
BLAST, FASTA, ClustalW, HMM and PHYLIP —
these bioinformatics algorithms are now a part of
every molecular biologist’s toolkit. DNA sequencing
and data mining have become almost as central to
biology as transcription and translation are to life. For
most biologists, data mining is synonymous with
sequence analysis — and understandably so, given the
vast number of powerful sequence-analysis tools that
are available. Some questions, however, cannot be
answered by sequence analysis alone. As every biolo-
gist knows, there is much more to a gene than its
sequence. For example, genes interact with other
genes, they have complex temporal and spatial expres-
sion patterns, most have phenotypes and, in some
cases, they are involved in disease. The question is:
where should we go for such information about a
sequence? One obvious destination is the bench;
another is MEDLINE.

Most of what is known about genes and genomes is
to be found in the biomedical literature. The Human
Genome has been called the ‘book of life’, but surely
MEDLINE is also a worthy contender for this title. At
the last count, MEDLINE contained more than 11 mil-
lion titles. Like the Human Genome, a CORPUS of this size
can be explored and managed only by computational
means. Today, the computational exploration and man-
agement of large text repositories are usually accom-
plished by using search engines and databases that are
based on a suite of text processing, indexing and search
tools — referred to collectively as natural language pro-
cessing (NLP) technologies. Exploring and managing

the biomedical literature using these technologies, how-
ever, presents some interesting challenges — primarily
because of the relationships between biomedical texts
and biological sequences. More than ever before, bio-
medical texts can be linked explicitly to the sequences of
the genes they discuss, and the role of NLP technologies
in biology is expanding and changing to reflect this fact.
Anyone who has ever tried to read the MEDLINE
abstracts that are associated with a BLAST report will
appreciate that understanding the complex relation-
ships that exist between genes, sequences and texts is a
daunting task.

The flood of sequence information produced by the
rapid advances in genomics is helping to provide new
ways of exploring texts, and is blurring the traditional
lines that separate bioinformatics and NLP. Information
about genes is not only found in papers about genes, but
also resides in the DNA, RNA and protein sequences
that are associated with genes. The fact that so many
texts and sequences are now available electronically nat-
urally raises the question of how best to combine these
two resources. For some time now, ENTREZ1, a litera-
ture-search service, has provided a means of exploring
this unique aspect of the biomedical literature, as navi-
gating between sequences and texts often sheds new
light on genes and their functions.

How best to exploit the synergies that exist between
genes, sequences and texts is still an open question — to
which there is not a single answer — and the diversity 
of research in this area reflects the open-ended nature of
the problem. Some researchers are focusing on texts as a
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General aspects of NLP
Most biologists have more than a passing knowledge of
bioinformatics. NLP, however, is probably new terri-
tory for most. There are three fundamental aspects to
NLP: information retrieval, semantics and informa-
tion extraction. Information retrieval refers to the
recovery of documents from a database on the basis of
their pertinence to a user’s query. This is probably the
most familiar aspect of NLP: anyone who has used
PubMed to find documents about a given topic has
made use of information-retrieval technologies.
Traditional information-retrieval methodologies,
however, are often frustrated by the complex termi-
nologies that are used to describe genes and their func-
tions. Making sense of such terminology is the goal of
semantics, and it is usually accomplished by means of
ontologies — that is, classification systems that relate
concepts to one another. Google users might have
noticed the ‘category’ heading that is placed at the top
of each search-results page; listed beside this heading
are the semantic classifications of the search results.
This is an example of how ontologies can be used to
classify documents and terms, and it is one of the
strong points of this popular online search engine.
Information extraction — the third basic component
of NLP — is the extraction of ideas and concepts from
a text, which is a process that is founded on effective
semantic classification.

Information retrieval
Information retrieval is the process of returning docu-
ments in response to a search from a database that meet
specific criteria. The term is used to describe two related
tasks: document-based and query-based retrieval.
Document-based retrieval scenarios usually take the
form of “show me more documents like this one”;
whereas query-based retrieval approaches attempt to
recover documents that contain some combination of
user-specified search terms, or keywords.

Keyword searches comprise the simplest form of
information retrieval. Documents are often indexed on
every term they contain, and keyword searches simply
return all documents that contain at least one query
term. Not surprisingly, this approach often returns irrel-
evant documents. So, most search engines go one step
further and attempt to establish a measure of document
relevance to a query. The most popular way of doing
this is by means of the ‘vector-space model’ of informa-
tion retrieval.

The vector-space model. Just as it is possible to quan-
tify sequence similarity, it is also possible to quantify
document similarity. In the vector-space model, each
document is represented as a vector or list of weighted
terms, based on the contents of the document 
(BOX 1a,b). The query is also ‘vectorized’, and the rele-
vance of each document in the corpus that is queried
is then assessed on the basis of the number of terms
shared between a document and the query. Logically,
the more often a query term occurs in a document,
the more likely that the document is relevant;

means of discovering information about protein inter-
actions, and are wrestling with how best to adapt tradi-
tional NLP technologies to this task. Others, taking a
more sequence-centred approach, are exploring the use
of texts as a means of improving sequence-retrieval
algorithms, and as an aid to sequence annotation.
Although the research in this area is diverse, it shares a
common substrate and a common goal: to use the rela-
tionships between genes, sequences and texts as the basis
for a new generation of analysis tools and methodolo-
gies that combine bioinformatics and NLP technologies
in a synergistic fashion. For brevity, we refer to these
approaches as ‘biological natural language processing’,
or bio-NLP.

Box 1 | Information retrieval using document vectors

In the vector-space model, each
document in a corpus is represented
as a list or weighted ‘vector’of the
words (or phrases) it contains.
A portion of a document and its
associated weighted vector are
shown in (a) and (b), respectively.
Each word that occurs in the list (b)
has an associated weight, which is
intended to represent the relative
importance of that word in
determining the theme of the
document. This weight is usually
some function of the frequency of
the term in the document (term
frequency, TF), so that terms that
occur more often in the document
will be given higher weights. To
prevent common words with less
semantic value from dominating the
vector, term weights are typically
normalized by IDF (the inverse
document frequency of the term),
which varies inversely with the
frequency of the term in the corpus
as a whole. Many formulations of
the TF × IDF weighting scheme
exist. One of these5 is (1 + logTF)
log(N/DF) for a corpus of size N,
where DF is document frequency.

The individual weights in a vector
collectively determine the direction
that the vector will point in ‘word
space’, wherein each dimension of
the space corresponds to a single
word or phrase in the document (c).
In this way, the direction of the
vector encodes the content of the
underlying document. In c, two
documents are shown in a two-
dimensional space (for simplicity).
The angle (q) between the vectors
can be used to measure the similarity
between the contents of the
underlying documents. Thyroid dimension0
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Measures of success. The success of an information-
retrieval algorithm is usually measured in terms of pre-
cision and recall. These measures are identical to the
specificity and sensitivity measures, respectively, that are
used to benchmark gene-finder performance6. Recall is
perfect if a query returns every pertinent document.
Similarly, the precision of the algorithm is perfect if only
these pertinent documents — and no others — are
returned. There is usually some trade-off between the
two measures, such that precision can be increased at
the expense of recall or vice versa. It is difficult to gener-
alize and say exactly what constitutes good precision
and recall, as only a human reader can assess the perti-
nence of search results to a query. Note that, in this
regard, information-retrieval algorithms differ from
sequence-retrieval algorithms such as BLAST7,8, which
has very high precision and recall. The lower ACCURACY of
information-retrieval algorithms has important impli-
cations, as users can never be certain that their search
has really recovered all pertinent documents, nor that all
of the documents recovered are pertinent; these are cau-
tions to bear in mind when carrying out literature
searches.

Better sequence retrieval and annotation
Most journals encourage authors to submit sequences
to GenBank before publication. This has proven to be
productive because it means that many papers are
explicitly linked to the sequences that they describe.
This is a unique feature of the biomedical literature,
and it has some interesting ramifications. Because
sequence similarity often implies similarity of biologi-
cal function, tools such as BLAST and ENTREZ can be
used to explore the biomedical literature through
sequence–text links. These links comprise more than a
mere navigational convenience, however, as there is
often a significant correlation between sequence and
document similarity (FIG. 1). In principle, this correla-
tion can be used to improve the accuracy both of docu-
ment- and of sequence-based retrieval algorithms.

Sequence retrieval. One approach to combining
sequence and textual information is to develop
sequence-retrieval algorithms that also incorporate
textual information. For example, SAWTED9 is a mod-
ified version of PSI-BLAST8. It combines vector-space sim-
ilarity scores based on SWISS-PROT10 protein-sequence
annotations with BLAST similarity scores, to improve
precision and recall. In similar work, Chang and col-
legues11 have described a variation of PSI-BLAST that
uses literature information linked to SWISS-PROT
records, together with MEDLINE cross-references and
MeSH headings (a document classification system; see
BOX 2 for a list of online resources). Their algorithm
excludes from the successive rounds of a PSI-BLAST
search those sequences for which related literature
(based on their vector-space similarity scores) is least
concordant with the literature associated with the orig-
inal query sequence. This approach increased PSI-
BLAST precision from 0.84 to 0.95 (where 1 is 100%
precisely) and had a negligible effect on recall, which

however, the more often a term occurs in the corpus
as a whole, the less likely that the term is a reliable
indicator of document relevance. These simple
assumptions motivate most of the techniques that are
used to weight terms in vector-based retrieval meth-
ods. The most common term-weighting strategy is 
TF × IDF, where TF is a measure of intra-document
term frequency and IDF (inverse document fre-
quency) is the inverse of the corpus-wide frequency of
that term. Document–query similarities are calculated
using these vectors of weighted terms. The most com-
mon procedure for assessing the similarity between
documents is to calculate the angle between the docu-
ment vectors (BOX 1c) — an approach that is used by
ENTREZ2 — but there are many others3–5. Initially,
document-similarity metrics might seem to be more
complex than sequence-similarity metrics, but this is
not really the case: when all is said and done, most are
simply scaled measures of the fraction of the words
shared between two documents.

ACCURACY 

This frequently used term also
has a formal definition. The
accuracy of an algorithm is often
defined as 2 × precision ×
recall/(precision + recall).

PSI-BLAST

A variation of BLAST that uses
profiles that are based on
sequence multiple-alignments to
improve the sensitivity of
protein database searches.

SWISS-PROT

A well-annotated database of
protein sequences.
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Figure 1 | Correlation between sequence similarity and document similarity. Linguistic
similarity between documents often correlates with the similarity between sequences that are
associated with those documents. A randomly chosen zinc-finger protein (gi:1022788) was used
in a BLAST search against GenBank’s ‘non-redundant’ protein database to recover a set of
similar protein sequences. MEDLINE identifiers were obtained for these proteins from GenBank,
and document-similarity scores were computed (BOX 1). The linear correlation coefficient between
similarity of documents and similarity of the sequences that are associated with those documents
was highly significant (r = 0.51, P << 0.001). The best-fitting line of regression is shown
superimposed on the data points (slope = 1.3 × 10−4, intercept = 1.67).
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well: Eisenhaber and Bork report that their AD HOC RULE-

BASED APPROACH was able to provisionally classify 88% of
the protein sequences contained in SWISS-PROT
release 34, whereas only 22% of the proteins in this
release could be provisionally assigned a cellular loca-
tion on the basis of simple keyword searches of their
associated annotations for terms such as ‘membrane’
and ‘extracellular matrix’. Stapley et al. evaluated the
effectiveness of their own approach, and reported that
the accuracy of assignment to various cellular locations
differed greatly, ranging from 0.30 for extracellular or
secreted proteins to 0.80 for proteins that are involved in
nuclear organization. Interestingly, Stapley et al. found
that the inclusion of sequence information in the form
of amino-acid composition considerably improved
assignment accuracy for most compartments, once
again illustrating the utility of hybrid sequence–text
approaches. Both groups also point out that one of the
benefits of automated approaches is that they provide a
high-throughput means of identifying errors and
inconsistencies in manual sequence annotations. This is

shows that literature similarities can be combined with
sequence similarities to improve the specificity of
sequence-retrieval algorithms. Although both groups
report that the use of text information improved PSI-
BLAST performance, one shortcoming of both studies
is that text similarities were combined with BLAST
similarity scores in a heuristic fashion. The broader
applicability of such hybrid approaches would benefit
from a statistically rigorous (and as-yet-unformulated)
means of combining sequence and text similarities.

The correlation between sequence and text similari-
ties has also been used to facilitate the functional anno-
tation of proteins. Two groups have explored the use of
sequence-associated texts to classify protein sequences
according to their subcellular locations. Eisenhaber and
Bork12 developed an algorithm, called Meta_A(nnota-
tor), which classifies proteins on the basis of terms con-
tained in their SWISS-PROT annotations, whereas
Stapley et al.13 classified Saccharomyces cerevisiae pro-
teins on the basis of information contained in their
associated MEDLINE abstracts. Both approaches did

AD HOC RULE-BASED

APPROACHES

These are approaches for
identifying terms in a text that
belong to a particular semantic
class. Gene names in
Caenorhabditis elegans, for
example, are denoted with three
letters followed by a dash and a
number — for example, ‘dbl-1’.
So, this approach to identify 
C. elegans genes might consist 
of searching a text for regular
expression of three letters, a dash
and a number. Such approaches
do not work equally well for
identifying all genes and
generally are not very precise.

Box 2 | Online resources for biological natural language processing

BIND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.bind.ca
The Biomolecular Interaction Network Database: an excellent resource for exploring protein–protein interactions, with a
very extensive set of links to related resources.
Bio-Ontology pages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://img.cs.man.ac.uk/stevens/ontology.html
A good ‘jumping-off ’ point for those interested in finding out more about the role of ontologies in biology.
BLAST and related programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.ncbi.nlm.nih.gov/Sitemap/index.html#BLAST
The BLAST pages at the National Center for Biotechnology Information (NCBI) do much more than simply provide a
means to carry out a BLAST search. They are also an excellent source of information about BLAST and related programs
such as PSI-BLAST.
DIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://dip.doe-mbi.ucla.edu
Database of Interacting Proteins: a popular database that contains protein–protein interaction data.
ENTREZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.ncbi.nlm.nih.gov/Entrez
An excellent starting point from which to explore links between sequences, texts and more.
Foundations of Statistical Natural Language Processing: . . . . . http://nlp.stanford.edu/fsnlp
The companion web site for the book by the same name and an indispensable resource for anyone who is interested in
natural language processing.
GO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.geneontology.org
Gene Ontology: a tool for the unification of biology, and a very intuitive and usable ontology of genes.
INTERACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.bioinf.man.ac.uk/resources/interact.shtml
A database of protein–protein interactions that is now part of the UMBER (University of Manchester Bioinformatics
Education Research) project. It has interesting three-dimensional views of protein–protein interactions.
MeSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.nlm.nih.gov/mesh/meshhome.html
The Medical Subject Heading system that is used by the National library of Medicine to classify subjects that occur in the
biomedical literature.
MetaMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://ii.nlm.nih.gov/MTI/mmi.shtml
An informative page detailing how this indexing methodology works.
PubGene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.pubgene.uio.no
The web server for the work discussed in Jenssen et al.41 (see main text), with nice tie-ins to Gene Ontology and other
resources.
PubMed/MEDLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
The central online source for biomedical literature searching and reference collection.
SAWTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.bmm.icnet.uk/~sawted
Structure Assignment With Text Description: carries out text-assisted BLAST searches for distant homologues. It also has
an excellent diagram that explains how the procedure works.
UMLS (Metathesarus, Specialist Lexicon and related tools) . . . http://www.nlm.nih.gov/research/umls
The Unified Medical Language System — the National Library of Medicine’s biological ontology.
WordNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.cogsci.princeton.edu/~wn
A lexical database for the English language, and a great site to explore for anyone who is interested in the English language.
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associated with a gene are, by definition, the most repre-
sentative terms; whether or not they convey useful
information to a biologist is another matter. An impor-
tant strength of the work of Raychaudhuri et al.17 lies in
its use of the Gene Ontology18. Annotating genes with
concepts drawn from an ONTOLOGY ensures consistency
and future utility, as these concepts convey useful
semantic information (see below) that can be unam-
biguously communicated to both software and its users.

Semantics
MEDLINE is a corpus of unrivalled complexity. At last
count, the 11,450,302 abstracts that comprise MED-
LINE contained 1,130,223,622 words, 1,614,538 of
which were distinct. By comparison, Darwin’s Origin of
Species contains 207,158 words, of which only 18,285
are distinct. Although size and complexity might not be
any indication of profundity, obviously the biomedical
literature is rife with jargon, synonyms and equivocal
terms, the identification and definition of which are
broadly termed ‘semantics’.

Biomedical jargon has a massive impact on the
verisimilitude of vector-based similarity measures. In
general, keyword and vector-space retrieval technologies
are semantically blind: they return related documents
solely on the basis of shared — perfectly identical —
terms, regardless of the ‘meaning’ of those terms. In
practice, this means that, given a document or query
that contains the terms ‘polymerase chain reaction’ and
‘PAX6 ’ (a conserved family of homeodomain tran-
scription factors), naive information-retrieval algo-
rithms will return documents that contain one or both
of these terms, but not necessarily documents that 
contain the terms ‘PCR’, ‘eyeless ’ (the Drosophila
melanogaster PAX6 ORTHOLOGUE) or ‘aniridia’ — a form
of hereditary blindness that is caused by heterozygous
mutations in PAX6. Obviously, this is far from ideal.
One way to improve the recall of information-retrieval
algorithms, therefore, is to use ontologies to extract
semantic information from texts.

Ontologies. NLP technologies often use structured lists
of terms called ontologies19 (FIG. 2) to establish the
semantic function of a word in a document. The sim-
plest form of ontology is a lexicon or a list of terms
that belong to a particular class. A list of gene names,
for example, can be used to identify documents that
discuss genes; likewise, a lexicon of diseases can be
used to identify documents that discuss disease. Lexica
usually consist of specialized terms and (optionally)
their definitions, but this is not always the case; some
are more general. WordNet20, a much-used ontology,
contains extensive semantic information about English
words that goes far beyond that provided by typical
dictionaries.

A collection of terms and their synonyms is called a
thesaurus. Synonym information is of immense utility
for NLP. A thesaurus of genes, for example, can be used
to classify a gene’s name and its symbol as synonyms,
thereby improving the verisimilitude of document-
similarity measures.

a salient point: the use of bio-NLP tools to flag inconsis-
tent annotations for manual review holds much
promise for improving sequence annotation.

Sequence annotations. Sequences are routinely clustered
into families on the basis of sequence-similarity mea-
sures; in the same way, text-similarity measures can be
used to cluster documents. Iliopoulos and colleagues14,
for example, clustered similar MEDLINE documents,
and then annotated these document clusters by attach-
ing keywords to them using an ODDS RATIO. Relationships
between sequences and texts add a new twist to
sequence and document clustering, as sequence homol-
ogy can be used to assemble groups of documents and
vice versa. Several groups have used sequence–text links
as a means of facilitating protein-sequence annotation.
Andrade and Valencia15 automatically annotated protein
families with statistically salient keywords and sentences
that were extracted from documents associated with
their protein members. Similarly, Renner and Azodi16

have described a procedure that annotates clusters of
expressed sequence tags (ESTs) that correspond to pre-
viously annotated sequences on the basis of the similari-
ties of their associated MEDLINE abstracts. In related
work, Raychaudhuri et al.17 automatically assigned genes
a function in the GENE ONTOLOGY18 on the basis of infor-
mation contained in MEDLINE abstracts; they reported
an accuracy of 0.72, showing that text and ontologies
can be used together to make automatic predictions of
protein function.

In evaluating the performance of these approaches, it
is helpful to distinguish between term and concept iden-
tification. Methods that annotate sequences solely on
the basis of term frequency are problematic: the terms
most overrepresented among the documents that are

ODDS RATIO 

The ratio between the observed
frequency at which an event
occurred and the expected
frequency of that event given
some statistical model. A term
that occurs more frequently in a
text, or collection of texts, than
would be expected based on its
frequency in a corpus will
therefore have an odds ratio >1.

GENE ONTOLOGY

(GO). A hierarchical
organization of concepts
(ontology) with three organizing
principles: molecular function,
the tasks done by individual
gene products, an example of
which is ‘transcription factor’;
biological process, broad
biological goals, such as mitosis,
that are accomplished by
ordered assemblies of molecular
functions; cellular component,
subcellular structures, locations
and macromolecular complexes
(examples include the nucleus
and the telomere).

ONTOLOGY

A hierarchical organization of
concepts, typically used to
denote ‘more-general-than’
and/or ‘part-of ’ relationships.

ORTHOLOGUES

Homologous genes that
originated through speciation
(for example, human β-globin
and mouse β-globin).

a  Lexicon of BMPs

BMP4
BMP2
DPP
60A
BMP5
DBL1

BMP
Bone morphogenetic protein
DVR
Decapentaplegic-Vg1-related

b  Thesaurus of BMP synonyms c  Hierarchical ontology

Growth factor

EGFTGF-β FGF

BMP Activin

Figure 2 | Semantic classification and definition of terms using a lexicon, thesaurus
and a hierarchical ontology. Lexica, thesauri and ontologies are used to semantically
classify and define terms that occur in a text. At its simplest, a lexicon is merely a list of 
terms that belong to the same semantic class: bone morphogenetic protein 4 (BMP4) 
and decapentaplegic (DPP), for example, both belong to the semantic class of ‘BMP’. 
A thesaurus provides a listing of the synonyms for a term, or semantic class, and 
hierarchical ontologies are used to ‘define’ the terms that are contained in a lexicon and
thesaurus. The definition of a term is produced by tracing the path from a term to the root of
the ontology (c, path shown in red). The simple ontology shown in c, for example, defines
BMP as “a TGF-β growth factor”. Definitions apply to all members of a semantic class and
their synonyms, and can be used as a basis for logical inference: “DPP is a DVR, a DVR is a
BMP, a BMP is a TGF-β, and a TGF-β is a growth factor”; therefore, it can be inferred that
“DPP is a growth factor”, even if no document explicitly states this fact. Note that the
ontology shown in c is a particular type known as an isa-hierarchy; other types of ontology
exist, not all of which are suitable for definition19,55. DBL1, decapentaplegic–BMP-like 1;
DVR, decapentaplegic-Vg1-related; EGF, epidermal growth factor; FGF, fibroblast growth
factor; TGF-β, transforming growth factor-β.
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Although lexica and thesauri are technically ontolo-
gies, the term ontology generally implies a hierarchical
organization of terms in which concepts higher up in
the hierarchy (hypernyms) are more general than those
lower down (hyponyms). One popular NLP use for
hierarchical ontologies is query expansion — the use of
an ontology to append some combination of synonyms,
hypernyms and hyponyms to a user’s query to retrieve
documents that use related terms to describe the same
ideas. Given a query term ‘growth factor’, for example, a
hierarchical ontology can be used to ‘expand’ the user’s
query to include the hyponyms ‘TGF-β’ (transforming
growth factor-β), ‘EGF’ (epidermal growth factor) and
‘FGF’ (fibroblast growth factor), thereby allowing the
retrieval of documents that contain these relevant terms
(FIG. 2).

Concept identification in texts. The Unified Medical
Language System (UMLS) Metathesarus21 and its related
resources, MeSH and the Specialist Lexicon (BOX 2)
comprise a widely used system of biomedical
ontologies22. These resources contain information about
many aspects of the biomedical domain, such as dis-
eases, tissues and drugs. One limitation of using ontolo-
gies for NLP is the inherent difference between the con-
trolled vocabulary used in an ontology to describe a
concept and the terms actually used by authors to
describe that concept in text. An author might refer to a
disease as ‘type II diabetes mellitus’, whereas an ontology
might describe the same concept as ‘diabetes, type II,
mellitus’. Although this might seem a minor annoyance,
in practice it presents a significant hurdle for software
used to search texts for concepts that are contained in an
ontology. Several groups have explored this problem
with regard to UMLS23–25. The MetaMap algorithm26,27,
for example, uses a PART-OF-SPEECH TAGGER5,28 (FIG. 3) to iden-
tify noun phrases in text, and then attempts to map
them to a similar UMLS concept. One indication of the
difficulties that are associated with accurate concept
identification in free text is that the use of UMLS for
query expansion can significantly reduce the precision
of document retrieval, with little improvement in
recall29. It is not clear from the study whether this was
due to problems with mapping concepts in free text to
UMLS, or to inconsistencies in the UMLS ontology
itself. There are internal errors and omissions30 in
UMLS and two groups have recently encountered prob-
lems when attempting to use UMLS for query expan-
sion and knowledge mining23,31.

Gene identification in texts. Genes and proteins are con-
cepts, too; however, identifying them in text is proving to
be difficult. Gene-naming conventions differ markedly
between organisms, and there exists no single authorita-
tive ontology that defines the terminologies used to
name and describe genes, gene families and their prod-
ucts. One obvious solution is to compile such a lexicon
manually, but this is time consuming, as well as error
prone. Several groups have therefore attempted to iden-
tify gene and protein names automatically, for example,
using general ad hoc rule-based approaches32–34.
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Sonic Hedgehog was found to induce HOXA6 expression in NIH-3t3 cells

c

Sonic/ADJ Hedgehog/N was/V found/V to/PREP induce/V HoxA6/N expression/V in/PREP 
NIH-3t3/N cells/N

Figure 3 | HMMs are used for part-of-speech tagging, as well as for gene prediction.
a–c | In natural language processing (NLP), the grammar (a) of a language can be modelled to
determine the grammatical function or ‘part-of-speech’ of each word in a sentence. For
example, the most likely path through the model sentence shown in b is used to assign or
‘tag’ the words of the sentence with their part-of-speech (noun, adjective and so on; c). This
process uses statistical algorithms called hidden Markov models (HMMs), which are used
both in NLP and in bioinformatics. In general, HMMs can be thought of as a probabilistic
model of an abstract ‘source’ that emits a sequence of symbols; in other words, as the
‘author’ of a sentence or gene. To produce a sequence of symbols, the source is modelled as
passing stochastically through a finite sequence of discrete states (shown as coloured
rectangles), beginning at the ‘start state’ and ending at an ‘end state’. On entering a new
state, a single symbol is produced according to the emission probabilities that are associated
with that state. The order in which states might be visited is constrained by the allowable
transitions of the model (shown as arrows), and by the probabilities that are associated with
those transitions (not shown, for clarity). In this way, the source is modelled as emitting
different sequences with different probabilities. d,e | HMMs are also used in gene prediction.
An HMM model such as that represented in d can be used to calculate the probability that a
given base of DNA resides in any of seven illustrated ‘states’: ‘initial exon’, ‘terminal exon’,
‘internal exon’, ‘intron’, ‘donor’, ‘acceptor’ or ‘intergenic’ sequence. These probabilities are
then used to infer the structure of the gene (e). HMM models (a,d) and their associated
transition and emission probabilities are inferred from training examples — that is, from known
sentences and genes. Once determined, these probabilities are used to determine the most
likely path through the model that would produce the given sentence or gene. ADJ, adjective;
N, noun; PREP, preposition; V, verb.
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homology, as well as synonymy. To return for a moment
to an earlier example, homology provides a natural
means of recovering documents about eyeless from the
query ‘PAX6’. In principle, information about homolo-
gous, PARALOGOUS and orthologous relationships between
genes could be used to improve the precision and recall
of information-retrieval algorithms.

Information extraction
The key to understanding a text is knowing what the
words mean. Likewise, if software is to interpret a text, it
must also be able to identify words with respect to their
semantic classes, definitions and syntactic functions.
Information extraction is the process of using this infor-
mation to extract meaning from a text5,39,40. Towards this
end, information extraction normally combines part-
of-speech tagging (FIG. 3), ontologies (FIG. 2) and REGULAR

EXPRESSIONS (FIG. 4) to produce a structured, machine-
readable file that contains essential information gleaned
during the extraction phase; ideally, these files are struc-
tured in such a way as to facilitate logical inference and
information retrieval.

Identifying interactions. Recently, protein–protein inter-
actions have been the focus of many bio-NLP informa-
tion-extraction efforts. MEDLINE abstracts often 
contain important information about protein–
protein interactions. Jenssen et al.41 constructed a pro-
tein–abstract index and then used it to identify possible
protein–protein interactions on the basis of the 
co-occurrence of gene and protein names in abstracts
(TABLE 1). They also supplemented this index by further
cross-indexing these proteins to MeSH and Gene
Ontology terms. Others, in an attempt to classify better
the nature of the co-occurrence40,42,43, have used infor-
mation-extraction algorithms to identify co-occurring
protein names in the context of ‘interaction’ verbs (such
as ‘represses’, ‘phosphorylates’ and ‘binds’) within indi-
vidual abstracts (FIG. 4). Wong37 and Blaschke and col-
leagues44 use similar methodologies, but attempt to 
circumvent problems that are associated with the identi-
fication of gene and protein names by providing an
interface that asks the user to enter keywords.

Although rule-based approaches work well for iden-
tifying genes and proteins from organisms such as 
S. cerevisiae, where these terms strictly adhere to a con-
trolled vocabulary35, others have found it necessary to
supplement rule-based approaches with a lexicon of
gene names36,37. In related work, Hatzivassiloglou and
colleagues38 developed an algorithm to determine auto-
matically (or to ‘disambiguate’) whether the occurrence
of a gene name in a text refers to the gene itself, its
mRNA or its protein product.

Ontologies, homologies and texts. Although automatic
tools for identifying gene names in free text might facili-
tate some bio-NLP applications, accurate retrieval and
extraction of information necessitates cross-indexing
documents that reference one gene to another.
Synonym lists are useful in this respect, but they neglect
an equally essential relationship between genes — that
is, homology. Sequences come with their own ready-
made ontology in the form of their homologous rela-
tionships to one another. In principle, this information
can be used to build gene thesauri on the basis of

PART-OF-SPEECH TAGGER

An algorithm that identifies the
nouns, verbs and other
functional word classes among
the words that comprise a
sentence.

PARALOGUES

Homologous genes that
originated by gene duplication
(for example, human β-globin
and human α-globin).

Sonic Hedgehog was found to induce HOXA6 expression in NIH-3t3 cells

1. Identify parts of speech
for individual words

Sonic/ADJ Hedgehog/N was/V found/V to/PREP induce/V HOXA6/N expression/N
in/PREP NIH-3t3/N cells/N

2. Identify semantic classes of
phrases using an ontology

GENE(Sonic/ADJ Hedgehog/N) was/V found/V to/PREP induce/V GENE(HOXA6/N) 
expression/N in/PREP NIH-3t3/N cells/N

3. Apply templates/regular
expressions to find relevant
patterns, such as

[GENE] [*] induce [GENE] expression

GENE(Sonic/ADJ Hedgehog/N) was/V found/V to/PREP induce/V GENE(HOXA6/N) 
expression/N in/PREP NIH-3t3/N cells/N

4. Insert a new fact into
the database

[class=induction-of-expression, by=Sonic Hedgehog, of=HOXA6]

Figure 4 | Information extraction. The extraction of information typically entails the use of
patterns or templates to extract structured information from unstructured text. One common
approach is illustrated here. First, individual words are tagged with their parts of speech, such as
nouns and verbs (step 1; see also FIG. 3). On the basis of their parts of speech, these words can
then be grouped into phrases and resolved to specific concepts in a biological ontology (step 2;
see also FIG. 2). In this example, ‘Sonic Hedgehog’ (shh) and ‘HOXA6’ (highlighted in red) have
been identified as genes. Next, manually crafted templates, or regular expressions are applied to
identify sentences that contain key syntactic patterns (step 3). These patterns are then inserted
into a database of extracted facts (step 4), where they can be used as the basis for logical
inference (see FIG. 2), or simply indexed for querying. Manual or semi-automatic curation and
filtering are often necessary to remove errors. ADJ, adjective; HOXA6, homeobox A6; N, noun;
PREP, preposition; V, verb.

Table 1 | Co-occurrence detection

Gene A Gene B #A #B #(A,B)

BMP4 BMP2 324 618 50

BMP4 HLP3 324 128 11

BMP4 TSG 324 242 3

BMP4 DPP 324 685 4

Many types of association between biological entities can be
gleaned from text simply by noting how often words and phrases
that belong to a particular semantic class occur together in a
corpus (in this case, MEDLINE Abstracts). The co-occurrence of
terms in the same sentence or the same document often implies
real biological relationships between the named entities41. The
nature of these relationships can be explored further using
ontologies. The ontology shown in FIG.2, for example, can 
be used to identify the terms BMP4, BMP2, and DPP as 
‘growth factors’. BMP, bone morphogenetic protein; 
DPP, decapentaplegic HLP3, human placental lactogen 3; 
TSG, twisted gastrulation. 
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Jenssen et al.41, in a test of the precision of their algo-
rithm (PubGene; see BOX 2), found that only 51% of
their interactions were recorded in DIP. Further exami-
nation revealed that incorrect associations were due pri-
marily to a lack of precision in correctly identifying gene
and protein names, and that co-occurrences often
described homologous relationships rather than physi-
cal interactions. In a similar analysis, Blaschke et al.52

found that approximately two-thirds of their failures
were also due to the inconsistent use of gene and protein
nomenclature. The degree to which both approaches
were frustrated by nomenclature issues underscores the
fact that bio-NLP is a field badly in need of better
ontologies and automated means to identify these terms
in texts.

Both groups also used DIP to evaluate the perfor-
mance of their algorithms in terms of recall. In this
respect, the two approaches differed significantly.
Jenssen et al. estimate that very few interactions (7.7%)
were missed due to lack of co-occurrence in the title or
abstract. Blaschke et al., however, report that the absence
of interaction information in abstracts decreased recall
by 35%. Algorithmic differences are one likely reason for
the disparity in recall between the two studies, as Jenssen
et al. relied on simple co-occurrence, whereas Blaschke
et al. used a specific set of regular expressions (FIG. 4) to
detect and classify interactions.

Future directions
The exponential growth of MEDLINE and GenBank is
rapidly transforming bio-NLP from a research endeav-
our into a practical necessity. Most of the studies 
discussed in this review are focused on information
management, and the development of such tools is a
necessary and laudable goal. Nevertheless, if bio-NLP
is to achieve its full potential, it will have to move
beyond information management and generate spe-
cific predictions that pertain to gene function that can
be verified at the bench. The synergistic use of
sequence and text to extract latent information from
the biomedical literature holds much promise in this
regard. Realizing this potential, however, will require
more and better ontologies, software able to make
inferences using sequence and textual information,
and access to the full text of articles.

More and better ontologies. A greater diversity of high-
quality biomedical ontologies that are designed with
NLP applications in mind would do much to
strengthen the field. The identification of gene and
protein names, for example, was an important factor
frustrating much of the research discussed in this
review. Accurate semantic classification of terms that
occur in the molecular biological literature will require
ontologies of genes, drugs, diseases and molecular
biology procedures, terminologies used in genetics and
in population biology, and ontologies of tissues and
phenotypes — to name but a few. As discussed previ-
ously, not all ontologies are well suited for use by NLP
applications because their controlled vocabularies do
not reflect actual usage in text, and methods to adapt

Some researchers have taken a broader approach
to information extraction in an attempt to do more
than simply identify protein–protein interactions.
Stapley and Benoit35 tallied the number of co-occur-
rences of every pair of S. cerevisiae genes in MED-
LINE abstracts and used this data to calculate what
they term a BioBibliometric distance between genes,
such that the rarer the co-occurrence of two genes in
the literature database, the larger the distance
between them will be. Such text-based similarity
measures are especially interesting as they provide a
means to assess the similarity of genes, independently
of sequence homology. Leroy and Chen45 chose to
explore the prepositional (‘by’ and ‘of ’) relationships
of genes in an attempt to extract a wider assortment
of information than that provided by ‘interaction’
verbs alone; Hahn et al.31 have attempted to go still
further and describe a very general approach for bio-
medical information extraction; and Rindflesch and
colleagues46 describe an attempt to extract from texts
information about the relationships between genes,
drugs and cells.

Caveats. The basic motivation behind all of these
approaches is that the co-occurrence of gene and pro-
tein names in abstracts implies a biological relation-
ship. There are, of course, many cases in which co-
occurrences are not indicative of interaction. Negation
is one trivial reason. Although it is relatively rare, infor-
mation-extraction algorithms need to take negation
into account as well, lest co-occurrences in the form of
“A was found not to interact with B” be misconstrued47.
‘Anaphora’ resolution, the process of determining what
a pronoun refers to, must be handled as well5,48, as
informative phrases often take the form of “It was
found to bind DNA”.

It must also be recognized that genes and proteins
participate in many kinds of relationships that are
beyond the merely physical. Mutations in two genes
might cause similar phenotypes; their expression pat-
terns might overlap; the two genes might lie near one
another in the genome; or they might be orthologues,
paralogues or simply homologues of one another. The
use of ontologies such as Gene Ontology to characterize
better the reasons for co-occurrence is one promising
avenue for further research.

Co-occurrence, of course, is not the only source of
interaction data. Yeast two-hybrid and other experi-
mental procedures often generate direct experimental
information about gene and protein interactions.
Similarly, many papers explicitly describe genetic inter-
actions and such information can be extracted by man-
ual curation of full-text articles. The INTERACT49, DIP
(Database of Interacting Proteins)50 and BIND
(Biomolecular Interaction Network Database)51 data-
bases consist of interaction data obtained through
experimental procedures. Databases such as these pro-
vide an important means by which to benchmark the
performance of information-extraction approaches to
interaction discovery, and two groups41,52 have used DIP
for exactly this purpose.

REGULAR EXPRESSION

Computer science parlance for
an abstract definition that
embodies some common and
essential syntactic characteristic
that belongs to a set of terms.
For example, in the popular
PERL programming language,
the regular expression 
‘\s* \w+\−\d+\s*’ will identify
any word in a text that consists
of one or more letters (or
numbers), followed by a dash,
and followed by one or more
numbers. This regular
expression will identify
Caenorhabditis elegans
gene names.
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report with the observation that abstracts often contain
insufficient information to characterize protein–
protein interactions adequately, although this informa-
tion is usually present in the body of the article. The
number of additional protein–protein interactions that
could be found by their approach using full text is
unknown, but it seems reasonable to conclude that
access to full text would improve the precision and
recall of their algorithm. By extension, the restricted
information available in abstracts probably imposes an
unnecessary handicap on the performance of informa-
tion-extraction technologies in general. Recently, the
Public Library of Science (PLoS)54 has advocated 
the construction of a publicly available and machine-
readable full-text repository for the scientific literature.
Access to full text would do much to help bio-NLP real-
ize its potential. Imagine, for a moment, the possibili-
ties opened by such a resource, what the availability of
full text could mean in terms of searchable indices 
of figures, tables, citations and photographs, and in
terms of the accessibility of information contained in
‘materials and methods’ sections — a full-text reposi-
tory would fuel substantial advances in bio-NLP. Where
would bioinformatics be today without GenBank?
Without a public library of science, much scientific
knowledge is lost to algorithms and researchers alike.

them for use by bio-NLP applications are needed.
When no suitable ontology exists, automated
approaches to ontology construction53 are a promising
avenue for further research.

Inference and sequence homology. Inductive reasoning
(FIG. 2c) based on information extracted from texts is the
ultimate goal of information extraction. Sequence pro-
vides a means for inference that is unique to bio-NLP, as
sequence homology can be used to uncover latent infor-
mation in the biomedical literature. If, for example, an
abstract reports that two mouse proteins interact, their
human orthologues will probably interact as well. Both
DIP and BIND (see BOX 2) have begun to use sequence
homology to flag potential protein–protein interactions,
but there remains much opportunity for significant
research in this area. Applications that use relationships
between sequences, the domains they contain, phyloge-
netics and textual information as a means to automati-
cally generate experimentally verifiable predictions of
gene expression, function and interactions are a logical
next step for the field.

Access to full text. Greater access to full text would do
much to help bio-NLP realize its potential for hypothe-
sis generation. Blaschke and colleagues52 conclude their
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