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Rapid conversion of chronic myeloid leukemia to chronic
myelomonocytic leukemia in a patient on imatinib therapy
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BCR-ABL1, the product of the Philadelphia chromosome (Ph), is
sufficient for inducing the chronic phase of chronic myeloid
leukemia (CML).1 Tyrosine kinase inhibitors (TKIs) suppress the Ph+

cell clone, restoring polyclonal hematopoiesis.2 However, clonal
cytogenetic abnormalities in Ph− cells become detectable in some
patients achieving a cytogenetic response to TKIs, and slow
evolution to myelodysplasia or acute myeloid leukemia (AML) has
been observed.2,3 In rare cases, identical abnormalities were
demonstrated both in Ph+ and Ph− cells, but most cases are
consistent with independently acquired abnormalities, although
an undetected common ancestral event cannot be excluded
(reviewed in Loriaux and Deininger4). The clinical conundrum of
coexisting leukemic disorders is that TKI suppression of CML may
unmask a different, more aggressive disease. Here, we report a

patient who after starting imatinib rapidly converted from CML to
fatal chronic myelomonocytic leukemia (CMML), demonstrating
that this is not a theoretical consideration. Whole-exome
sequencing (WES) and genotyping of individual colonies revealed
the clonal architecture during disease evolution and implicated
TET2 and ASXL1 variants as early or germline events.

CASE DESCRIPTION
A 77-year-old man presented with fever and 16 kg weight loss.
Clinical examination was unremarkable without splenomegaly.
The white blood cell (WBC) count was 270 000/μl, with a myeloid
left shift; hemoglobin was 9 g/dl and platelets were 55 000/μl
(Supplementary Table 1). Bone marrow (BM) biopsy was 90%
cellular with a left shift (Figures 1a and b). BM metaphase
karyotyping was 46XY, t(9;22)(q34;q11.2)[20] and blood BCR-ABL1
mRNA (e13a2) was 10% on the international scale (IS). The patient

Figure 1. Blood and BM morphology. (a) Peripheral blood smear at CML diagnosis demonstrating marked leukocytosis with granulocytic left
shift and decreased platelets. (b) BM biopsy at CML diagnosis shows hypercellularity with granulocytic hyperplasia. (c) Peripheral blood smear
on day 92 of imatinib therapy showing leukocytosis with monocytosis and (d) corresponding BM biopsy showing hypercellular BM with
occasional hypolobated megakaryocytes.
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was started on 400 mg imatinib (considered day 1) and stayed on
the same dose throughout the treatment. On day 67, partial
hematological response was demonstrated, but a rise of mono-
cytes was noted (Supplementary Table 1). At day 92, the WBC count
rose to 73 000/μl, monocytes were 19%, hemoglobin was 9 g/dl and
platelets were 80 000/μl. BM histology showed increased mono-
cytes (Figures 1c and d), karyotyping was 46XY,[30] and
BCR-ABL1 was 0.12% IS. Sequencing was negative for BCR-ABL1
kinase domain mutations. A diagnosis of CMML was established.
5-Azacytidine was added, with initial improvement of blood counts.
The subsequent clinical course was complicated by sepsis; the
patient declined further leukemia therapy and passed away.

SOMATIC MUTATIONS ASSOCIATED WITH PHENOTYPIC
CONVERSION TO CMML
We performed WES (average read depth: 61 × ) on blood CD14+

cells from day 92, with CD3+ cells from the diagnostic sample as
constitutional control. We identified four somatic single-
nucleotide variants (SNVs; EZH2I669M, KRASG12R, MSLNP462H and
NTRK3V443I), all of which were confirmed by Sanger sequencing
(Supplementary Table 2). Sequenom MassARRAY (Agena
Bioscience, San Diego, CA, USA) identified the same mutations
in the day 67, 78, 92 and 124 samples, but not the diagnostic
sample (Supplementary Table 3). In addition, we identified one
nonsense variant in ASXL1 (c.24422delC→ p.P808fs*10) and two
nonsense variants in TET2 (TET2 c.1219delT→ p.S407fs*20;
c.4932delA→p.Y1645fs*50). Across all samples, including CD3+

and diagnostic CD14+ cells, ASXL1 c.24422delC and TET2
c.4932delA were detected at ~ 50%, whereas TET2 c.1219delT
was detected at ~ 30% (Supplementary Table 3). ASXL1
c.24422delC and TET2 c.1219delT are listed in catalogue of
somatic mutations in cancer and have been confirmed as somatic,
whereas our findings are consistent with germline mutations
or acquisition by a multipotent hematopoietic stem cell.
Although TET2 c4932delA has not been reported in the catalogue
of somatic mutations in cancer (COSMIC), a very similar variant
(COSM4170135, c.4928delC, p.P1644fs*51) has. WES of the diagnostic
sample at an average depth of 319× failed to identify additional
mutations specific to the CML clone, but confirmed the presence of
low-level EZH2I669M, KRASG12R, MSLNP462H and NTRK3V443I.

CLONAL ARCHITECTURE AND EVOLUTION
To unravel clonal relationships, we plated CD34+ cells from
diagnosis, day 67 and 78 in colony assays (no viable cells available
from days 92 and 124). Both DNA and RNA were extracted from
~100 single colonies, and analyzed for EZH2I669M, KRASG12R,
MSLNP462H and NTRK3V443I by MassARRAY, and for BCR-ABL1
messenger RNA (mRNA) by quantitative reverse transcription PCR.
In the diagnostic sample, 92/100 colonies were informative for
BCR-ABL1 and all for DNA mutational analysis. Only 38% of
informative colonies were BCR-ABL1-positive. This is unusual, as
myeloid colonies from newly diagnosed CML patients are almost
exclusively BCR-ABL1-positive,5 but is consistent with the low
BCR-ABL1 expression (10% IS). Altogether 14% of colonies were
positive for at least one of the four somatic SNVs, all of which were
BCR-ABL1-negative; 43% were wild type (Figure 2a). Genotypes
included KRASG12R, KRASG12R/MSLNP462H/NTRK3V443I and KRASG12R/
MSLNP462H/NTRK3V443I/EZH2I669M (Figure 2a). The failure of WES
and MassARRAY to detect the SNVs in the diagnostic sample likely
reflects their lower sensitivity; alternatively, in vitro culture
with cytokines may favor CMML colonies owing to their
GM-CSF (granulocyte-macrophage colony-stimulating factor)
hypersensitivity.6 No BCR-ABL1-positive colonies were detected
on day 67, indicating effective CML therapy; however, 51/105
colonies (49%) were positive for at least one of the four SNVs. Most
of the genotypes followed the patterns of the diagnostic sample

(Figure 2a, lower panel); two colonies were KRASG12R/NTRK3V443I/
EZH2I669M and one was heterozygous MSLNP462H. Despite the
increase of colonies with at least one SNV, the ratio between the
various SNVs remained largely stable (Figure 2a). On day 78,
colonies positive for all four SNVs were dominant; two colonies
were KRASG12R/NTRK3V443I/EZH2I669M, two were heterozygous
MSLNP462H only, and one was heterozygous for KRASG12R/
NTRK3V443I/EZH2I669M and homozygous for MSLNP462H (Figure 2a).
Altogether, these data are consistent with somatic acquisition of
KRASG12R, followed by NTRK3V443I and MSLNP462H, and finally
EZH2I669M (Figure 2b). Whether MSLNP462H and NTRK3V443I were
acquired successively or simultaneously cannot be distinguished.
KRASG12R/NTRK3V443I/EZH2I669M colonies could reflect loss of the
mutant MSLN allele in a side clone, or a sequencing error, which
would also explain detection of MSLNP462H as the only SNV in two
colonies. As colony assays may skew clonal ratios present in vivo,
we quantified KRASG12R, MSLNP462H, NTRK3V443I and EZH2I669M by
pyrosequencing of MNCs from all five samples (Figure 2c). None of
the SNVs was detected at diagnosis. KRASG12R occurred with at
least 10% higher allelic frequency than the other SNVs in all
subsequent samples, consistent with the initial acquisition.
EZH2I669M was 10–15% higher than MSLNP462H. This is at variance
with the colony data suggesting EZH2I669M was acquired last, but
could be explained by MSLNP462H loss from the clone harboring all
four mutations (Figure 2b), via deletion or acquired uniparental
disomy of the non-mutated allele. As shown in Figure 2a, we
observed such a clone at low frequency in the colony assays
(two colonies in the day 67 and 78 samples). Discrepancies in
clonal representation between colony and sequencing data were
also demonstrated in AML.7

Although the presentation of our patient was consistent with
CML, low hemoglobin and platelets were unusual in the absence
of other high-risk CML features. On imatinib, the clinical
phenotype rapidly morphed to CMML and four somatic point
mutations were detected by WES of CD14+ cells on day 67.
Although neither MassARRAY nor pyrosequencing had identified
any of these variants at diagnosis, their rapid appearance
suggested they predated imatinib therapy, which was confirmed
by colony sequencing. BCR-ABL1 and the CMML-related point
mutations may have arisen independently in different hemato-
poietic stem cells or may share a common abnormal ancestor. The
latter is suggested by nonsense SNVs in ASXL1 and TET2, with
identical allelic ratios in CD3+ and CD14+ cells, and MNCs, and in
all sequential samples, consistent with their presence in the
germline or in a pluripotent hematopoietic stem cell. Somatic
mutations in CMML T cells have been reported, although typically
at a lower allelic ratio than in the myeloid lineage.8 Verification
would require an alternative source of germline DNA, which is not
available. Irrespective of this limitation, it is likely that TET2S407fs*20

and ASXL1P808fs*10 contribute to CMML in this patient, as they have
been reported as validated somatic variants in catalogue of
somatic mutations in cancer. Moreover, we have shown that TET2
(~50%) and ASXL1 (~40%) are among the most commonly
mutated genes in CMML, whereas the frequency of NRAS or KRAS
mutations is only 10–20%.9 Another study identified TET2
mutations as founder mutations in CMML,8 while KRASG12R was
as a secondary event, and EZH2 mutations are acquired late.9 This
suggests that RASG12R and EZH2I669M were acquired by TET2/
ASXL1-mutant cells. EZH2I669M is a recurrent CMML mutation and
associated with poor outcome.10 Neither MSLNP462H nor NTRK3V443I

have been described in CMML or other cancers. MSLN encodes a
precursor of two proteins, megakaryocyte potentiation factor,
which enhances cytokine effects on megakaryocytes, and
mesothelin, a cell adhesion molecule.11,12 p.P462T was previously
reported in esophageal carcinoma.13 Mutations of NTRK3 (also
known as TrkC) have been described in medulloblastoma and
other cancers.14 In AML cell lines, NTRK3 enhances proliferation
and inhibits apoptosis through activation of PI3K/AKT and
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Figure 2. Genotyping of successive blood samples. (a) Colony genotyping at diagnosis, day 67 and day 78 (upper panel). Proportion of BCR-
ABL1-positive (green), BCR-ABL1-negative (white) and BCR-ABL1-undetermined colonies (gray; lower panel). Numbers of colonies with
KRASG12R, MSLNP462H, NTRK3V443I and EZH2I669M alleles. Gray circles represent the nonmutant alleles. (b) Clonal architecture and evolution. The
squares denote SNVs that were either present IN myeloid as well as T cells, suggesting they were germline variants or acquired by a
progenitor cell with multilineage potential. Circles represent the four somatic SNVs, with color coding as in the previous panel.
(c) Quantification of somatic SNVs by pyrosequencing.
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AKT/mTOR.15 Functional characterization will be required to
determine whether MSLNP462H and NTRK3V443I contribute to
disease progression or are bystanders.
Secondary Ph− leukemia after treatment for CML is rare. Prior

to the introduction of imatinib, such cases were ascribed to
cytotoxic chemotherapy. In the era of TKIs, effective suppression
of the highly proliferative Ph+ clone may lead to rapid expansion
of a previously unrecognized leukemic clone, as in our patient. It
is conceivable that a nonspecific agent, such as hydro-
xyurea, might have been a better option compared with the
imatinib/5-azacytidine combination, illustrating the challenges of
applying targeted therapy to clonally complex myeloproliferative
neoplasms.
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