles from 
multiple variant sites to 
parental haplotypes.

(FLG) and usherin (USH2A)) are more likely to harbour 
a possibly deleterious variant by chance, simply because 
they are comprised of more nucleotides. Furthermore, 
genes that are members of large, paralogous gene fami-
lies (for example, mucins, keratins and olfactory recep-
tors) are also likely to harbour false-positive variants 
that are unrelated to a disease phenotype owing to prob-
lems with the exome capture and sequence mapping57 
process. However, simply ignoring variants in such 
genes is ill-advised: some TTN mutations, for example, 
cause autosomal recessive and dominant cardiomyo-
pathies58, as well as various muscular dystrophies59,60. 
Similarly, mutations in keratins underlie several disor-
ders of the skin and appendages61,62. For these problem-
atic genes, burden test-based approaches (see below) 
can prove especially efficacious.

Burden testing. A critical distinguishing feature of gene 
prioritization tools is whether or not they use a burden 
test. Burden tests aggregate the variants observed at a 
given locus within one or more probands to calculate  
a sum or burden score. These scores are then used to pri-
oritize genes rather than variants: the greater the burden, 
the more likely the gene is to be damaged. Many different 
scoring methods exist, but one commonality is the use 
of variant frequency information, so that common vari-
ants contribute less burden than rare ones. Most burden 
testing software tools also evaluate potentially damaging 
genotypes in the context of other genotypes observed at 
the same locus in a control population. This controls for 
gene-specific effects, so that the burden scores of larger, 
highly variable genes, such as TTN, do not always rise to 
the top of the candidate list.

Burden tests were originally proposed as a means to 
identify common rather than rare diseases, but the effi-
cacy of the approach for Mendelian disease discovery is 
now making it popular for these applications as well63. 
There are several types of burden test64 and many tools 
are available for carrying out these analyses; examples 
include KBAC9, SKAT-O65, VT8 and VAAST6.

The burden-testing process is easiest to understand 
for dominant diseases. Consider, for example, a proband 
with a dominant Mendelian disease who has a de novo 
missense variant located in a particular gene. The effect 
of the variant is to change a tryptophan to a cysteine: 
a non-conservative amino acid change. Imagine that 
the variant is predicted to be maximally damaging by 
SIFT because it lies at a highly conserved position on 
the protein. Moreover, the de novo variant is novel; that  
is, it has never been observed in population-scale vari-
ant catalogues (BOX 2). All things considered, this variant  
would seem to be an excellent candidate for disease 
causation. Now imagine that 50% of all healthy indi-
viduals have some other equally damaging missense 
variant or even a more severe frameshifting variant at 
some other location in the gene; does it still seem so  
certain that the de novo variant is pathogenic? Logically, 
the hypothesis that the proband’s highly damaging 
de novo variant is disease-causing is now far less certain 
in light of these facts. Burden-testing tools automate this  
interpretive process.

One key feature of burden tests is their ability to score 
the diverse combinations of different types of variants 
that comprise genotypes using a single scoring scheme. 
VAAST, for example, can score and rank recessive gen-
otypes that are combinations of missense, frameshifting 
and splice site-damaging variants using a single scor-
ing scheme that also includes amino acid substitution 
scores, variant population frequencies and phylogenic 
conservation24,66. This means that the burden score 
for a proband with a damaging splice variant on one 
chromosome and a missense variant on the other can 
be compared with another individual whose genotype  
is comprised of a frameshift-inducing variant in trans to 
a missense variant. This is a computationally complex 
task, but it has considerable utility, as burden tests pro-
vide a means to rank genotypes for gene prioritization 
purposes and to explore the distribution of burden at a 
given locus for a population. One can then speak of a 
proband having a burden at a candidate disease locus 
that exceeds 95% or 99.9% of all observed genotypes  
at that locus in the general population.

Burden tests are also well suited to large case– 
control and family-based studies. Traditional genome-
wide association study (GWAS) tests, which proceed 
variant by variant, lose power as more and more variants 
are included in the analysis because ever-increasing mul-
tiple testing corrections are required. By contrast, bur-
den tests scale much better to large WES and WGS data 
sets because the multiple test correction is the number 
of genes (a constant), no matter how many variants and 
individuals are included in the study.

Burden testing is also extensible to family-based 
analyses. Parent–child trios, for example, can be used 
to ‘Mendelize’ variants and to phase the data to ensure 
that only combinations of variants that are consistently 
inherited are considered in the calculations, thereby 
improving accuracy. Pedigree-VAAST (pVAAST)67, 
for example, can use multigenerational pedigrees in 
its calculations so that the final burden scores reflect 
co‑segregation of variants and phenotypes across  
the pedigree.

Burden tests open new vistas for gene-based prioriti-
zation as well as diagnostic and discovery applications, 
especially for large case–control analyses, recessive dis-
eases and family-based studies for which data complex-
ity exceeds human interpretive capacities. Moreover, the 
tests can also be embedded into larger software frame-
works to allow inclusion of important adjunct data in 
the calculations, such as the penetrance of the variant or 
genotype, disease prevalence and mode of inheritance 
(see below). For these reasons, burden tests are becom-
ing widely used for gene prioritization, especially within 
decision support frameworks.

Relevance to disease
Clinical interpretation of variants and genotypes neces-
sitates integration of diverse data types. For example, 
variants are often interpreted in the context of disease 
prevalence and mode of inheritance (see also BOX 2). The 
culmination of this aggregation of information is man-
ual assessment of prioritized variants and genes using 
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Population genotype 
frequency
The proportion of individuals 
with a particular genotype at  
a given locus.

community-agreed-upon guidelines. Some of the data 
modalities most relevant to this assessment process are 
described below.

Penetrance, prevalence and mode of inheritance. 
Penetrance refers to the probability that having a 
pathogenic variant or genotype will result in disease. 
Penetrance is easiest to understand in the context of 
dominant and de novo variants. A dominant variant is 
said to be completely penetrant when every individual 
with the variant has the disease and every individual 
without the variant is unaffected. Reality is of course 
more complex. The impact of a variant may be delayed. 
Individuals with Huntington disease who have a com-
pletely penetrant variant are phenotypically normal as 
children, but develop the disease in their adult life68. A 
variant may also be incompletely penetrant: this term 
is less precise and is often used to describe variants that 
only produce disease in, for example, half of carriers. 
Such an allele is said to be 50% penetrant. Many of the 
variants responsible for familial cancers show incomplete 
penetrance. The term variable expressivity is used to 
describe variants that cause mild symptoms in some car-
riers and more severe ones in others. Neurofibromatosis 
type 1 has multiple variably expressed phenotypes. 
Incomplete penetrance and variable expressivity com-
plicate interpretation because observing the variant in 
an unaffected individual does not necessarily mean it is 
not pathogenic.

Knowledge of the population prevalence of a disease 
provides a powerful means to exclude some candidate 
disease-causing variants from further consideration. 
A useful rule of thumb is that, for a dominant disease, 
the product of its population prevalence and its frac-
tional penetrance is an upper bound for the population 
frequency of any candidate disease-causing variant. 
Consider the case for a dominant Mendelian disease 
that occurs with a population prevalence of 1 in 10,000 
individuals. If we assume 50% penetrance, then by 
this rule of thumb, any variant (population stratifica-
tion issues aside) having a frequency greater than 1 in 
5,000 in the general population is a poor candidate. For 
recessive diseases, the situation is more complex. In this 
case, it is the population genotype frequency, rather than 
individual variant frequencies, that must be less than 
the population disease prevalence. In the case of simple 
recessive diseases, the population genotype frequency is 
the square of variant frequency. This means that a reces-
sive disease-causing variant can be relatively frequent in 
the population, which greatly increases the number of 
potential candidates.

A further complication for prioritization is that many 
recessive disease cases result from compound heterozy-
gous genotypes. These are recessive genotypes in which 
both the maternal and paternal copies of a gene harbour 
a damaging variant, but these variants are distinct and 
occur at different positions in the maternal and paternal 
copies of the gene (BOX 1). In this case, the population 
genotype frequency is obtained by multiplying the con-
stituent variant frequencies and, all things being equal, 
this value should be less than the observed incidence of 

the Mendelian disease. The complication in this case is 
that once the scope of prioritization has been extended 
to include compound heterozygous genotypes, every 
possible combination of rare variants in every locus must 
be considered in burden calculations. This requirement 
greatly increases the complexity of prioritization tasks, 
requiring specialized algorithms, as discussed below. 
Another complication is that the variants need to be 
in trans to one another, one located on the maternal 
chromosome, the other on the paternal. One easy way 
to determine this is to sequence the proband’s parents: 
doing so makes it possible to restrict the search to com-
binations of variants in which one is inherited from the 
mother and the other from the father. Family studies 
can further reduce the search space by focusing on het-
erozygote pairs that are observed in affected siblings but 
absent in unaffected siblings.

Taking all of these factors into account — conserva-
tion, constraint, mode of inheritance, variant and geno-
type population frequencies and penetrance — the task 
of assessing the thousands or even millions of variants 
in a typical WES or WGS requires an automated process. 
Variant prioritization tools that make a prediction in iso-
lation for each variant are ill-suited to this problem. This 
is the domain of integrative gene prioritization tools. 
Existing tools use a variety of strategies. Genome Mining 
(GEMINI)69, seqr (see Further Information), Variant 
Association Tools70 and ANNOVAR49, for example, use 
filtering approaches that prioritize variants only if they 
follow a specified mode of inheritance, are predicted to 
affect protein sequence or function and have a popula-
tion frequency below a specified threshold. By contrast, 
tools such as VAAST and SKAT‑O use a probabilistic 
approach that uses background population frequencies 
to determine genotype frequencies and combines these 
with mode of inheritance and penetrance to identify 
damaged genes and disease-causing alleles using a bur-
den test. Some go even further: pVAAST67, for example, 
can use multigenerational pedigrees of sequenced rela-
tives, following the segregation of every variant in the 
family and correlating it with disease status. This results 
in greater power for family-based studies.

Phenotype. Intuitively, a proband’s phenotype has a cru-
cial role in every gene and variant prioritization analysis. 
Mendelian diseases characteristically manifest them-
selves as recurring collections of stereotypical symptoms 
that together define a disease phenotype or condition. 
Unfortunately, many different conditions produce over-
lapping constellations of symptoms, hence the need for 
genome-sequence-based precision medicine.

If the disease were known, diagnosis would be simple; 
however, what are available before diagnosis are clinical 
symptoms and the results of diagnostic tests. Consider 
the case for a patient with medium-chain acyl co‑enzyme  
A dehydrogenase (ACADM) deficiency (MCADD; 
see FIG. 3). Pre-diagnostic symptoms might include 
qualitative descriptions such as lethargy, seizures and 
hepatomegaly. Quantitative diagnostic results (that is, 
clinical measurements) might include controlled vocab-
ulary-based descriptions of clinical tests and observed 
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ACADM

Clinical
measurements

(LOINC)
Serum acetyl-

carnitine profile and
urine organic acids

Clinical features (HPO)
Coma, encephalopathy, hepato-
megaly, hypoglycaemia, lethargy,

hepatic failure, Reye syndrome-like
episodes, seizures and vomiting

Condition (OMIM, MedGen, Snomed and Orphanet)
Medium-chain acyl-conenzyme A dehydrogenase

deficiency (MCADD)

G
ranularity

Incidental findings
In whole-exome sequencing 
(WES) or whole-genome 
sequencing (WGS), pathogenic 
and likely pathogenic variants 
in genes that are not relevant 
to the initial reason for 
sequencing may be found and 
reported back to the patient. 
These variants may relate to 
rare disease, disease risk, 
pharmacogenetic response, 
and status relating to  
prenatal screening.

Return of results
The process of returning 
findings from a research study, 
or incidental findings from a 
genetic test, back to the 
participant or patient.

values such as those provided by Logical Observation 
Identifiers Names and Codes (LOINC), for example, 
an abnormal serum acylcarnitine profile. A genetic 
test yielding variant in the ACADM medium-chain- 
specific acyl-CoA dehydrogenase gene, with these  
clinical features, would make it possible to distin-
guish the disorder as MCADD from a series of related  
metabolic conditions.

The Human Phenotype Ontology (HPO)71 provides 
hierarchical sets of disease names and clinical features 
(symptoms) for describing medical conditions and, 
crucially, the HPO also provides associations between 
symptoms and known disease genes. The disease–gene 
catalogue OMIM16 associates conditions and genes. 

Machine-readable phenotype descriptions, such as 
those produced using the online resources Phenotips72 
and PhenoDB73, use HPO and OMIM terminology to 
produce standardized phenotype descriptions. Several 
tools exist for combining phenotype descriptions with 
variant and gene prioritization results (see REF. 74 for a 
review) to elevate rankings of potential candidates in 
variant prioritization. These tools vary from ontology- 
based semantic similarity methods to more complex 
machine-learning techniques75–80.

Phenotype analysis tools such as the Phenotype-
Driven Variant Ontological Re‑ranking tool (Phevor)80 
and Phenolyzer78 can evaluate qualitative HPO-based 
phenotype descriptions such as ‘lethargy, seizures and 
hepatomegaly’ and use the broader structure of the HPO 
and its gene–symptom linkages in order to associate 
genes with proband phenotypes. They then combine this 
information with variant and gene prioritization results. 
They can even discover new gene–disease associations80. 
Another tool, Phenotypic Interpretation of Variants in 
Exomes (PHIVE)81, uses a different approach: it is a 
variant filtering tool that uses a combination of vari-
ant frequency, predicted deleteriousness of the allele 
and a semantic similarity-based phenotypic relevance 
score that uses model organism annotation to rank  
exonic variants.

Phenotype reprioritization tools straddle both realms 
of clinical application and disease–gene discovery. To 
simplify clinical analysis, Phenotypic Interpretation of 
Exomes (PhenIX)74 solely reports on known disease 
genes. Other tools can be used in both situations. For 
example, Phevor80 uses the knowledge collected in 
related ontologies such as the Gene Ontology (GO) to 
suggest new gene–disease associations.

Variant interpretation
Variant interpretation refers to the process of drawing 
direct connections from individual variants to disease 
phenotypes, and this process is central to both clin-
ical reporting of results and incidental findings, and to 
research endeavours that include variant discovery and 
return of results. As a variant can be damaging to gene 
function but not disease-causing (BOX 1), candidates 
identified by variant or gene prioritization tools must 
be evaluated for causation. As a result of its complex-
ity and impact on patient diagnosis and treatment, this 
process remains largely one of expert interpretation 
and literature review. As the complexity and amount 
of available genetic data have increased, interpreta-
tion has faced new challenges, and the need for stand-
ardized guidelines has become apparent. This fact is 
demonstrated by the 2012 CLARITY Challenge82, in 
which multiple groups interpreted the exomes of three  
parent–child trios, yielding inconsistent findings among the  
resulting variant reports.

As a result of these challenges, interpretation guide-
lines have been developed in Europe and the United 
States to standardize interpretation workflows so that 
decisions are made in a consistent manner. The UK 
Association for Clinical Genetic Science (ACGS)83 
updated guidelines in 2013 that described a narrative list 

Figure 3 | Phenotypes are described across a spectrum 
of granularity, and different terminologies are used to 
define these features. In this example, medium-chain acyl 
co‑enzyme A dehydrogenase (ACADM) is used to show this 
granularity. At the broadest level, it is associated with the 
condition medium-chain acyl co‑enzyme A dehydrogenase 
deficiency (MCADD), a metabolic disorder that is classified 
in databases such as Online Mendelian Inheritance in Man 
(OMIM) and Orphanet. Clinical terminologies such as 
Snomed and MedGen may also be used to categorize the 
condition. A condition is generally composed of multiple 
clinical features (such as lethargy) that describe the 
observable phenotypes. The Human Phenotype Ontology 
(HPO) is a widely used terminology that describes these 
features organized by the body system they manifest in.  
A key product of the HPO is the annotation of 
phenotype-to‑gene and phenotype-to‑condition files  
that are used in many downstream prioritization tools. At  
the most fine-grained level, the molecular phenotype of the 
patient is defined by the clinical measurements such as  
the concentration of urine organic acids. The most widely 
used terminology for these measurements are provided by 
Logical Observation Identifiers Names and Codes (LOINC), 
a universal code system for clinical data. A patient may be 
identified early in life as a result of newborn screening — 
by detecting unusual ratios of metabolites — or may be 
detected later in life as a result of experiencing one or 
more clinical features. These different levels of phenotypes 
are used to guide the patient towards the most appropriate 
test and to guide the prioritization of the genes and 
associated variants in the genetic analysis.
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of the lines of evidence and necessity of this evidence to 
be used in variant interpretation. The American College 
of Medical Genetics (ACMG) has issued consensus 
guidelines distilled from community input. The ACMG 
guidelines provide a terminology to define clinical sig-
nificance, a scheme for ranking evidence used to make 
variant–disease assertions and a set of rules for combin-
ing the evidence for a case84. In a recent announcement, 
the ACGS and British Society for Medical Genetics 
have recommended following the ACMG consen-
sus guidelines, further consolidating a standardized  
clinical approach83,85.

The scope of these guidelines is strictly for the 
interpretation of variants suspected to be implicated in 
Mendelian disorders, and both organizations agreed on 
the need to standardize the description of variants using: 
Human Genome Variation Society (HGVS) nomencla-
ture86, Human Genome Organisation (HUGO) gene 
identifiers87, named reference sequences with version-
ing, and five grades of clinical significance. Evidence is 
ranked into four classes: supporting, moderate, strong 
and very strong. The outcome is an assertion of either 
benign, likely benign, VUS, likely pathogenic or patho-
genic. Many of the criteria are subjective; for example, 
quantification of co‑segregation of the variant with the 
phenotype ranges from ‘supporting’ to ‘strong’ evidence, 
and there is a criterion for a variant being previously 
reported by a ‘reputable source’. Moreover, both guide-
lines acknowledge the many caveats involved in interpre-
tation, such as variants that fall in the last exon and null 
variants that prove to be benign in heterozygous form.

It is widely acknowledged that these guidelines are 
general and that there is a pressing need to establish 
specific procedures for different genes and diseases. In 
response, clinical-domain working groups have been 
established, such as those administered via the ClinGen 
Resource from the US National Human Genome 
Research Institute (NHGRI)88. Their purpose is to 
extend these recommendations per gene or gene panel 
to accommodate any specific caveats that may exist84 (see 
also ClinGen Clinical Domains in Further information).

Clinical and research interpretation diverge when-
ever a variant of interest falls in a gene of uncertain sig-
nificance (GUS)84. These are the genes for which there 
is no documented association with the disease or the 
phenotype. The guidelines are clear that these variants 
may only be clinically reported as VUS until further 
evidence is collected; for example, the discovery of 
additional individuals with similar phenotype and dele-
terious variants in the gene89. Research evidence is then 
collated in collaborative resources such as ClinVar and 
PanelApp (BOX 2).

Current challenges and emerging solutions
Mendelian disease research and diagnosis have been 
greatly empowered by the sequencing of exomes and 
targeted gene panels. Despite being effective, research 
laboratories are slowly transitioning to WGS because 
of its greater power to discover all forms of potentially 
causal variation. Clinical diagnostic laboratories are 
likely to follow this trend once costs decline sufficiently 

for insurance providers to reimburse WES- and WGS-
based tests. However, aside from cost barriers, there 
are substantial analytical barriers to the systematic pri-
oritization of the millions of genetic variants that are  
uncovered via WGS.

Non-coding variants. As the protein-coding exome rep-
resents less than 2% of the genome, most additional var-
iants revealed through WGS lie in non-coding regions. 
The Encyclopedia of DNA Elements (ENCODE) pro-
ject has emphasized that as much as 80%90 of the non- 
protein-coding portion of the genome is associated 
with biochemical ‘function’. Although the precise per-
centage and the definition of ‘function’ is debated91, it is 
clear that many non-coding regions, such as promoters, 
enhancers and splice sites, are crucial to gene function. 
More generally, non-coding nucleotide conservation 
can be used to prioritize non-coding variants in much 
the same way that SIFT uses protein-based alignments. 
Several such tools exist: some use conservation infor-
mation directly, whereas others use conservation scores 
provided by third-party tools, such as phyloP92 and 
Genomic Evolutionary Rate Profiling (GERP)++93 (see 
TABLE 2 for details). However, it should be noted that 
non-coding variant prioritization tools are less accu-
rate than their protein-coding counterparts. Although 
many new approaches are being developed39,94,95, there 
is simply insufficient understanding of the regulatory 
machinery encrypted in non-coding DNA to prioritize 
non-coding variants with similar accuracy to that of 
coding variants94.

Synonymous exonic variants. Synonymous exonic vari-
ations are scored and prioritized by several existing tools 
(TABLE 2). There are multiple mechanisms whereby these 
variants can cause disease, such as altering the fidelity 
of splicing or microRNA (miRNA) binding, affect-
ing mRNA stability or altering translation dynamics. 
Software and other validation strategies are reviewed by 
Hunt et al.96.

Structural variants. Structural variants encompass 
both copy number variants (CNVs), such as deletions 
and duplications, and balanced rearrangements, such 
as inversions and reciprocal translocations. Although 
there are far fewer structural variants (that is, between 
~5,000 and ~10,000) in a typical human genome47 than 
SNVs and small insertions and deletions (indels), their 
potential for phenotypic impact is disproportionately 
large because they can disrupt multiple genes, create gene 
fusions, ablate regulatory elements and alter gene dosage. 
Owing to a variety of technical reasons, structural vari-
ants remain the most difficult form of variation to detect, 
and WGS — as opposed to WES — is preferred for these 
analyses because of the greatly increased discovery power 
and resolution71. Despite the cost and complexity of WGS 
data, structural variant detection clearly improves the 
diagnostic yield for Mendelian disorders compared with 
WES97. For example, Wu et al. recently found that 11% 
of congenital scoliosis cases are explained by compound 
heterozygotes comprised of SNVs and large deletions in 

R E V I E W S

NATURE REVIEWS | GENETICS	  ADVANCE ONLINE PUBLICATION | 11

©
 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.

https://clinicalgenome.org/working-groups/clinical-domain/


Compound heterozygous 
inheritance
The situation in which a 
proband receives a damaging 
but different allele in the same 
gene, from each parent. Both 
copies of the gene are affected.

Topologically associating 
domains
(TADs). TADs are genomic 
regions in which loci have  
a higher probability of  
physical interaction.

T box 6 (TBX6)98. Furthermore, Burn–McKeown syn-
drome was also found to be caused by compound hete-
rozygous inheritance (see BOX 1) of a promoter deletion and 
an SNV in thioredoxin-like 4A (TXNL4A)99. More gen-
erally, balanced chromosomal abnormalities have been 
shown to underlie congenital abnormalities by disrupting 
topologically associating domains (TADs) in loci that are 
known to cause developmental disorders100. Long-read 
sequencing technologies were recently used to impli-
cate a deletion of the first exon of protein kinase cAMP- 
dependent type I regulatory subunit-α (PRKAR1A) in 
autosomal dominant Carney complex101, and WGS stud-
ies of autism spectrum disorder estimated that between 
1 in 5 and 1 in 20 individuals harbour a de novo struc-
tural mutation, further strengthening the argument for 
comprehensive WGS-based structural variant analysis in 
Mendelian disorders102.

Unfortunately, interpretation of structural variants 
observed in a family is complicated by the fact that  
population-scale variant databases such as ExAC are 
not yet available for structural variants. Consequently, 
it is very difficult to assess whether a structural variant 
of interest (for example, a deletion of multiple coding 
exons) is likely to be pathogenic on the basis of its allele 
frequency among diverse ancestries. However, it is clear 
that resources for these activities will eventually emerge 
from large projects such as the Genomics England 
100,000 Genome Project (UK100K), the NHLBI 
Trans-Omics for Precision Medicine (TOPMed) pro-
gramme and the NHGRI Centers for Common Disease 
Genomics, which are each focused on WGS of tens of 
thousands of individuals.

Graph-like genome representations. With the thirty- 
eighth major release of the human genome, the Genome 
Reference Consortium has transitioned away from tradi-
tional linear genome representations that represent little 
sequence or structural diversity. Instead, this and future 
versions of the human genome attempt to represent mul-
tiple alternative sequence ‘paths’ for loci that have high 
levels of nucleotide diversity or structural complexity103. 
Although ‘graph-like’ genome representations improve 
the representation of the true diversity of the human 
genome, it is imperative that SNV, indel and structural 
variant discovery methods account for these changes in 
order to maximize discovery accuracy by distinguishing 
truly paralogous loci from alternative sequence paths 
represented in the genome assembly for the same locus. 
Some software advances have been made in this regard104, 
but widespread adoption of current and future genome 
assemblies will require continued algorithm development.

Better decision support tools. Many analysis pipelines 
apply ‘linear’ approaches in which the primary goal is 
to identify a subset of variants that meet a series of ever-
more restrictive, hard-coded filters. Examples include 
enforcing an inheritance model, maximum allele fre-
quency, genotype burden, variant effect and so forth. 
The obvious drawback to such approaches is the poten-
tial for false negatives when variants fail to meet filtering 
criteria, with no easy means to recover them for further 

consideration in light of other information. This pitfall of 
linear approaches is driving the creation of more integrative  
approaches using decision support tools. These tools 
are not so much pipelines as browser-based interpreta-
tion environments. Decision support tools enable more 
flexible, interactive analyses and generally provide easier 
means to analyse variant data in the context of external 
resources such as ExAC, OMIM and ClinVar, which 
greatly empower clinical decision-making. Academic 
examples include iobio14 and Variation Viewer105. 
Commercial tools increasingly have an important role in 
this domain, partly because of the complexity and cost of 
developing such software. Examples include Congenica’s 
Sapientia, WuXi’s NextCode, (see Further Information) 
and Fabric Genomics’ Opal platform12.These platforms 
offer customizable workflows and web-based user inter-
faces that facilitate expert review and interpretation of 
results. They also deal with a host of practical issues such 
as data security and privacy. These features make them 
ideal for clinical diagnosis, but the current generation of 
these applications still lacks the functionality that is neces-
sary for larger case–control analyses for which data aggre-
gation across multiple probands is essential for discovery.

Conclusions
Connecting variants to disease is a complex, multistep 
process. Its early steps are highly automated, but the 
final, most critical aspects are not. Instead, they rely on 
expert review and human interpretation. In this sense, 
the process resembles many of today’s big-data analy-
sis activities, but it is further complicated by its clinical 
nature. Wrong answers can be devastating to patient 
health and family planning. For example, in a recent 
example of incorrect variant interpretation, members of 
a family received a diagnosis of long QT syndrome and 
an inappropriate course of treatment106.

Variant and gene prioritization scores are useful start-
ing points for discovery and diagnosis of rare Mendelian 
diseases, but they are merely that: starting points. Those 
charged with their review and interpretation need 
to understand the computational workflows and the 
strengths and weaknesses of the many software tools 
that constitute them.

Prioritization scores should never be naively con-
flated with pathogenicity (BOX 1). Instead, it is crucial 
that they are considered in the context of genotype, dis-
ease prevalence, family history and phenotype. Variant 
interpretation resources such as ClinVar and ExAC are 
proving to be essential to this process. Many tools are 
now available to help with this integration process, and 
complex decision support environments are increasingly 
being used. Standardization of the interpretation process 
is also clearly desirable. The guidelines offered by the 
ACMG and ACGS are important steps forward in this 
regard. These are growing more sophisticated, and their 
granularity is improving to allow ever more gene- and 
disease-specific interpretation workflows. Nevertheless, 
those engaged in precision genomic medicine should 
bear in mind that VUS will remain one of the most fre-
quently used terms in the precision medicine diagnostic 
vocabulary for some time to come.
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