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Abstract

Background: The cost of Whole Genome Sequencing (WGS) has decreased tremendously in recent years due to
advances in next-generation sequencing technologies. Nevertheless, the cost of carrying out large-scale cohort studies
using WGS is still daunting. Past simulation studies with coverage at ~2x have shown promise for using low coverage
WGS in studies focused on variant discovery, association study replications, and population genomics characterization.
However, the performance of low coverage WGS in populations with a complex history and no reference panel remains
to be determined.

Results: South Indian populations are known to have a complex population structure and are an example of a major
population group that lacks adequate reference panels. To test the performance of extremely low-coverage
WGS (EXL-WGS) in populations with a complex history and to provide a reference resource for South Indian
populations, we performed EXL-WGS on 185 South Indian individuals from eight populations to ~1.6x coverage. Using
two variant discovery pipelines, SNPTools and GATK, we generated a consensus call set that has ~90% sensitivity for
identifying common variants (minor allele frequency≥ 10%). Imputation further improves the sensitivity of our call set.
In addition, we obtained high-coverage for the whole mitochondrial genome to infer the maternal lineage
evolutionary history of the Indian samples.

Conclusions: Overall, we demonstrate that EXL-WGS with imputation can be a valuable study design for variant
discovery with a dramatically lower cost than standard WGS, even in populations with a complex history and
without available reference data. In addition, the South Indian EXL-WGS data generated in this study will provide
a valuable resource for future Indian genomic studies.
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Background
The rapid development of next-generation sequencing
technologies has resulted in a fruitful decade of genomic
discoveries, many of which are becoming integrated into
translational settings and promise to dramatically improve

clinical outcomes [1]. Despite the tremendous reduction in
sequencing costs and increase in data generation through-
put, projects that require interrogating more than a few
hundred human genomes can still be costly. Efforts that
explored a “low coverage” sequencing strategy, such as the
1000 Genomes Project [2] and the CHARGE Project [3],
sequenced thousands of human subjects at 4–10x read
depth of coverage each. These projects have been very suc-
cessful by leveraging informatics algorithms and imput-
ation methods to achieve variant discoveries with
exceedingly high quality and sensitivity [4]. In addition,
several studies have demonstrated that genotype likelihood
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and read information from low-coverage sequencing can
be directly used for population genetics analyses, without
genotype calling [5–7].
We aim to continue these developments and hypothesize

that a study design of sequencing at population scale (e.g.,
more than a few hundred subjects) with each subject at 1–
2x coverage (i.e., extremely low coverage) would capture
sufficient information to understand population genomic
attributes such as diversity, population substructure, and
admixture. Such a study design would decrease the cost
for a population genomics study to tens of thousands of
dollars. This design has broad utility for both population
genomics studies in various model species [8] and disease
genetics studies [9, 10]. For example, while projects such as
the 1000 Genomes Project and the HapMap Project
[11, 12] surveyed a number of populations to generate a
large resource of reference panels, populations or ethnici-
ties that have large genetic distances from these sample
panels have poor imputation power using these standard
reference panels [13]. An extremely low coverage,
population-level WGS surveys would provide additional
information for these populations.
South Asian populations are an example of major pop-

ulations that lack adequate reference panels. South Asian
populations on the Indian subcontinent are known to
have a complex demographic history with multiple
socio-linguistic groups [14, 15]. There is also evidence of
founder effect [16] and a long history of endogamy along
caste and tribal lines [16, 17], making South Asian popu-
lations among the most diverse populations with unique
disease profiles [18, 19]. Association studies among
South Asians, using generic genotyping arrays and refer-
ence panels for interrogation and imputation, could fail to
identify associated loci specific to these populations due to
their unique genetic variants and haplotypes. Many South
Asian populations sequenced in previous studies [2, 20],
including the 1000 Genomes Project, were migrant popu-
lations and captured only a limited amount of the genetic

variation and haplotype diversity present in the Indian
subcontinent. Our proposed strategy holds potential for
surveying various South Asian populations to catalogue
new genetic variation at an affordable cost.
As a proof-of-principle, we present the results from

extremely low coverage whole genome sequencing
(EXL-WGS) of eight South Asian populations from a
wide spectrum of social and cultural strata living in the
state of Andhra Pradesh. The population samples belong
to four broad self-identified classifications: lower caste,
middle caste, upper caste and tribe. Using EXL-WGS of
185 samples with coverages between 1x and 2x, we dem-
onstrate that the EXL-WGS study design generates
accurate genomic variant information and reliably reca-
pitulates population substructure generated by previous
methods. Moreover, sequencing approaches provide an
advantage for population studies compared to genotyping
array platforms, which are known to have substantial as-
certainment bias [21, 22]. Furthermore, we show that the
genotypes from EXL-WGS can serve as a customized ref-
erence panel, adding more power to association studies
than existing genomic data [2].

Results
Samples and sequencing coverage
We sequenced 185 samples from the state of Andhra
Pradesh to an average read depth of coverage of 1.6x
(ranging from 0.84x to 3.39x) (Additional file 1: Table
S1). We refer to our dataset as SAS-AP (South Asian-
Andhra Pradesh). The cohort consists of eight popula-
tions across four social strata (Table 1). On average,
~65% (standard deviation (stdev) 7%) and ~38% (stdev
9%) of the genome is covered by at least one read or two
reads, respectively. At 1.6x coverage, 77 and 47% of the
genome is predicted to be covered by at least one read
and two reads, respectively, based on the Lander-
Waterman statistics [23] (Additional file 2: Figure S1.1).
Our result is comparable to the expectation.

Table 1 Sequencing and variant calling statistics for SAS-AP samples

Group Populations # of samples Depth of Coverage Total SNVs Avg SNVs Ti/Tv Novel 1000G-SAS Novel dbSNP 141
aUpper Brahmins 16 1.81 4,443,583 2,571,972 2.09 97,022 5632
aMiddle Kapu 37 1.57 4,457,414 2,582,833 2.09 97,303 5701
aMiddle Yadava 32 1.65 4,457,237 2,575,646 2.09 97,300 5699
aLower Mala 23 1.56 4,455,626 2,615,726 2.09 97,261 5701
aLower Madiga 24 1.35 4,455,972 2,583,914 2.09 97,271 5699
aLower Relli 15 1.69 4,455,972 2,586,868 2.09 96,908 5639

Tribal Irula 22 1.86 4,439,932 2,570,388 2.09 97,024 5674

Tribal Khonda Dora 16 1.82 4,403,761 2,574,472 2.09 96,340 5523

Total 185 1.64 4,457,475 2,583,004 2.09 97,309 5701

Only SNVs with minor allele frequency (MAF) ≥10% are included. Total SNVs: the total number of SNVs in a population. Avg SNVs: the average number of SNVs in
an individual. Ti/Tv: transition/transversion SNV ratio. Novel 1000G-SAS: the number of SNVs that are not in the 1000G-SAS dataset. Novel dbSNP 141: the number
of SNVs that are not in dbSNP 141. aCaste Populations

Rustagi et al. BMC Genomics  (2017) 18:396 Page 2 of 12



Variants discovery
To test the feasibility of an EXL-WGS sequencing design
for variant identification, we first simulated a cohort of
208 samples from the African populations in the 1000
Genomes Phase 1 data (see Protocol 1 for details
(Additional file 2: Section S2)). The coverages in the simu-
lated dataset closely matched that of the SAS-AP dataset
(Additional file 2: Section S2). When the variance ratio
statistic parameter (s) is set at 2.8, SNPTools [24] recov-
ered all single nucleotide variants (SNVs) with minor allele
frequency (MAF) ≥ 10%. The false discovery rate was
bounded by 3%, where the majority of false positive sites
had a MAF < 10%. The average individual genotype dis-
cordance rate for SNVs with MAF ≥ 10% was 6.43% (stdev
4.93%). This result demonstrates that SNPTools has good
accuracy in calling SNVs with MAF ≥ 10% using EXL-
WGS data. Therefore, we identified SNVs in the SAS-AP
dataset using SNPTools with s = 2.8 as determined in the
simulation study (Additional file 2: Section S2).
To further improve the variant calling quality, we used

a second variant calling tool, the Genome Analysis Tool
Kit (GATK) [25], for variant identification. Using the
same simulation strategy, we generated a new set of sim-
ulated samples from the same 208 African samples on
chromosome 20 and evaluated the performance of
SNPTools and GATK, as well as the consensus of the
two call sets. For sites with MAF ≥ 10% in the 1000
Genomes dataset, SNPTools call set has a sensitivity of
98.8% and a FDR of 19.6%. GATK called 116,348 vari-
ants with MAF ≥ 10%, with a sensitivity of 88.7% and a
FDR of 16.5%. The consensus of the two pipelines
yielded a recall rate of 88.5%, while reducing the FDR to
~13% (Additional file 2: Figure S2.4). Because the con-
sensus call set improves the FDR with only a small re-
duction in sensitivity, we called variants in SAS-AP data
using the same approach and autosomal biallelic SNVs
with MAF ≥ 10% were selected as our final call set and
used for all subsequent population genetics analyses.
The final call set included 4,457,475 autosomal bialle-

lic SNVs with a transition/transversion ratio of 2.09. Of
these, 97,309 (2.18%) are novel with respect to the South
Asian dataset in the 1000 Genomes Project Phase 3
(1000GP3-SAS), and ~5700 SNVs are absent in dbSNP
build 141. The vast majority of the SNV sites have an aver-
age coverage between 0.5x and 4x, close to our average se-
quencing depth of 1.6x (Additional file 2: Figure S4.1).
The number of SNVs in each sample ranges from
2,485,817 to 2,930,235, with an average of 2,583,005 (stdev
37,370) (Additional file 1: Table S1).
To assess the quality of the EXL-WGS call set, we

compared the EXL-WGS calls to single nucleotide poly-
morphism (SNP) genotyping array genotype calls and
Sanger sequencing results from previous studies [18, 26].
For 42 of the samples that were previously genotyped

using SNP arrays [26], 93.2% of the SNVs were recov-
ered by EXL-WGS dataset. In another study, 63 samples
in this study were sequenced for a 100 Kb ENCODE re-
gion on chromosome 12 with Sanger sequencing [18]
(referred as ENCODE data set hereafter). Within the
100 Kb region, 75.3% of the SNVs were rediscovered by
EXL-WGS dataset (Additional file 2: Section S3). Among
the 4301 heterozygous calls in the ENCODE dataset,
4231 (98.4%) were correctly called by SAS-AP dataset
(Additional file 2: Section S4.2). In particular, we achieve
high genotyping accuracy (97.3%) even for heterozygous
sites that have no coverage in an individual.

Population genetic analyses
Next we assessed if the EXL-WGS provides sufficient in-
formation for examining population structure in SAS-
AP samples. First, simulation experiments were carried
out by thinning the reads from the 1000 Genomes data-
set to test the feasibility of performing principal component
analysis (PCA) on common SNVs in an EXL-WGS cohort
(Additional file 2: Section S2.2). PCA was carried out on
four simulated datasets with coverages of 0.25x, 0.5x, 0.75x
and 1x, respectively (Additional file 2: Figure S2.3).
Simulation results suggest that SNVs with MAF > 20%
are sufficient to detect population structure by PCA
in all four call sets.
Using SAS-AP variant calls with MAF ≥ 10%, we ex-

amined the relationship among the populations/groups
in our dataset. PCA of SAS-AP samples with the 1000
Genomes Project Phase 3 European (1000GP3-EUR),
East Asian (1000GP3-EAS) and South Asian (1000GP3-
SAS) samples showed that our samples are most closely re-
lated to the 1000GP3-SAS samples, as expected (Fig. 1).
The Khonda Dora samples cluster separately from all other
south Asian samples on principal component 1 (PC1, vari-
ance = 2.9%) and are the closest to 1000GP3-EAS samples
among south Asian samples (Fig. 1). When the 1000
Genomes Project Phase 3 African and American samples
are included, the SAS-AP samples still clustered with
1000GP3-SAS samples (Additional file 2: Figure S5.1).
Consistent with the PCA result, FST statistics place SAS-
AP closest to 1000GP3-SAS. Except for Khonda Dora,
all other populations are closer to 1000GP3-EUR than
1000GP3-EAS (Additional file 2: Table S5.1). The
1000GP3-AFR populations have the largest distance
with all SAS-AP populations, which is consistent with
the out-of-Africa expansion model.
To further examine fine-scale population structure

within our samples, we performed PCA on SAS-AP
samples only (Fig. 2a). The two tribal groups, Irula and
Khonda Dora, are clearly separated from the caste
groups on PC1 and PC2, respectively. Consistent with
this result, Irula has the highest pairwise FST with all
other SAS-AP group, followed closely by Khonda Dora,
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except for Brahmins, who have a higher FST with
Khonda Dora than Irula (Additional file 2: Table S5.2).
The mean pairwise FST of populations in SAS-AP is
0.015 (stdev 0.012). This value is higher than those of
other populations sampled across the Indian subcontin-
ent (0.0109, [16]). PCA that includes the 1000GP3-SAS
samples also shows distinctive clustering of Khonda
Dora and Irula tribal samples separated from the caste
samples (Fig. 2c). While the non-tribal populations are
not as clearly differentiated as the tribal groups, there is
evidence of clustering along caste-based lines. When
PCA is performed on caste samples only (Fig. 2b, d),
lower caste samples cluster separately from 1000GP3-
GIH (Gujaratis in Houston), 1000GP3-PJL (Punjabis
from Lahore), and Brahmins on PC1. Lower caste
samples are also mostly separate from 1000GP3-BEB
(Bengalis from Bangladesh), 1000GP3-ITU (Telugu from
UK) and 1000GP3-STU (Sri Lankan Tamils from UK)
samples (Fig. 2d). Middle caste Yadava and Kapu samples
are indistinguishable from the 1000GP3-BEB, ITU and
STU samples but can be distinguished based on PC1
values from the lower caste, upper caste, 1000GP3-GIH,
and 1000GP3-PJL samples. The upper caste Brahmin sam-
ples are differentiated from lower caste and tribal samples
in all PCA plots and are the closest to 1000GP3-PJL and
1000GP3-GIH samples. This is consistent with previous
research suggesting a larger west Eurasian genetic compo-
nent in upper castes compared to other castes [16, 27].

Next, we examined the composition of potential ances-
tral components in SAS-AP and 1000GP3 samples using
the ADMIXTURE program [28] (Fig. 3, Additional file 2:
Figure S5.2). At K = 4, four ancestral components corre-
sponding to Africa, Europe, India, and East Asia were
identified (Additional file 2: Figure S5.2). At K = 5, the
five ancestral components corresponded to the major
continental groups: Africa, Europe, India, East Asia,
and America (Fig. 3a). At K = 6, two groups within
India were identified: one is predominantly represented
in the 1000GP3 samples, and one in the SAS-AP sam-
ples (Fig. 3b). Previously studies have also identified
two similar main ancestral groups in India and termed
them “Ancestral North Indians” (ANI) and “Ancestral
South Indians” (ASI) [16]. Most of our SAS-AP samples
contain an admixture of ANI and ASI components,
with the majority of the predicted ancestry from ASI.
Interestingly, compared to the caste groups, the two tri-
bal groups showed distinct ancestry: Irula samples are
dominated by the ASI component while Khonda Dora
samples have a distinctively large (>20%) East Asian an-
cestral component compared to other SAS-AP samples.
It is also notable that at K = 6, the 1000GP3 Finnish
population has more Asian and American-like compo-
nents than do other Europeans. This might be ex-
plained by Finnish origins: many Finns are thought to
have ancestry from southeastern Europe and share ances-
tral components with Asian/American people [29, 30]. At

Fig. 1 PCA of SAS-AP and 1000GP3 samples. Each symbol represents one individual. PC1 and PC2 are shown on the X and Y axis, respectively.
The percentage of variance explained by each PC is labeled on the axis. The map shown in the figure is adapted from https://commons.wikimedia.org/
wiki/File:World_map_blank_without_borders.svg where permission is granted under a creative commons license
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K = 7, an ancestral group that is dominant in Irula samples
is recognized (Additional file 2: Figure S5.2).
Several recent studies have proposed to directly use

genotype likelihood (GL) from low-coverage sequencing
for population genetics analyses, without genotype call-
ing [5–7]. For sites covered by sequencing reads, using
GL before calling genotype should maintain more infor-
mation for population genetics analysis. We compared
the population genetic analysis results for genotype-
based analyses with GL-based analyses (Additional file 2:
Section S5.2). The PCA, Admixture, and FST results for
the two types of analyses showed similar results in general.
The GL-based PCA showed a tighter clustering of the
samples than the genotype-based PCA but the overall pat-
tern and the amount of variance explained are similar be-
tween the two plots (Additional file 2: Figure S5.3). This
observation is consistent with the original study where
genotype-based PCA using common variants are similar
to GL-based PCA [5].

Imputation performance
The EXL-WGS study design can be a highly effective
and affordable strategy to generate population-specific

imputation reference panels, which can improve imput-
ation accuracy in association studies that use SNP arrays
as primary data sources. Using a simulation dataset, we
showed EXL-WGS imputation reference panel has a com-
parable performance to the SNP array reference panel
within the same population (Additional file 2: Section S6).
However, when the population of interest has a large gen-
etic distance from the available reference panels, EXL-
WGS could provide a better imputation panel than a gen-
eric reference panel. To test this hypothesis, we examined
whether imputation accuracy can be improved by creating
a population-specific reference panel using SAS-AP sam-
ples than using the 1000 Genomes South Asian reference
panel. The weighted FST estimates between populations in
SAS-AP and 1000GP3-SAS is maximum for tribal popula-
tions at approximately 0.02.
For the imputation experiment, approximately one-

third of the samples from each of the main caste and tri-
bal classifications from SAS-AP were chosen as a target
set for imputation. The remaining samples from SAS-
AP were used as a representative EXL-WGS population-
specific reference panel, and 160 randomly selected
1000GP3-SAS samples were used as the generic reference

Fig. 2 PCA of South Asian samples. a All SAS-AP samples; b SAS-AP excluding Khonda Dora and Irula samples; c SAS-AP and 1000GP3-SAS samples; d
SAS-AP and 1000GP3-SAS excluding Khonda Dora and Irula samples. Each symbol represents one individual. PC1 and PC2 are shown on the X and Y
axis, respectively. The variance explained by each PC is labeled on the axis
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panel. Approximately 5% of sites were removed from the
target set (see Methods) and the performances of the two
reference panels are compared. For SNVs removed in the
target site, the custom SAS-AP reference panel had a
higher dosage correlation coefficient (R2) value than the
1000GP3 panel for all population classifications (Fig. 4).

The R2 is most pronounced (0.90 vs 0.85) in the tribal
population and least apparent for the lower caste (0.902
vas 0.892). All the missing SNVs were recovered using
both the reference panels. Given the high genetic diversity
in the Indian subcontinent, and the unique ancestry pro-
files of populations, using a custom reference panel will be

Fig. 3 Admixture analysis of SAS-AP and 1000GP3 samples. a K = 5; b K = 6. Each vertical bar represents one sample. The vertical bar is composed
of colored sections, where each section represents the proportion of a sample’s ancestry derived from one of K ancestral populations

Fig. 4 Imputation dosage correlation coefficient R2 of ~200,000 missing sites from SAS-AP samples. Results from the SAS-AP reference panel and
the 1000GP3-SAS reference panel are shown in blue and red bars, respectively. The number of target samples is given in parenthesis
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better than using any of the existing populations, even for
SNVs in the MAF range ≥ 10%.
To determine if the better performance of the SAS-AP

reference panel is due to the batch effect between the
1000 Genomes and the SAS-AP samples, or due to
population composition, we further evaluated the per-
formance of the reference panels for imputing the 1000
Genomes ITU samples as the target (Additional file 2:
Section S7). Imputation results from different 1000
Genomes Indian samples suggest the reference panel
population composition has a considerable effect on the
reference panel performance. For example, the 1000
Genomes reference panel from ITU samples outper-
formed SAS-AP samples for ITU sample imputation, as
expected (Additional file 2: Figure S7.1). However, SAS-
AP panel performed as well as the reference panel
from the 1000 Genomes GIH, PJL, and BEB samples
(Additional file 2: Figure S7.2). This result highlights the
need of an extensive sampling of Indian populations.

Mitochondrial genome
Because of the high copy number of mitochondrial
DNA, EXL-WGS should yield higher coverage for the
mitochondrial genome than for the single-copy nuclear
genome. To test this hypothesis, we determined the
depth of coverage for the 185 mitochondrial genomes
(Additional file 1: Table S1). All nucleotide bases in all
samples were covered by at least one read, and on aver-
age, 99.94% percent of bases had >10x coverage. Mean
depth of coverage ranged from 57x to 266x, with an
average coverage of 124x for all samples.
Using the EXL-WGS data, we generated a high-quality

mitochondrial genome sequence for each sample. To
further assess the EXL-WGS quality, we generated
mtDNA sequence data for sample I8 and KD7 on an Ion
Torrent PGM and compared the results to the Illumina
EXL-WGS data. For both samples, all base calls between
the PGM and EXL-WGS were in agreement except for
one difference in I8 at position 3107 (N vs. T) and four
single C base addition in KD7. All four additions in KD7
are within homopolymeric C regions. These differences
are likely attributable to the well-known difficulties in
sequencing homopolymeric regions on the Ion Torrent
platform. Additionally, no differences were found between
the EXL-WGS data and lineage-defining SNVs genotyped
previously in a subset of the 185 samples using single-base
extension genotyping [31]. Taken together, these results
demonstrate that EXL-WGS produces high-quality
complete mitochondrial genome sequence data.
Next, we determined the mtDNA haplogroup distribu-

tion among SAS-AP samples using mitochondrial whole-
genome sequences. Samples were grouped into popu-
lations based on their caste or tribe affiliation, and
the proportion of each major mtDNA lineage was

calculated for each population (Fig. 5). Mitochondrial
haplogroup M is the predominant lineage in all popula-
tions. A greater proportion of R, U, and H/HV occur in
caste than in tribal populations. Caste populations, with the
exception of Relli, have at least 30% non-M lineages. In
contrast, non-M lineages were not observed in Irula, an
isolated tribal group from southern Andhra Pradesh. Simi-
larly, only one major non-M lineage (U) was seen in
Khonda Dora, an isolated tribe from northeastern Andhra
Pradesh. The population distributions of the major mtDNA
haplogroups are consistent with higher gene flow and ad-
mixture into caste populations than into tribal groups.
These results are concordant with previous analyses of
these caste and tribal samples using Sanger-sequenced
mtDNA HVS1 and lineage-defining SNVs [27, 31] and
demonstrate the feasibility of generating high-quality mito-
chondrial genomes using EXL-WGS.

Discussion
In the past, SNP genotyping arrays have been used to
survey genomic diversity in previously unexplored popu-
lations [12, 26, 32]. With the ever-decreasing sequencing
cost, EXL-WGS (e.g., ~1x) provides an alternative, and
for some study designs, better approach for studying
population diversity than SNP arrays. The primary bene-
fits of EXL-WGS over SNP arrays include discovering
population-specific variants for analyzing fine-scale
population structure, improving imputation power,
and providing high-quality mitochondrial genomes. In
addition, even at current sequencing costs, the cost of
EXL-WGS is comparable to or even lower than SNP
arrays.

Fine-scale population structure
SNP genotyping arrays are usually designed using exist-
ing genetic information. Therefore, for populations that
have not been studied extensively and do not have a
good reference population, the SNP array is likely to
miss population-specific variants and bias population
structure analysis [21, 22]. An accurate population struc-
ture/ancestry analysis is not only important for popula-
tion genetic and evolutionary genetic studies, it is also
crucial for association studies [33, 34].
Here we demonstrate the benefit of EXL-WGS over

SNP genotyping arrays by studying populations from
South Asia. The Indian subcontinent has witnessed mul-
tiple waves of migration since the first migration of
modern humans out of Africa [35–37], which resulted in
a highly variable genetic diversity among South Asian
populations [18]. We were able to examine the fine-scale
population structure using 4,457,466 SNVs with MAF ≥
10% among SAS-AP samples. There were ~97,000 com-
mon variants that are not present in the 1000GP3-
SAS dataset and ~5700 variants that are absent in the
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dbSNP database. Our PCA result suggests that SAS-
AP tribal populations are distinct from caste populations
(Fig. 2a, c), and the caste samples are roughly clustered
along the caste groups but the clusters are less distin-
guishable than tribal groups (Fig. 2b, d). The ADMIX-
TURE analysis suggests South Asian samples can be
predominantly divided into two clines, one aligned with
populations having west Eurasian ancestry and one
aligned with populations having East Asian ancestry. In
our analysis, all castes are closer to the Eurasians than to
the East Asians along these clines. The position of caste
populations along the west Eurasian cline is consistent
with previous results on higher ANI component in
higher ranks [27]. The Khonda Dora population is
clearly more aligned with the East Asian cline, support-
ing a recent report about an East Asian ancestry com-
ponent in Indian tribal populations [17]. The Irula
population has a predominantly ASI profile making
them distinct from both the west Eurasian and East
Asian clines (Fig. 3). Our results present an unbiased
estimate of genetic diversity in South Asian populations
and demonstrate the EXL-WGS design can be used to
study the population structure.

In addition to the genotype based population genetic
analyses, we also tested the methods that are designed
for low-coverage WGS and directly use genotype likeli-
hood for analysis. The results of PCA, admixture, and
FST analyses are largely congruent between the two sets
of analyses (Additional file 2: Section S5.2). Compared
with the GL-based methods, calling genotypes with our
current pipeline has different advantages and utilities.
For example, for multi-individual variant calling,
SNPTools can leverage linkage association information
and impute genotypes for sites that have no variant
reads or sequence coverage. So the number of genotype
calls from SNPTools is higher than the number of sites
with sequence coverage. In our comparison with the
gold standard ENCODE dataset the genotype calls at
sites with no sequencing coverage has a high accuracy
(>97%) in our dataset (Additional file 2: Figure S4.2). In
addition, for studies that need to combine data from dif-
ferent types of technologies, it is more straight-forward
to combine genotypes.
Several other programs, such as Beagle [38] and STITCH

[39], can also perform imputation on low-coverage samples
without a reference panel, similar to SNPTools we used in

Fig. 5 The proportion of major mtDNA haplogroups in castes and tribal populations. All haplogroups are defined using complete mtDNA sequences
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this study. However, Beagle is optimized for use in a setting
with available reference panels, and we have also demon-
strated the efficacy of Beagle in this respect in this study.
STITCH is optimized for read based haplotype construc-
tion for imputation and phasing. In comparison, the
SNPTools imputation engine is independent of read length
and is optimized for genotyping variants. This approach
would allow a researcher to maximize the value of EXL-
WGS data even with short read lengths.

Enhanced imputation reference panel
Another advantage of EXL-WGS over SNP arrays is
the improved power in imputation. Many popula-
tions in the Indian subcontinent have been found to
have founder events, resulting in a higher burden of
recessive diseases [16]. In this situation, imputation
strategies using existing reference panels can be inef-
fective for gene mapping studies involving unique
recessive variants [16, 40]. However, with an appro-
priate reference panel, even coverages as low as
0.01x may be sufficient to achieve more than 90% of
the effective population size surveyed by a dense one
million site SNP array designed for variants with
MAF ≥ 5% [10]. As shown in our result, the EXL-
WGS reference panel improves the imputation power
over a generic 1000GP3-SAS reference panel, even
though the 1000GP3-SAS samples were also from
the Indian subcontinent. Moreover, our methodology
of producing reference panels, can be used for using
off target reads from large existing cohorts of whole
exome sequencing datasets, many of which have read
lengths less than 100 bp [41, 42].

High quality mitochondrial genome
Lastly, EXL-WGS allows the interrogation of mitochondrial
genomes of the sequenced samples. Even with ~1.5x cover-
age EXL-WGS design we obtained high-coverage mito-
chondrial genome sequence (average coverage 124x) and
generated high-quality mitochondrial haplotypes for every
SAS-AP sample. Using the haplotypes we were able to
examine the material lineage diversity among the samples.
Among tribal samples, all Irula people have the deep-
rooted ancestral mitochondrial haplogroup M that is typical
of South Asia. Thirteen percent of the Khonda Dora sam-
ples have the mitochondrial haplogroup U. Although hap-
logroup U is shared with western European populations, it
has some deep (>35,000 years before present) India-specific
branches [43]. The mitochondrial haplogroup K is only ob-
served in the Brahmin populations, and it is estimated that
this haplogroup arose in west Eurasia within the last
12,000 years [44]. These results are consistent with previous
studies and demonstrate EXL-WGS can be used for high-
resolution mitochondrial haplotype studies.

Feasibility and necessity of WGS
In our project the average yield of SNVs per individual is
approximately 2.5 million for MAF ≥ 10%, and a SNP
genotyping array of comparable yield will cost ~ $170/
sample. The cost of sequencing one gigabase has been
estimated to be less than $30 on a HiSeq 2500 [45]. Ac-
counting for library preparation costs of about $30 per
sample [10], the total cost of sequencing a genome with
1.5x coverage is less than $180. Advances in library
preparation methods can lead to further cost reductions
of almost half [46].
For coverages less than 2x, there is a valid concern

about genotyping accuracy, especially for heterozygotes.
In a recent case-control study involving more than
10,000 samples with an average depth of coverage ~1.7
x, mean genotype concordance was better than 98% with
respect to deep WGS gold standard datasets and SNP
arrays [9]. Even though more than 5000 cases were used
by [9] to replicate signals for common variation, cover-
age as low as 0.1x may be sufficient to infer fine-scaled
ancestry information among worldwide continental pop-
ulations [47]. Indeed, with multiple sample joint-calling
and genotyping using SNPTools, followed by SNPTools
imputation, we achieved excellent calling accuracy for
heterozygous SNVs (Additional file 2: Section S4.2).
Even for sites that have no coverage in an individual, we
achieved high genotyping accuracy (97.3%) for heterozy-
gous SNVs. Our results are consistent with previous
studies and demonstrate the power of EXL-WGS design
in leveraging genetic information at the population level.

Conclusions
The advances in sequencing technologies are making
EXL-WGS a more cost-effective and advantageous
strategy than SNP genotyping arrays for studying new
populations. EXL-WGS allows for the discovery of
population-specific variants that are not present on a
SNP array, provides a population-specific reference panel
for imputation, and generate a high-quality mitochondrial
genome for each sample.

Methods
Sample collection and sequencing
A total of 235 samples were collected from the state of
Andhra Pradesh in India. All samples belong to the Dra-
vidian language family and were collected as unrelated
individuals as described previously [48, 49]. All studies
of South Indian populations were approved by the Insti-
tutional Review Boards of the University of Utah and
Andhra University, India.
Whole genome sequencing using DNA samples from

the blood was performed at the Human Genome Se-
quencing Center, Baylor College of Medicine using Illu-
mina HiSeq following a standard protocol [50]. The raw
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sequencing data were subject to QC and aligned to the
human reference genome (hg19) using BWA [51]
through the Mercury Pipeline [52]. The alignment files
were then used for variant calling using SNPTools [24]
and GATK [25] pipeline.

Variant calling – SNPTools
The parameter fitting of the SNPtools pipeline was done
on a simulated cohort generated using Protocol 1 from
208 AFR samples from the 1000 Genomes Phase 1
data [53] with coverages corresponding to the real
data (See Additional file 2: Section S2.1 for more details).
The call set was phased and imputed using SNPtools.

Variant calling – GATK
Variant discovery by the Genome Analysis Tool Kit
(GATK, v2.4-9) pipeline roughly followed the best prac-
tice recommendation for alignment processing and vari-
ant calling [54]. Starting from sorted and indexed
individual BAM files, a series of GATK alignment-
processing procedures were conducted, including indel
realignment, PCR duplicate removal, and base quality
score recalibration. Then, a joint genotype calling was
performed on all individuals with GATK UnifiedGenoty-
per to generate the raw genotype call in a single variant-
calling format (VCF) file. The quality scores were then
recalibrated with VariantRecalibrator according to the
GATK recommended parameters. Detailed commands
are listed in Additional file 2: Section S8.

Variant calling – QC and sample selection
Among the 235 samples, 50 exhibited a high number of
SNVs. The dataset was tested for the confounding vari-
ables of sequencing depth and batch effect, and all 50
samples were in the batches sequenced on days 29-31
and days 41–43. These 50 samples were removed from
further analysis, and SNVs were recalled using the
SNPTools for a new consensus call set. The filtered
dataset with 185 samples is presented in Table 1.

Data merging

1. SNPTools and GATK call sets: SNVs with MAF
<10% were filtered out from both call sets. A
consensus site list was generated for sites that are
present in both call sets, and the phased SNPtools
calls for the consensus sites were used for further
analysis and annotation.

2. SAS-AP and the 1000 Genomes call set: For PCA
and FST analysis, samples from the 1000 Genomes
Phase 3 dataset were merged with SAS-AP samples.
Twenty samples were randomly chosen from each
population from the 1000GP3 dataset except the
SAS populations, for a total of 140, 80, 100 and 100

samples in 1000GP3-AFR, 1000GP3-AMR,
1000GP3-EAS and 1000GP3-EUR groups,
respectively. All 489 samples in the 1000GP3-SAS
dataset were used for the population genetic
analyses. CombineVariants in GATK (version 2.4-9,
[25]) was used for merging the datasets. Two different
merging datasets (SAS-AP + 1000GP3-SAS, and SAS-
AP + all 1000GP3 groups) were generated for different
analyses.

Population structure analysis
The smartpca module of EIGENSTRAT (version 5.0.1)
[55] was used for PCA and was executed without outlier
filtering. Given the novel population cohort, no linkage
disequilibrium-based filtering or preprocessing was carried
out. VCFtools (v0.1.12) [56] was used for calculating the
mean weighted Weir-Cockerham FST between populations.
Genome-wide admixture estimates were obtained using

a model-based algorithm implemented in ADMIXTURE
(version 1.02) [28]. To eliminate the effects of SNVs that
are in linkage disequilibrium, the dataset was first filtered
to remove SNVs that have a pairwise r2 > 0.2 within 50
SNV windows using PLINK [57] as recommended by the
authors of ADMIXTURE. Multiple ADMIXTURE runs
were performed to cover the number of ancestral popula-
tions (K) values from 4 to 7.

Imputation experiment
For this experiment, 6, 23, 20 and 12 samples were ran-
domly chosen from 16 upper caste, 69 middle caste, 62
lower caste, and 38 tribal samples, respectively. This
leaves 179, 162, 165 and 173 samples remaining in the
SAS-AP dataset as the reference panel for imputation
experiment of upper caste, middle caste, lower caste,
and tribal populations, respectively. One hundred and
sixty 1000GP3-SAS samples were chosen randomly from
the 489 1000GP3-SAS samples and SNVs with MAF
<10% were filtered out to generate a generic reference
panel. The target missing SNVs were selected using a 2-
stage process. First a site level intersection of all three
datasets used in an imputation experiment (target, popu-
lation specific and generic) was produced. Every 20th site
from this intersection was then removed from the con-
sensus set, thereby deleting approximately 5% of the
common sites from the target dataset for imputation.
This strategy of removing SNVs ensures a genome-wide
assessment of imputation accuracy where there is
enough haplotype structure information remaining in
the target dataset to effectively impute the missing
SNVs. Beagle (ver 3.09) [58] was used to impute missing
sites in the target set from the reference panels with de-
fault parameters.

Rustagi et al. BMC Genomics  (2017) 18:396 Page 10 of 12



Additional files

Additional file 1: Table S1. Sequencing and variant calling statistics for
185 SAS-AP samples. (XLS 50 kb)

Additional file 2: Supplementary Information. (PDF 1370 kb)

Abbreviations
1000GP3: 1000 Genomes Phase 3; 1000GP3-AFR: 1000 Genome Project Phase
3 African; 1000GP3-AMR: 1000 Genome Project Phase 3 American; 1000GP3-
BEB: 1000 Genome Project Phase 3 Bengalis from Bangladesh; 1000GP3-
EAS: 1000 Genomes Project Phase 3 East Asian; 1000GP3-EUR: 1000 Genomes
Project Phase 3 European; 1000GP3-GIH: 1000 Genome Project Phase 3
Gujaratis in Houston; 1000GP3-ITU: 1000 Genome Project Phase 3 Telugu
from UK; 1000GP3-PJL: 1000 Genome Project Phase 3 Punjabis from Lahore;
1000GP3-SAS: 1000 Genome Project Phase 3 South Asian; 1000GP3-
STU: 1000 Genome Project Phase 3 Sri Lankan Tamils from UK; ANI: Ancestral
North Indians; ASI: Ancestral South Indians; EXL-WGS: Extremely low
coverage whole genome sequencing; GATK: Genome analysis tool kit;
PCA: Principal component analysis; R2: dosage correlation coefficient; SAS-
AP: South Asian-Andhra Pradesh; SNV: Single nucleotide variants

Acknowledgements
The authors would like to thank the Indians for participating in this study.
The authors would also like to thank the two anonymous reviewers for their
instructive comments for the manuscript.

Funding
NR, FY, RAG and DM were supported by NIH U54 HG003273. LBJ and WSW
were supported by NIH R01 GM59290 and R35 GM118335. JX was supported by
NIH R00 HG005846. The funding agency has no influence on the study design,
data collection, analysis, and interpretation.

Availability of data and materials
The BAM files containing the sequencing read alignments have been uploaded
to the SRA database under http://www.ncbi.nlm.nih.gov/bioproject/PRJNA329321.
The final variant call used in the analysis is available from https://sourceforge.net/
projects/sas-ap-185-exl-wgs/. The VCF files from the 1000 Genomes consortium
used in the study were downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/release/20130502/.

Authors’ contributions
LBJ, FY, and JX conceived the study; NR, AZ, WSW, EG, SW, NR, and JX
performed the analysis, DM and RAG oversaw the sequencing experiment.
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interest.

Consent for publication
Not applicable.

Ethics approval and consent to participate
All samples were collected as unrelated individuals as described previously
[48, 49]. All the individuals in this study gave written consent to participate
in the study. All studies were approved by the Institutional Review Board at
the University of Utah, USA and the administration of Andhra University, India.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Received: 14 September 2016 Accepted: 7 May 2017

References
1. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of

next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.
2. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM,

Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA,

Abecasis GR. A global reference for human genetic variation. Nature.
2015;526:68–74.

3. Psaty BM, O’Donnell CJ, Gudnason V, Lunetta KL, Folsom AR, Rotter JI,
Uitterlinden AG, Harris TB, Witteman JCM, Boerwinkle E. Cohorts for heart
and aging research in genomic epidemiology (CHARGE) consortium design
of prospective meta-analyses of genome-wide association studies from 5
cohorts. Circ Cardiovasc Genet. 2009;2:73–80.

4. Li Y, Sidore C, Kang HM, Boehnke M, Abecasis GR. Low-coverage sequencing:
implications for design of complex trait association studies. Genome Res.
2011;21:940–51.

5. Fumagalli M, Vieira FG, Korneliussen TS, Linderoth T, Huerta-Sanchez E,
Albrechtsen A, Nielsen R. Quantifying population genetic differentiation
from next-generation sequencing data. Genetics. 2013;195:979–92.

6. Skotte L, Korneliussen TS, Albrechtsen A. Estimating individual admixture
proportions from next generation sequencing data. Genetics. 2013;195:693–702.

7. Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: Analysis of Next Generation
Sequencing Data. BMC Bioinformatics. 2014;15:356.

8. Nicod J, Davies RW, Cai N, Hassett C, Goodstadt L, Cosgrove C, Yee BK,
Lionikaite V, McIntyre RE, Remme CA. Genome-wide association of multiple
complex traits in outbred mice by ultra-low-coverage sequencing. Nat
Genet. 2016;48:912–8.

9. Cai N, Bigdeli TB, Kretzschmar W, Li Y, Liang J, Song L, Hu J, Li Q, Jin W, Hu
Z. Sparse whole-genome sequencing identifies two loci for major
depressive disorder. Nature. 2015;523:588–91.

10. Pasaniuc B, Rohland N, McLaren PJ, Garimella K, Zaitlen N, Li H, Gupta N,
Neale BM, Daly MJ, Sklar P, et al. Extremely low-coverage sequencing and
imputation increases power for genome-wide association studies. Nat
Genet. 2012;44:631–5.

11. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P,
Kondrashov AS, Sunyaev SR. A method and server for predicting damaging
missense mutations. Nat Methods. 2010;7:248–9.

12. Gibbs RA, Belmont JW, Hardenbol P, Willis TD, Yu F, Yang H, Ch’ang L-Y,
Huang W, Liu B, Shen Y. The international HapMap project. Nature. 2003;
426:789–96.

13. International HapMap Consortium. Integrating common and rare genetic
variation in diverse human populations. Nature. 2010;467:52–8.

14. Singh KS. People of India: an introduction. 2002.
15. Chaubey G, Metspalu M, Kivisild T, Villems R. Peopling of South Asia:

investigating the caste–tribe continuum in India. Bioessays. 2007;29:91–100.
16. Reich D, Thangaraj K, Patterson N, Price AL, Singh L. Reconstructing Indian

population history. Nature. 2009;461:489–94.
17. Basu A, Sarkar-Roy N, Majumder PP. Genomic reconstruction of the history

of extant populations of India reveals five distinct ancestral components
and a complex structure. Proc Natl Acad Sci. 2016;113:1594–9.

18. Xing J, Watkins WS, Hu Y, Huff CD, Sabo A, Muzny DM, Bamshad MJ, Gibbs
RA, Jorde LB, Yu F. Genetic diversity in India and the inference of Eurasian
population expansion. Genome Biol. 2010;11:R113.

19. Simonson TS, Zhang Y, Huff CD, Xing J, Watkins WS, Witherspoon DJ, Woodward
SR, Jorde LB. Limited distribution of a cardiomyopathy-associated variant in India.
Ann Hum Genet. 2010;74:184–8.

20. Wong L-P, Lai JK-H, Saw W-Y, Ong RT-H, Cheng AY, Pillai NE, Liu X, Xu W,
Chen P, Foo J-N. Insights into the genetic structure and diversity of 38
South Asian Indians from deep whole-genome sequencing. PLoS Genet.
2014;10:e1004377.

21. Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R. Ascertainment
bias in studies of human genome-wide polymorphism. Genome Res.
2005;15:1496–502.

22. Lachance J, Tishkoff SA. SNP ascertainment bias in population genetic analyses:
why it is important, and how to correct it. Bioessays. 2013;35:780–6.

23. Lander ES, Waterman MS. Genomic mapping by fingerprinting random clones:
a mathematical analysis. Genomics. 1988;2:231–9.

24. Wang Y, Lu J, Yu J, Gibbs RA, Yu F. An integrative variant analysis pipeline
for accurate genotype/haplotype inference in population NGS data. Genome
Res. 2013;23:833–42.

25. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M. The genome analysis toolkit: a
MapReduce framework for analyzing next-generation DNA sequencing data.
Genome Res. 2010;20:1297–303.

26. Xing J, Watkins WS, Witherspoon DJ, Zhang Y, Guthery SL, Thara R, Mowry
BJ, Bulayeva K, Weiss RB, Jorde LB. Fine-scaled human genetic structure
revealed by SNP microarrays. Genome Res. 2009;19:815–25.

Rustagi et al. BMC Genomics  (2017) 18:396 Page 11 of 12

dx.doi.org/10.1186/s12864-017-3767-6
dx.doi.org/10.1186/s12864-017-3767-6
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA329321
https://sourceforge.net/projects/sas-ap-185-exl-wgs/
https://sourceforge.net/projects/sas-ap-185-exl-wgs/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/


27. Bamshad M, Kivisild T, Watkins WS, Dixon ME, Ricker CE, Rao BB, Naidu JM,
Prasad BV, Reddy PG, Rasanayagam A, et al. Genetic evidence on the origins
of Indian caste populations. Genome Res. 2001;11:994–1004.

28. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry
in unrelated individuals. Genome Res. 2009;19:1655–64.

29. Neuvonen AM, Putkonen M, Översti S, Sundell T, Onkamo P, Sajantila A,
Palo JU. Vestiges of an ancient border in the contemporary genetic diversity
of north-eastern Europe. PLoS One. 2015;10:e0130331.

30. Norio R. Genetics and the Origin of the Finns. eLS. 2013. doi:10.1002/
9780470015902.a0020806.pub2.

31. Watkins WS, Thara R, Mowry BJ, Zhang Y, Witherspoon DJ, Tolpinrud W,
Bamshad MJ, Tirupati S, Padmavati R, Smith H, et al. Genetic variation in
South Indian castes: evidence from Y-chromosome, mitochondrial, and
autosomal polymorphisms. BMC Genet. 2008;9:86.

32. Indian Genome Variation Consortium. Genetic landscape of the people of
India: a canvas for disease gene exploration. J Genet. 2008;87:3–20.

33. Marchini J, Cardon LR, Phillips MS, Donnelly P. The effects of human population
structure on large genetic association studies. Nat Genet. 2004;36:512–7.

34. Freedman ML, Reich D, Penney KL, McDonald GJ, Mignault AA, Patterson N,
Gabriel SB, Topol EJ, Smoller JW, Pato CN. Assessing the impact of
population stratification on genetic association studies. Nat Genet.
2004;36:388–93.

35. Maloney C. The races in peoples of South Asia. New York: Rinehart and
Winston; 1974.

36. Chandler WB. The Ethiopian presence in the Indus valley civilization. J Afr
Civilizations. 1985;7:80–107.

37. Cavalli-Sforza LL, Menozzi P, Piazza A. The history and geography of human
genes. Princeton: Princeton university press; 1994.

38. Browning SR, Browning BL. Rapid and accurate haplotype phasing and
missing-data inference for whole-genome association studies by use of
localized haplotype clustering. Am J Hum Genet. 2007;81:1084–97.

39. Davies RW, Flint J, Myers S, Mott R. Rapid genotype imputation from
sequence without reference panels. Nat Genet. 2016;48:965–9.

40. Pemberton TJ, Jakobsson M, Conrad DF, Coop G, Wall JD, Pritchard JK, Patel
PI, Rosenberg NA. Using population mixtures to optimize the utility of
genomic databases: linkage disequilibrium and association study design in
India. Ann Hum Genet. 2008;72:535–46.

41. Guo Y, Long J, He J, Li CI, Cai Q, Shu XO, Zheng W, Li C. Exome sequencing
generates high quality data in non-target regions. BMC genomics. 2012;13(1):194.

42. Cancer Genome Atlas Research N. Genomic and epigenomic landscapes of
adult de novo acute myeloid leukemia. N Engl J Med. 2013;2013:2059–74.

43. Kivisild T, Bamshad MJ, Kaldma K, Metspalu M, Metspalu E, Reidla M, Laos S,
Parik J, Watkins WS, Dixon ME. Deep common ancestry of Indian and
western-Eurasian mitochondrial DNA lineages. Curr Biol. 1999;9:1331–4.

44. Richards M, Macaulay V, Hickey E, Vega E, Sykes B, Guida V, Rengo C, Sellitto
D, Cruciani F, Kivisild T. Tracing European founder lineages in the Near
Eastern mtDNA pool. Am J Hum Genet. 2000;67:1251–76.

45. Illumina - AllSeq. [http://allseq.com/knowledge-bank/sequencing-platforms/
illumina/]. Accessed 20 June 2016.

46. Rohland N, Reich D. Cost-effective, high-throughput DNA sequencing
libraries for multiplexed target capture. Genome Res. 2012;22:939–46.

47. Wang C, Zhan X, Bragg-Gresham J, Kang HM, Stambolian D, Chew EY,
Branham KE, Heckenlively J, Study TF, Fulton R. Ancestry estimation and
control of population stratification for sequence-based association studies.
Nat Genet. 2014;46:409–15.

48. Bamshad MJ, Watkins WS, Dixon ME, Jorde LB, Rao BB, Naidu JM, Prasad
BVR, Rasanayagam A, Hammer MF. Female gene flow stratifies Hindu castes.
Nature. 1998;395:651–2.

49. Watkins WS, Bamshad M, Dixon ME, Rao BB, Naidu JM, Reddy PG, Prasad B,
Das PK, Reddy PC, Gai PB. Multiple origins of the mtDNA 9-bp deletion in
populations of South India. Am J Phys Anthropol. 1999;109:147–58.

50. BCM-HGSC [https://www.hgsc.bcm.edu/sites/default/files/documents/Illumina_
Barcoded_Paired-End_Capture_Library_Preparation.pdf]. Accessed 20 June 2016.

51. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler
transform. Bioinformatics. 2010;26:589–95.

52. Reid JG, Carroll A, Veeraraghavan N, Dahdouli M, Sundquist A, English A,
Bainbridge M, White S, Salerno W, Buhay C. Launching genomics into the
cloud: deployment of Mercury, a next generation sequence analysis pipeline.
BMC bioinformatics. 2014;15:1.

53. The 1000 Genomes Project Consortium. An integrated map of genetic
variation from 1,092 human genomes. Nature. 2012;491:56–65.

54. GATK | Index [https://www.broadinstitute.org/gatk/guide/best-practices.
php]. Accessed 20 June 2013.

55. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS
Genet. 2006;2:e190.

56. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker
RE, Lunter G, Marth GT, Sherry ST. The variant call format and VCFtools.
Bioinformatics. 2011;27:2156–8.

57. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller
J, Sklar P, De Bakker PIW, Daly MJ. PLINK: a tool set for whole-genome
association and population-based linkage analyses. Am J Hum Genet.
2007;81:559–75.

58. Browning BL, Browning SR. Genotype imputation with millions of reference
samples. Am J Hum Genet. 2016;98:116–26.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Rustagi et al. BMC Genomics  (2017) 18:396 Page 12 of 12

http://dx.doi.org/10.1002/9780470015902.a0020806.pub2
http://dx.doi.org/10.1002/9780470015902.a0020806.pub2
http://allseq.com/knowledge-bank/sequencing-platforms/illumina/
http://allseq.com/knowledge-bank/sequencing-platforms/illumina/
https://www.hgsc.bcm.edu/sites/default/files/documents/Illumina_Barcoded_Paired-End_Capture_Library_Preparation.pdf
https://www.hgsc.bcm.edu/sites/default/files/documents/Illumina_Barcoded_Paired-End_Capture_Library_Preparation.pdf
https://www.broadinstitute.org/gatk/guide/best-practices.php
https://www.broadinstitute.org/gatk/guide/best-practices.php

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Samples and sequencing coverage
	Variants discovery
	Population genetic analyses
	Imputation performance
	Mitochondrial genome

	Discussion
	Fine-scale population structure
	Enhanced imputation reference panel
	High quality mitochondrial genome
	Feasibility and necessity of WGS

	Conclusions
	Methods
	Sample collection and sequencing
	Variant calling – SNPTools
	Variant calling – GATK
	Variant calling – QC and sample selection
	Data merging
	Population structure analysis
	Imputation experiment

	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher’s Note
	References

