
BIOINFORMATICS APPLICATIONS NOTE Vol. 27 no. 24 2011, pages 3423–3424

doi:10.1093/bioinformatics/btr539

Genome analysis Advance Access publication September 23, 2011

Pybedtools: a flexible Python library for manipulating genomic
datasets and annotations
Ryan K. Dale1,∗, Brent S. Pedersen2 and Aaron R. Quinlan3,∗
1Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases,
National Institutes of Health, Bethesda, MD 20892, 2Department of Medicine, University of Colorado, Denver,
Anschutz Medical Campus, Aurora, CO 80045 and 3Department of Public Health Sciences, Center for Public Health
Genomics, University of Virginia, Charlottesville, VA 22908, USA
Associate Editor: John Quackenbush

ABSTRACT
Summary: pybedtools is a flexible Python software library for
manipulating and exploring genomic datasets in many common
formats. It provides an intuitive Python interface that extends upon
the popular BEDTools genome arithmetic tools. The library is well
documented and efficient, and allows researchers to quickly develop
simple, yet powerful scripts that enable complex genomic analyses.
Availability: pybedtools is maintained under the GPL license. Stable
versions of pybedtools as well as documentation are available on the
Python Package Index at http://pypi.python.org/pypi/pybedtools.
Contact: dalerr@niddk.nih.gov; arq5x@virginia.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.

Received on July 15, 2011; revised on September 12, 2011; accepted
on September 20, 2011

1 INTRODUCTION
Due to advances in DNA sequencing technologies, genomic datasets
are rapidly expanding in size and complexity (Stein, 2010). It is now
clear that the primary bottleneck in genomics is data analysis and
interpretation, not data generation. Therefore, researchers depend
upon fast, flexible ‘genome arithmetic’ tools for interrogating
and comparing diverse datasets of genome features. For example,
genome arithmetic is used to interpret results from whole-genome
sequencing, ChIP-seq and RNA-seq experiments by integrating
experimental datasets with genes, genetic variation and the wealth
of existing genome annotations (1000 Genomes Project Consortium
et al., 2010; ENCODE Project Consortium et al., 2011). These
analyses are complicated by the fact that they are often done via
custom scripts or one-off manipulations that are inefficient and
difficult to reproduce and maintain.

Tools designed to manipulate, intersect and annotate these datasets
in commonly-used formats greatly facilitate such analyses and
provide a consistent framework for reproducible research. Here we
introduce pybedtools, which extends the BEDTools (Quinlan and
Hall, 2010) genome arithmetic utilities by providing a powerful
interface combining the benefits of Python scripting and the
BEDTools libraries. Using a simple syntax, it allows researchers to
analyze datasets in BED (Kent et al., 2002), VCF (Danacek et al.,

∗To whom correspondence should be addressed.

2011), GFF, BEDGRAPH (Kent et al., 2002) and SAM/BAM (Li
et al., 2009) formats without the need for format conversion.

2 APPROACH
The pybedtools library allows one to manipulate datasets at both
the file and individual feature level using the BedTool and Interval

classes, respectively. It integrates high-level BEDTools programs
through the Python subprocess module, and lower level BEDTools
functionality by exposing a subset of BEDTools’ libraries. At the
core of pybedtools is the BedTool class. Typically, a BedTool is
initially created with a file name. BEDTools programs are then
accessed as methods of BedTool objects (e.g. BedTool.intersect for
the BEDTools program intersectBed) with arguments identical
to the user’s installed version of BEDTools. However, in addition
to passing filenames as in typical BEDTools command line usage,
one may also pass collections of Interval objects which can be
manipulated in Python on a feature-by-feature basis. Furthermore,
BedTool methods return new BedTool instances, allowing users to
chain many operations together in a fashion similar to the UNIX
command line.

The pybedtools package provides a standardized interface to
individual features in diverse genomics datasets, thus allowing
one to iterate through datasets while accessing chromosome, start
and stop coordinates with identical syntax, regardless of the
underlying file format. This abstraction is made possible via Cython
(http://cython.org, last accessed Aug 2011) which exposes the
BEDTools file manipulation, feature parsing and overlap detection
functions. In terms of speed and memory efficiency, pybedtools

therefore compares favorably with Galaxy’s (Giardine et al., 2005)
bx-python, Kent source (Kent et al., 2002) and the original
BEDTools software (Supplementary Fig. 1). Formats with different
coordinate systems (e.g. BED vs GFF) are handled with uniform,
well-defined semantics described in the documentation. Additional
features and example scripts illustrating the library’s functionality
are in the documentation at http://packages.python.org/pybedtools.

3 APPLICATION
The pybedtools package employs a syntax that is intuitive to Python
programmers. For example, given an annotation file of genes, hg19.gff,
and a file containing relevant genetic variation, snps.bed, one can identify
genes that contain SNPs with the following:

from pybedtools import BedTool

© The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



R.K.Dale et al.

genes = BedTool(’hg19.gff’)

snps = BedTool(’snps.bed’)

genes_with_snps = genes.intersect(snps)

At this point, one can easily examine the genes that overlap SNPs:

for g in genes_with_snps:

print g.chrom, g.start, g.end, len(g)

or filter the results with simple boolean functions:

def chrom_filt(g):

return g.chrom == ’chr21’

subset = genes_with_snps.filter(chrom_filt)

The underlying BEDTools commands send their results to ‘standard output’.
To assist in managing intermediate files, pybedtools automatically saves these
results as temporary files that are deleted when Python exits. Results can be
explicitly saved with the saveas() method:

subset = subset.saveas(’chr21-genes-snps.gff’)

Given a FASTA file of the genome, hg19.fa, sequences for this subset of
genes can be retrieved and saved with:

subset.sequence(’hg19.fa’).\

save_seqs(’chr21-genes-snps.fa’)

One of the more powerful extensions provided by the pybedtools interface is
the ability to mix file operations with feature operations in a way that makes
otherwise difficult tasks very accessible with minimal code. For example, the
following identifies the closest gene (within 5 kb) to each intergenic SNP:

intergenic_snps = (snps - genes)

nearby = genes.closest(intergenic_snps, d=True,

stream=True)

for gene in nearby:

if int(gene[-1]) < 5000:

print gene.name

This example illustrates several powerful features of pybedtools that confer
additional functionality and greatly simplify analyses as compared with
the BEDTools command line utilities (see Supplementary Material for an
analogous experiment with BEDTools). For example, set subtraction between
BedTools is used to extract features that are unique to one file (snps
- genes). Similarly, one may also use the addition operator to identify
features in the first file that overlap features in multiple datasets (e.g. snps
+ novel_snps + genes). Moreover, there is essentially no limit to the
number of files that can be compared with the + and − operators.

Arguments sent to BedTool objects are passed to BEDTools programs. The
argument d=True tells the BEDToolsclosestBed program to append the
distance (in base pairs) between each SNP and the closest gene to the end of
each line, equivalent to the-d argument typically given on the command line.

Additionally, the argument stream=True indicates that the resulting
BedTool object will stream results as a Python iterable of Interval objects
instead of saving the results to a temporary file. This saves disk space and
reduces file operations when performing many operations on large files.

Also note the indexing of the Interval object gene via [-1]. This
retrieves the last item on the line, which, because of the d=True argument,
represents the distance in base pairs between each SNP and gene.All elements
of a line can be accessed from an Interval object by their integer index, and
core attributes by their name.

Finally, although nearby represents results that are a composite of GFF
and BED features (i.e. genes and snps), the operation that produced

nearby was driven by the gene GFF file. Therefore gene.name is
seamlessly extracted from the GFF ‘attributes’ field.

Pybedtools also allows one to integrate sequence alignments in the
widely used SAM/BAM format into their analyses. The following example
illustrates how one would use pybedtools to identify sequence alignments
that overlap coding exons.

reads = BedTool(’reads.bam’)

exons = BedTool(’exons.bed’)

exonic = reads.intersect(exons)

Alternatively, this analysis could be reduced to the following statement:

exonic = BedTool(’reads.bam’).intersect(’exons.bed’)

Some BEDTools programs require files containing chromosome sizes.
Pybedtools handles these automatically with the genome keyword argument
to methods that wrap such programs. For example, the following command
creates a bedGraph file of read coverage for the hg19 assembly:

bedgraph = reads.genome_coverage(genome=’hg19’,

bg=True)

4 CONCLUSION
The pybedtools package provides a convenient and flexible interface
to both the BEDTools command-line tools and efficient functions
in the BEDTools C++ libraries. Pybedtools simplifies complicated
analyses by extending the functionality in BEDTools and by
providing, to our knowledge, the first Python library offering a
common interface for manipulating datasets in diverse formats.
Other new functionality includes: set operations on multiple datasets
using a simple, intuitive syntax, the ability to filter features and
select specific columns or attributes, a unified interface to common
attributes (e.g. chromosome, start, end, name and strand) from
many file formats, and a documented command history. Pybedtools

provides researchers with a simple and efficient interface for
exploring complex genomics datasets in widely used formats.

Funding: Intramural Program of the National Institute of Diabetes
and Digestive and Kidney Diseases.

Conflict of Interest: none declared.

REFERENCES
1000 Genomes Project Consortium et al. (2010) A map of human genome variation

from population-scale sequencing. Nature, 467, 1061–1073.
Danacek,P. et al. (2011) The Variant Call Format and VCFTools. Bioinformatics, 27,

2156–2158.
ENCODE Project Consortium et al. (2011) A user’s guide to the encyclopedia of DNA

elements (ENCODE). PLoS Biol., 9, e1001046
Giardine,B. et al. (2005) Galaxy: a platform for interactive large-scale genome analysis.

Genome Res., 10, 1451–1455.
Kent,W. et al. (2002) The human genome browser at UCSC. Genome Res., 12,

996–1106.
Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics,

25, 2078.
Quinlan,A. and Hall,I. (2010) BEDTools: a flexible suite of utilities for comparing

genomic features. Bioinformatics, 26, 841–842.
Stein,L. (2010) The case for cloud computing in genome informatics. Genome Biol.,

11, 207.

3424




