
©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

brief communications

nature methods  |  ADVANCE ONLINE PUBLICATION  |  �

genetic-variation data sets. GQT creates an index of a VCF file
by transposing the genotype data to facilitate queries based on
the genotypes, phenotypes and relationships of one or more of
the individuals in the study (Fig. 1c). Once transposed, variant
columns are sorted by allele frequency to take advantage of the fact
that the majority of genetic variation is extremely rare in the popu-
lation4,5 (Fig. 1d). Reordering by allele frequency greatly improves
data compression, as it yields much longer runs of identical geno-
types than transposition alone (Supplementary Fig. 1). GQT also
utilizes an efficient data-compression strategy based on Word-
Aligned Hybrid (WAH) compressed6–8 bitmap indices of the sam-
ple genotype information (Online Methods and Supplementary
Figs. 2–4). The combination of genotype transposition and WAH
compression maximizes query performance by allowing direct
inspection of genotype data without decompression.

In addition to indexing genotypes, GQT can also create a
simple database from a pedigree (PED) file describing the
names, relationships, multiple phenotypes and other attributes
of the samples in an associated VCF file (Fig. 1e). The sample
database complements the GQT index of the original VCF or
binary VCF (BCF) file and allows GQT to quickly identify the
compressed sample genotype bitmaps that are germane to the
query. For example, a query could search for variants where all
affected individuals (“phenotype==2”) are heterozygous (“HET”)
(Fig. 1e). GQT uses the sample database to find compressed geno-
type bitmaps of the affected individuals. Once these individu-
als have been identified, the relevant bit arrays for heterozygous
genotypes are AND’ed (Supplementary Fig. 2b) to return the
single VCF record in which all affected individuals are hetero-
zygous. With this structure, queries can exploit any attribute that
is defined in the PED file, and one can combine multiple crite-
ria. This functionality enables, for example, searches for de novo
mutations in a multigenerational pedigree (Supplementary
Fig. 5) and variants having markedly different minor allele fre-
quencies in different world subpopulations or case-versus-control
samples. Query results are ordered by genome coordinate and
returned in VCF format, which supports sophisticated analyses
combining GQT queries with other, variant-centric tools such as
BEDTOOLS9, VCFTOOLS3 and BCFTOOLS.

GQT’s genotype index is a complement to the existing variant-
centric indexing strategies3,10 available for data sets in VCF
(or BCF). GQT creates two additional indices (BIM and VID;
Supplementary Fig. 6) that allow variants satisfying a query to
be quickly returned in VCF. The storage overhead of the GQT
indices is minimal with respect to the size of the underlying
data set. Moreover, index size relative to the size of the VCF

efficient genotype
compression and analysis
of large genetic-variation
data sets
Ryan M Layer1, Neil Kindlon1, Konrad J Karczewski2,
Exome Aggregation Consortium3 & Aaron R Quinlan1,4,5

Genotype Query tools (GQt) is an indexing strategy that
expedites analyses of genome-variation data sets in Variant
call format based on sample genotypes, phenotypes and
relationships. GQt’s compressed genotype index minimizes
decompression for analysis, and its performance relative to
that of existing methods improves with cohort size. We show
substantial (up to 443-fold) gains in performance over existing
methods and demonstrate GQt’s utility for exploring massive
data sets involving thousands to millions of genomes. GQt can
be accessed at https://github.com/ryanlayer/gqt.

For the majority of common human diseases, only a small fraction
of the heritability can be attributed to known genetic variation.
A widely held hypothesis is that the remaining heritability can
be explained in part by rare, and thus largely unknown, genetic
variation in the human population1. On the basis of current and
forthcoming efforts, it is predicted that more than 1 million
human genomes will be sequenced in the near term2. Integrated
analyses and community sharing of such population data sets will
clearly be critical for future discovery. In aggregate, the resulting
data sets will include trillions of genotypes at hundreds of millions
of polymorphic loci. Therefore, the development of more effective
data exploration and compression strategies is crucial for broad
use and future discovery.

The Variant Call Format3 (VCF) defines a common framework
for representing variants, sample genotypes and variant annota-
tions from DNA-sequencing studies (Fig. 1a), and it has become
the standard for genome-variation research. However, because
VCF is intentionally organized from the perspective of chromo-
somal loci to support ‘variant-centric’ analyses, it is ill suited to
queries focused on specific genotype, phenotype or inheritance
combinations, such as which variants are homozygous exclusively
in affected women (Fig. 1b). GQT introduces a complementary
‘individual-centric’ strategy for indexing and mining very large

1Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA. 2Analytical and Translational Genetics Unit, Harvard Medical School, Boston,
Massachusetts, USA. 3A list of members and affiliations appears in Supplementary Note 1. 4Department of Biomedical Informatics, University of Utah, Salt Lake City,
Utah, USA. 5USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, Utah, USA. Correspondence should be addressed to R.M.L. (ryan.layer@utah.edu)
or A.R.Q. (aquinlan@genetics.utah.edu).
Received 5 June; accepted 7 OctObeR; published Online 9 nOvembeR 2015; dOi:10.1038/nmeth.3654

https://github.com/ryanlayer/gqt
http://www.nature.com/doifinder/10.1038/nmeth.3654

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

�  |  ADVANCE ONLINE PUBLICATION  |  nature methods

brief communications

file continues to decrease as the cohort size grows, as most new
variation discovered from additional samples is very rare4,5.
Comparisons to PLINK and BCF based on the 1000 Genomes
Project (phase 3) VCF files demonstrated that the GQT com-
pression strategy was on par with the compression scheme used
in BCF (Supplementary Fig. 7 and Supplementary Note 1). In
particular, the GQT genotype index alone (i.e., excluding the
ancillary BIM and VID indices) represented merely an additional
~10% (12.08 GB) storage burden beyond the requirement of the
phase 3 1000 Genomes data set in BCF.

A typical tradeoff for data-compression algorithms is the cost
of decompressing data before analysis11. We designed the GQT
indexing strategy precisely to avoid this tradeoff and achieve
efficient queries of cohorts involving thousands to millions of
individuals. To demonstrate this, we compared the query per-
formance of GQT to that of both BCFTOOLS and a compre-
hensive update to PLINK (v1.90). First, we considered the time
required to compute the alternate allele frequency among a target
set of 10% of individuals from the 1000 Genomes VCF data set
(Fig. 2a). Compared with BCFTOOLS, which required 1,517.5 s,
both GQT and PLINK were substantially faster, requiring 58.4 s
(26.0-fold increase in computation speed) and 156.3 s (9.6-fold
increase), respectively. We emphasize that GQT’s performance
advantage improved as the number of individuals increased,
whereas PLINK’s performance remained relatively flat. Moreover,
matching variants were identified almost instantly, and thus the
majority of GQT’s runtime was spent returning the VCF results.
For example, when the GQT “count” option was invoked to simply
return the number of matching variants, the runtime dropped to
4.2 s. We also compared the time required to identify rare (alter-
nate allele frequency of <1%) variants among a subset of 10% of

the individuals (Fig. 2b). In this case, GQT was up to 45.8 times
faster than BCFTOOLS (51.5 s versus 2,360.5 s).

When we considered the Exome Aggregation Consortium
(ExAC; version 0.3) variant data set (9.36 million exonic vari-
ants among 60,706 human exomes), we found that the GQT index
was only 0.2% the size of the VCF file (28 GB versus 14.1 TB),
reflecting a storage requirement of merely 0.38 bits per genotype.
Rare variants were found in only 2.1 min (9.98 s when excluding
the time required to report the variants), reflecting a 443-fold
improvement over BCFTOOLS (931.4 min) (Supplementary
Table 1). On the basis of simulated data sets involving 100–
100,000 individuals on a 100-Mb genome, it was clear that GQT’s
relative data compression and query performance continued to
improve with larger cohorts. Although simulating variants from
1 million or more individuals was computationally intractable for
this study, extrapolation suggested that GQT’s query performance
for a cohort of 1 million genomes was at least 218-fold faster
than that of BCFTOOLS (Fig. 2c,d).

Because the GQT indexing strategy is fundamentally optimized
for questions that involve comparisons of sample genotypes
among many variant loci, it is also well suited to many common
statistical and population-genetics measures. For example, as the
basis for principal-component analysis of the 2,504 individuals
in the 1000 Genomes data set, GQT produced a similarity matrix
using the number of shared, nonreference variants in 207 min
(Fig. 2e). A similarity matrix for the 347 admixed American indi-
viduals required merely 3 min. GQT also computed the Weir and
Cockerham12 FST statistic for all 84.7 million variants in the phase 3
1000 Genomes data set in 74 s, reflecting a 146-fold increase in
computation speed over VCFTOOLS (Supplementary Fig. 8).
These examples demonstrate how GQT indices could empower

a VCF

#Chrom Pos ID Ref Alt Qual Filter Info Format I1 I2 I3 I4 I5

1 105 V1 G A 100 Pass AC=5 GT 0/0 0/1 0/1 0/1 0/0

1 106 V2 C G 100 Pass AC=1 GT 0/1 0/0 0/0 0/0 0/0

1 133 V3 C T 100 Pass AC=18 GT 0/1 1/1 1/1 1/1 1/1

Individuals

V
ar

ia
nt

s

Color-coded genotypes

0/0 Homozygous reference

0/1 Heterozygous

1/1 Homozygous alternate

b c d e

V
10

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

I10

I1
I2
I3
I4
I5
I6
I7
I8
I9

for each I2, I6 and I8:
 read row
 for each variant:
 test genotype

In
di

vi
du

al
s

I10

I1
I2
I3
I4
I5
I6

I8
I9

V
3

V
2

V
4

V
5

V
7

V
8

V
6

V
10

V
1

V
9

I10

I1
I2
I3
I4
I5
I6
I7
I8
I9

V
ar

ia
nt

s

I1 I2 I3 I4 I5 I6 I7 I8 I9

V10

V1
V2
V3
V4
V5
V6
V7
V8
V9

for each variant:
 read row
 for each I2, I6 and I8:
 test genotype

I1
0

Genotype or phenotype query
PED �le

#Chrom Pos ID Ref Alt Qual Filter Info

10 135 V10 A C 100 Pass AC=3

SQLite database
2 3

6 7 9

gqt query
 –p "phenotype == 2"
 –g "HET"

I2,I6,I8

8

Individual-centric
Variants

Allele count–sorted
Variants

Variant-centric
Individuals

figure � | Creation and data exploration of an individual-centric genotype index. (a) The variant-centric VCF standard is a genotype matrix in which rows
correspond to variants and columns correspond to individuals. (b) Each variant row must be inspected to test all of the genotypes of specific individuals.
(c) GQT transposes the matrix such that rows (data records) represent the full set of genotypes for each individual, which better aligns the data to
individual-centric questions and algorithms. (d) Sorting the columns of an individual-centric matrix by alternate allele count improves compressibility.
All genotypes for each sample are converted to WAH compressed bitmaps (supplementary note �). (e) GQT will create an SQLite database of a PED
file describing the familial relationships, gender, ancestry, and custom, user-defined sample descriptions. The resulting database allows GQT to quickly
extract the specific compressed bitmap records in the genotype index corresponding to a query. Once the compressed bitmaps for the relevant samples
have been extracted, they are compared so the subset of variants that meet the genotype requirements can be quickly identified (in this example, all
individuals must be heterozygous, as in variant V10). Chrom, chromosome; Pos, position; Ref, reference; Alt, alternate allele; Qual, quality score.

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

nature methods  |  ADVANCE ONLINE PUBLICATION  |  3

brief communications

other statistical genetics software and serve as a framework for
future method development.

Although GQT greatly expedites individual-centric analysis, it
is currently incapable of searching for variants in specific chro-
mosomal regions, unless the results of GQT queries are filtered
to specific regions by variant-centric tools such as Tabix10 and
BCFTOOLS. However, we have shown that it is a natural com-
plement to variant-centric indexing strategies that struggle with
individual-centric queries. Considering the strengths and trade-
offs of each approach, we envision a general querying interface
that integrates both indexing strategies and supports genomic
data–sharing efforts such as the Global Alliance for Genomics
and Health. Given the efficiency and inherent flexibility of
this genotype-indexing strategy, we expect GQT to be a potent
analysis tool and to enhance existing methods for the exploration
of massive data sets involving millions of genomes2.

methods
Methods and any associated references are available in the online
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.

acknoWledGments
We are grateful to C. Chiang for conceptual discussions, I. Levicki for helpful
advice on AVX2 operations, S. McCarthy and P. Danecek for their guidance with

htslib, and Z. Kronenberg for advice on population genetics measures. We also
thank the Exome Aggregation Consortium and the groups that provided exome
variant data for comparison. A full list of contributing groups can be found
at http://exac.broadinstitute.org/about. This research was supported by a US
National Human Genome Research Institute award to A.R.Q. (NIH R01HG006693).

author contributions
R.M.L. designed and wrote GQT and analyzed the data. N.K. wrote a fast output
method. K.J.K. analyzed ExAC data. A.R.Q. conceived and designed the study.
R.M.L. and A.R.Q. wrote the manuscript.

comPetinG financial interests
The authors declare no competing financial interests.

reprints and permissions information is available online at http://www.nature.
com/reprints/index.html.

1. Zuk, O. et al. Proc. Natl. Acad. Sci. USA ���, E455–E464 (2014).
2. Stephens, Z.D. et al. PLoS Biol. �3, e1002195 (2015).
3. Danecek, P. et al. Bioinformatics �7, 2156–2158 (2011).
4. Keinan, A. & Clark, A.G. Science 336, 740–743 (2012).
5. 1000 Genomes Project Consortium. et al. Nature 49�, 56–65 (2012).
6. Wu, K., Otoo, E.J. & Shoshani, A. In Proc. 14th International Conference

on Scientific and Statistical Database Management (Ed. Kennedy, J.)
99–108 (IEEE, 2002).

7. Siqueira, T.L.L., Ciferri, C.D.deA., Times, V.C., de Oliveira, A.G. & Ciferri,
R.R. J. Braz. Comput. Soc. �5, 19–34 (2009).

8. Liu, Y.-B. et al. J. Korean Astron. Soc. 47, 115–122 (2014).
9. Quinlan, A.R. & Hall, I.M. Bioinformatics �6, 841–842 (2010).
10. Li, H. Bioinformatics �7, 718–719 (2011).
11. Ziv, J. & Lempel, A. IEEE Trans. Inf. Theory �3, 337–343 (1977).
12. Weir, B.S. & Cockerham, C.C. Evolution 38, 1358 (1984).

1.6 s

5 s

87 s

1.5 s

2 s

156.3 s

58.4 s

4.2 s

51.5 s

3.1 s1,000×

In
cr

ea
se

 in
 s

pe
ed

 v
s.

B
C

F
T

O
O

LS
 v

ie
w

 -
S

 -
C

 (
2,

36
0

s)

In
cr

ea
se

 in
 s

pe
ed

 v
s.

B
C

F
T

O
O

LS
 v

ie
w

 -
S

 -
C

 (
1,

29
9

s)

In
cr

ea
se

 in
 s

pe
ed

 v
s.

B
C

F
T

O
O

LS
 s

ta
ts

 -
S

 (
1,

02
5

s)

1,
00

0

GQT query

GQT query-c

GQT query
Est. Est.GQT query-c GQT query

GQT query-cPLINK –freq

GQT query
GQT query-c
PLINK –freq

100×

10
0

10
0

50
0

50
0

1
×

10
3

5
×

10
3

1
×

10
4

1
×

10
5

1
×

10
6

10
0

50
0

1
×

10
3

5
×

10
3

1
×

10
4

1
×

10
5

1
×

10
6

Number of individuals

P
C

2
(E

V
 =

 3
36

.7
1)

PC1 (EV = 18.51)

P
C

1
(E

V
 =

 5
.8

3)

PC1 (EV = 1,535.75)

PEL6

6 8

4

4

2

2

0

0

–2

–2

–4

–4

–6

–6

–8

–8

–10

40

40 60 80 100

30

10

20

20

0

0

–10

–20

–20–40

–30

–10

CLM
SAS
EAS
AMR
AFR
EUR

MXL
PUR

Number of individuals Number of individuals

2,
50

4
1,

00
0

10
0

50
0

Number of individuals

2,
50

4

10×

1×

1,000×

100×

10×

1×

In
cr

ea
se

 in
 s

pe
ed

 v
s.

B
C

F
T

O
O

LS
 s

ta
ts

 -
S

 (
1,

51
7

s)

1,000×

100×

10×

1×

1,000×

100×

10×

1×

a b c d

e gqt pca—shared
–i 1kg.p3.gqt
–d 1kg.ped.db
–p "Super Population = *"

gqt pca—shared
–i 1kg.p3.gqt
–d 1kg.ped.db
–p "Super Population = 'AMR'"

figure � | GQT query performance and applications of the genotype
index. (a) Increase in computation speed for the alternate allele
frequency in a targeted 10% of the 2,504 individuals in 1,000
Genomes (phase 3). Two versions of GQT output were considered:
valid VCF (GQT query) and the number of matching variants (GQT
query -c). (b) Increase in computation speed for finding variants
with an alternate allele frequency of <1% (rare variants) in a
targeted 10% of individuals. PLINK did not directly perform this
operation and was excluded. (c) Query performance for simulated
genotypes (without variant and sample metadata) on a 100-Mb
genome with 100–100,000 individuals. The labeled times are for
100,000 individuals, and the metrics for 1 million were estimated
by linear fit. The increase in computation speed for the alternate
allele frequency for 10% of individuals is presented. (d) The increase
in computation time for finding rare variants in 10% of simulated
genomes. Again, PLINK was excluded. Runtimes for 2,504 individuals
from 1,000 Genomes and for the simulation were similar because the total numbers of genotypes were nearly identical. (e) A principal-component
analysis (PCA) of all variants from 1,000 Genomes (phase 3) took 207 min for 2,504 individuals and 3 min for 347 AMR individuals. PEL, Peruvians from
Lima, Peru; CLM, Colombians from Medellin, Colombia; MXL, individuals of Mexican ancestry from Los Angeles, California; PUR, Puerto Ricans from Puerto
Rico; SAS, South Asian; EAS, East Asian; AFR, African; EUR, European; EV, eigenvalue.

http://www.nature.com/doifinder/10.1038/nmeth.3654
http://www.nature.com/doifinder/10.1038/nmeth.3654
http://www.nature.com/doifinder/10.1038/nmeth.3654
http://exac.broadinstitute.org/about
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.3654nature methods

online methods
Overview of the GQT genotype-indexing strategy. Once the gen-
otypes in a VCF file have been transposed from a variant-centric
form (Fig. 1b) to an individual-centric form (Fig. 1c), the variant
columns are sorted by allele frequency (Fig. 1d). Each individual’s
genotypes are then encoded into a bitmap index comprising four
distinct bit arrays corresponding to each of the four (including
‘unknown’) possible diploid genotypes (Supplementary Fig. 2).
Bitmaps allow for efficient comparisons of many genotypes in a
single operation by means of bitwise logical operations, thereby
enabling rapid comparisons of sample genotypes among many vari-
ants in the original VCF file (Supplementary Fig. 3). Lastly, the bit-
map indices are compressed using WAH encoding6, which achieves
near-optimal compression while still allowing bitwise operations
directly on the compressed data (Supplementary Fig. 4). This
encoding minimizes the disk-storage requirements of the index
and, by eliminating the need for data inflation, improves query
speed, as runtime is a function of the compressed input size.

Sorting by allele frequency to improve compression. Long runs
of identical genotypes are easily compressed. We have chosen an
alternative individual-centric data-organization strategy that,
although it facilitates queries based on individual genotypes,
destroys the inherent compression of the genotype runs in the
variant-centric approach. This loss of compression is the direct
consequence of the fact that records in the individual-centric
approach reflect the genotypes for a given individual at each site
of variation in the genome. Runs of identical genotypes are far
shorter on average than those obtained with the variant-centric
approach, and therefore the individual-centric strategy yields
poor compression. The question then becomes how to leverage
the query efficiency of individual-centric data organization while
also retaining the opportunity for data compression. GQT solves
this problem by sorting the variant columns of the transposed
matrix in order of allele frequency. This results in fewer, longer
runs of identical genotypes in each individual’s row of genotypes
(Supplementary Fig. 1). For example, we compared the effect of
sorting variants on genotype runs using chromosome 20 from
phase 3 of the 1000 Genomes Project. As expected, sorting variants
by allele frequency caused both a dramatic increase in the mean
length (10.7 versus 23.2) of identical genotype runs and a decrease
in the median number of runs per individual (158,993.5 versus
70,718.5). Fewer, longer identical genotype runs allow for greater
compression of each individual’s (reordered) variant genotypes.

Representing sample genotypes with bitmap indices. The
fundamental advantage of individual-centric data organization
is the fact that all of an individual’s genotypes can be accessed
at once. This enables algorithms to quickly compare all variant
genotypes from multiple samples in search of variants that meet
specific inheritance patterns, allele frequencies or enrichments
among subsets of individuals. Despite the improved data align-
ment, comparing sample genotypes can still require substantial
computation. For VCF, which encodes diploid genotypes as 0/0
for homozygotes of the reference allele, 0/1 for heterozygotes,
1/1 for homozygotes of the alternate allele and ./. for unknown
genotypes (Supplementary Fig. 2a), comparing the genotypes of
two or more individuals requires iterative tests of each genotype
for each individual.

Recognizing this inefficiency, we encode each individual’s vec-
tor of genotypes with a bitmap index. A bitmap index (bitmap) is
an efficient strategy for indexing attributes with discrete values
that uses a separate bit array for each possible attribute value. In
the case of an individual’s genotypes, a bitmap comprises four
distinct bit arrays corresponding to each of the four (including
‘unknown’) possible diploid genotypes. The bits in each bit array
are set to true (1) if the individual’s genotype at a given variant
matches the genotype the array encodes (Supplementary Fig. 2a).
Otherwise, the element is set to false (0). In turn, bitmap encoding
facilitates the rapid comparison of individuals’ genotypes with
highly optimized bitwise logical operations. As an example, a bit-
map search for variants where all individuals are heterozygous
involves a series of pairwise AND operations on the entire hetero-
zygote bit array from each individual. The intermediate result of
each pairwise AND operation is subsequently compared with that
for the next individual, until the final bit array reflects the variants
where all individuals are heterozygous (Supplementary Fig. 2b).
Such queries are expedited owing to the ability of modern CPUs
to simultaneously test multiple bits (i.e., genotypes) with a single
bitwise logical operation.

Efficient comparisons using bitmaps. By using bitwise logical
operations, we can compare many genotypes in a single operation,
instead of comparing each individual value. At a low level, bitwise
logical operations are performed on words, which are the fixed-
size unit of bits used by the CPU. Modern processors typically
use either 32- or 64-bit words. When a bitwise logical operation
is performed between two bit arrays (each of which corresponds
to the genotypes of two individuals), the processor completes this
operation on one pair of words at a time. For example, if the
word size is 32, then computing the bitwise AND of two bit arrays
that are each 320 bits long would require only ten ANDs. This
optimization is equivalent to a 32-way parallel operation with
zero overhead. Consider a search for the loci at which three indi-
viduals are heterozygous among eight variants (Supplementary
Fig. 3). When genotypes are encoded in ASCII (as they are in
VCF), the algorithm must loop over every individual and every
variant to find the common sites. In total, this requires 24 itera-
tions (Supplementary Fig. 3a). In contrast, encoding genotypes
with a bitmap allows the same computation to be completed with
only three bitwise AND operations (Supplementary Fig. 3b). In
effect, bitwise logical operations compare all eight genotypes in
parallel in a single step. For brevity, an 8-bit word is used, and only
the heterozygous bit arrays are shown, but the same principles
hold for the larger word sizes used by GQT.

Using WAH to directly query compressed data. Although bit-
wise logical operations can drastically improve query runtime
performance, bitmap indices require double the amount of space
over the minimum 2 bits per genotype. To address this issue, we
can look toward compressing that data. Although genotype data
can be compressed with standard run-length encoding (RLE),
bitwise logical operations require that the bits associated with
variants be aligned, which is difficult to ensure with RLE. Instead
we used the WAH encoding strategy, which represents run length
in words rather than bits. RLE encodes stretches of identical val-
ues (‘runs’) as a new value in which the first bit indicates the run
value and the remaining bits give the number of bits in the run

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.3654 nature methods

(Supplementary Fig. 4a). WAH is similar to RLE, except that
it uses two different types of values. The ‘fill’ type encodes runs
of identical values, and the ‘literal’ type encodes uncompressed
binary (Supplementary Fig. 4a). This hybrid approach addresses
an inefficiency in RLE in which short runs map to larger encoded
values. The first bit in a WAH value indicates whether it is fill (1)
or literal (0). For a fill value, the second bit gives the run value
and the remaining bits give the run length in words (not bits, like
in RLE). For a literal value, the remaining bits directly encode
the uncompressed input. As each WAH-encoded value repre-
sents some number of words, and as bitwise logical operations
are performed between words, these operations can be performed
directly on compressed values.

The algorithm that performs bitwise logical operations is
straightforward (Supplementary Fig. 4b). To operate on two
uncompressed bit arrays, one simply moves in unison between the
two arrays from the first to the last word and finds the result for
each pair of words. Because each WAH value encodes one or more
words, one must move across each WAH array independently. At
each step the number of words that have been considered in the
current value is tracked, and the next word is considered only once
the words in the current value have been exhausted. Bitwise logical
operations improve the performance of most queries by comput-
ing many genotype comparisons in parallel, but some higher-level
queries cannot be resolved with these operations alone.

Finding the allele frequency among a set of individuals is one
such query. In this case, each bit corresponds to the genotype of
a particular individual at a particular genomic position, and the
allele frequency for that position is the summation of the corre-
sponding bits across all individuals. As 32 bits are packed into a
single word, this process can be reduced to a series of bitwise sums
between words, which, unfortunately, is not a standard operation.
Although no architecture provides single-instruction support for
bitwise summation, the operation does exhibit a high degree of
parallelism. The sum of each position is independent of all other
positions, which allows (in principle) the sum of all positions to
be found concurrently. This classic Single Instruction Multiple
Data (SIMD) scenario can be exploited through the use of the
vector processor registers and instructions that are supported by
the most recent Intel CPUs (Haswell and beyond). These special
registers are designed to perform instructions on a list of values
in parallel, and by combining several instructions (logical shift,
AND, sum) from the AVX2 instruction set one can obtain the
bitwise sum of eight words in parallel. Although the eight-way
parallelism lags behind what is possible for other operations, it
still represents a meaningful increase in speed for an operation
that is expected to be part of many queries.

The index described above has the ability to identify variants
that meet a complex set of conditions among millions of individu-
als and billions of genotypes in seconds.

32-bit WAH word size. A fundamental choice for WAH-encoding
bit arrays is the word size. Modern processors support up to
64 bits, but smaller words of 32, 16 and 8 bits are also possible,
and the choice affects both the compression ratio and the
query runtime. As WAH uses one bit of each word to indi-
cate the type of word (fill or literal), it would seem that larger
words would be more efficient. An 8-bit word will have 7 useful
bits to every 1 overhead bit, whereas a 64-bit word will have a

63:1 ratio. However, there is a large amount of waste in fill words.
Considering that the first 2 bits of a fill word indicate the word
type and run value and the remaining bits give the length of the
run in words, a 64-bit fill word can encode a run that is 1.4 × 1020
bits long. That is enough bits to encode 46.1 billion human
genomes. In fact, we need only 27 bits to cover the full genome,
meaning that every 64-bit fill word will have at least 35 wasted
bits. This would seem to indicate that smaller words are more
efficient, but as the word size decreases, the increase in the speed
of the bitwise logical operations also decreases. A single operation
between two 64-bit words compares eight times more bits (and
their associated genotypes) than an operation between two 8-bit
words. Taken together, our tests show that 32 bits gives the best
balance between size and speed.

Contents of BCF file, PLINK index and GQT index. Direct
compression comparisons must account for the fact that each
tool compresses different subsets of the variant and sample geno-
type sections of a VCF file (Supplementary Fig. 6). By default,
BCF encodes all of the data and metadata in both sections as
binary values and then compresses those values using blocked
LZ77 encoding. PLINK ignores both variant and sample geno-
type metadata, does not compress the variant data and simply
encodes each genotype with 2 bits without compression. GQT
uses a hybrid strategy for compressing VCF files. It retains all of
the variant data and only the genotype values (no metadata) in
the genotype section, and it stores those data in a BIM file. The
variant data are compressed with LZ77 encoding. In addition, an
index of individual genotypes is created by transposition, sorting
and WAH compression. Because the variants in the BIM file are
stored in the same order as in the original VCF and the genotype
index columns are ordered by allele frequency, mapping between
these two orderings must be maintained to retain the ability
to print results in the same order as in the original VCF. This
mapping is stored in a VID file.

Comparison of GQT index sizes to those of other file formats.
For file-size comparisons we used an uncompressed VCF file as a
baseline; BCFTOOLS used a compressed BCF to store both vari-
ant and sample data, PLINK used the binary plink format (BED)
to store sample data and a BIM file to store variant data, and GQT
used a GQT index file to store WAH-encoded sample genotype
data and a BIM file to store LZ77-compressed variant data.

Performance comparisons. We compared GQT v0.0.1 to PLINK
v1.90p and BCFTOOLS 1.1 (https://github.com/samtools/
bcftools) in terms of index file size and query runtime against four
large-scale cohorts and simulated data sets. The cohorts included
2,504 human genomes from the phase 3 1000 Genomes Project,
28 mouse genomes from the Mouse Genomes Project, 205 fly
genomes from the Drosophila Genetic Reference Panel, and 60,706
human exomes from ExAC. Query comparisons included time to
compute the alternate allele frequency for a target 10% of the
population and time to find rare (details below) variants among
a target 10% of the population. VCF maintains an ordered list of
samples, and both target sets comprised the last 10% of individuals
in that list. For all runtime comparisons, BCFTOOLS considered
a BCF file, PLINK considered a BED and a BIM file, and GQT
considered a GQT index and a BIM file (Supplementary Note 1).

https://github.com/samtools/bcftools
https://github.com/samtools/bcftools

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.3654nature methods

Runtimes for GQT considered two different modes: the default
mode that reports all matching variants in full VCF format, and
the ‘count’ mode (specified by the “-c” option) that reports only
the number of matching variants. The count mode is a useful
operation in practice, and it also demonstrates speed without
input-output overhead.

Alternate allele count. The baseline runtime for finding the alter-
nate allele count was the BCFTOOLS “stats” command with the
“-S” option to select the subset of individuals; the PLINK com-
mand was “--freq” with the “--keep” option to select individuals,
and the GQT command was “query” (with and without the “-c”
option) with the “-g “count(HET HOM_ALT)” ” option to specify
the allele count function and the “-p “BCF_ID >= N” ” option
to select the subset (where N was the ID of the range that was
considered).

Identifying rare variants. The baseline runtime for selecting
the variants was the BCFTOOLS “view” command with the
“-S” option to select the subset of individuals and the “-C” option
to limit the frequency of the variant, and the GQT command
was “query” (with and without the “-c” option) with the “-g
“count(HET HOM_ALT)<=F” ” option to specify the allele count
filter (where F was the maximum occurrence of the variant) and
the “-p “BCF_ID >= N” ” option to select the subset (where N was
the ID of the range that was considered). In both cases the limit
was set to either 1% of the subset size or 1, whichever was greater.
PLINK was omitted from this comparison because third-party
tools are required to complete this operation with that software,
and in our opinion it is not fair to assign the runtime of those
tools to PLINK.

Principal-component analysis. Using the “pca-shared” com-
mand, GQT computed a score for each pair of individuals in the
target population that reflected the number of nonreference loci
shared between the pair. This score was calculated in two stages.
First, an intermediate OR operation of the HET and HOM_ALT
bitmaps in each individual produced two bitmaps (one for each
member of the pair) that marked nonreference loci. Then an AND
of these two bitmaps produced a final bitmap that marked the sites
where both individuals were nonreference. GQT then counted the
number of bits that were set in this bitmap and reported the final
score. The “pca-shared” command also takes the target population
as a parameter. Here two cases are considered (Fig. 2e): all 2,504
individuals, which includes the South Asian, East Asian, Admixed
American (AMR), African and European ‘super populations’, and
only the 347 individuals in the AMR super population, which
included Peruvians from Lima, Peru, Colombians from Medellin,
Colombia, individuals of Mexican ancestry from Los Angeles,
California, and Puerto Ricans from Puerto Rico.

This analysis considered only the autosomes in the 1000
Genomes phase 3 variants. The result of the GQT “pca-shared”
command is the upper half of a square symmetrical matrix. The
Python script “fill_m.py” fills out a full matrix by reflecting those
values, and another Python script, “pca_light.py,” calculates the
Eigen vectors and values using the Numpy scientific computing
library and plots the results.

The resulting GQT commands were as follows:
gqt pca-shared \

-i ALL.phase3.autosome.vcf.gz.gqt \
 -d integrated_call_samples.20130502.ALL.
spop.ped.db \
-p “*” \
-f “Population” \
-l ALL.phase3.autosome.vcf.gz.gqt.pops \
> ALL.phase3.autosome.vcf.gz.gqt.o
gqt pca-shared \
-i ALL.phase3.autosome.vcf.gz.gqt \
 -d integrated_call_samples.20130502.ALL.
spop.ped.db \
-p “Super_Population = ‘AMR’” \
-f “Population” \
-l ALL.phase3.autosome.vcf.gz.gqt.AMR.pops \
> ALL.phase3.autosome.vcf.gz.gqt.AMR.o

Fixation index. FST is a widely used measurement of the genetic
difference between populations, and here we focused on the
method proposed by Weir and Cockerham12. Although this
metric has many parameters, it is fundamentally based on the
frequency of an allele and the proportion of individuals that are
heterozygous for that allele in each population. GQT can quickly
calculate both metrics for various populations across the whole
genome. The algorithm calculates allele frequency by considering
the bits marked in both HET and HOM_ALT bitmaps. Because
each bit in a bitmap corresponds to a specific variant, calculating
the allele frequency of all variants involves incrementing the asso-
ciated counter for each set bit. WAH encoding makes this process
more efficient by collapsing large stretches of reference alleles
(which are represented by zeros in the HET and HOM_ALT bit-
maps) into a small number of words that can be quickly skipped.
We further accelerate the processing of each word by using the
AVX2 vector-processing instruction set. Vector-processing
instructions are a set of special CPU instructions and registers that
exploit data-level parallelism by operating on a vector of values
with a single operation. These instructions allow us to consider 8
bits in parallel, and therefore compute the resulting sum of each
word in 4 (as opposed to 32) operations. The proportion of indi-
viduals who are heterozygous for an allele is computed in a similar
manner, except that only the HET bitmaps are considered.

This analysis considered the 1000 Genomes phase 3 variants
that were biallelic and had a minimum alternate allele frequency
of 1%. The GQT “fst” command can consider two or more
populations with the “-p” option. Here we considered two cases
(Supplementary Fig. 8): Utah residents of Northern and Western
European ancestry (CEU) versus Han Chinese in Beijing, China
(CHB) (“-p “Population = ‘CHB’ ” -p “Population = ‘CEU’ ” ”),
and CEU versus Yoruba in Ibadan, Nigeria (YRI) (“-p “Population
= ‘CHB’ ” -p “Population = ‘YRI’ ” ”). In both cases values were
smoothed using the mean FST value over a 10-kb window with
a 5-kb step. The comparison to VCFTOOLS considered version
0.1.12 and the “--weir-fst-pop” options for the CHB and CEU
populations.

 The resulting GQT commands were as follows:
gqt fst \
 -i \ ALL.phase3_shapeit2_mvncall_inte-
grated_v5a.20130502.genotypes.vcf.gz.gqt \
-d 1kg.phase3.ped.db \
-p “Population = ‘CHB’” \

©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.3654 nature methods

-p “Population = ‘CEU’” \
> CHB_vs_CEU.gqt.fst.vcf
gqt fst \
 -i \ ALL.phase3_shapeit2_mvncall_inte-
grated_v5a.20130502.genotypes.vcf.gz.gqt \
-d 1kg.phase3.ped.db \
-p “Population = ‘YRI’” \
-p “Population = ‘CEU’” \
> YRI_vs_CEU.gqt.fst.vcf

Experimental data sets.
• 1000 Genomes phase 3. Individual chromosome VCF files

were retrieved from ref. 2 (last accessed December 10, 2014)
and combined into a single file using the BCFTOOLS “concat”
command. To understand how each tool scaled as the number
of samples and variants increased, we subsampled the full data
set (which included 2,504 individuals) to create new sets with
100, 500 and 1,000 individuals. To create each data-set size,
we randomly selected the target number of samples and then
used the BCFTOOLS “view” command with the “-s” option to
return just the genotypes of the target samples. We then recom-
puted the allele frequency of each variant with the BCFTOOLS
“fill-AN-AC” plugin and filtered all nonvariable sites with the
BCFTOOLS “view” command and the “-c 1” option.

• ExAC. Version 3 of the ExAC data set was analyzed, and run-
times were measured on the computing infrastructure at the
Broad Institute.

• Mouse Genomes Project. Data were retrieved in VCF format
from ftp://ftp-mouse.sanger.ac.uk/current_snps/mgp.v4.snps.
dbSNP.vcf.gz, last accessed November 25, 2014.

• Drosophila Genetic Reference Panel. Data were retrieved in
VCF format from http://dgrp2.gnets.ncsu.edu/data/website/
dgrp2.vcf, last accessed November 25, 2014.

• CEPH 1473 pedigree. A VCF file of variants in the CEPH 1473
pedigree that was sequenced as part of the Illumina Platinum
Genomes Project was downloaded from ftp://ftp-trace.ncbi.
nih.gov/giab/ftp/data/NA12878/analysis/RTG_small_
variants_01132014/cohort-illumina-wgs.vcf.gz.

Simulated data sets. Genotypes were simulated using the MaCS13
simulator version 0.5d with the mutation rate and recombination
rate per site per 4N generations set to 0.001 and the region size set
to 100 Mb. Because our simulation considered between 100 and
100,000 diploid samples and MaCS only simulates haplotypes, we
simulated 2x haplotypes for each case and combined two haplo-
types to create a single diploid genome. It was computationally
prohibitive to produce a data set for 1 million individuals (the
100,000-sample simulation ran for more than 4 weeks), so we
used a simple linear fit to estimate the file size and runtimes for
1 million individuals.

Computing environment. GQT is a tool written in C, which uses
htslib (https://github.com/samtools/htslib) to interact with VCF
and BCF files and zlib (http://www.zlib.net/) to compress and
inflate variant metadata. All experiments were run on Ubuntu
Linux v3.13.0-43, with gcc v4.9.2, 4 Intel Core i7-4790K 4.00 GHz
CPUs with the Haswell microarchitecture, and a 550 MB/s
read-write solid-state hard drive.

Code availability. All source code for the GQT toolkit is available
at https://github.com/ryanlayer/gqt. Furthermore, all commands
used for the experiments conducted in this study are available at
https://github.com/ryanlayer/gqt_paper.

13. Chen, G.K., Marjoram, P. & Wall, J.D. Genome Res. �9, 136–142 (2009).

ftp://ftp-mouse.sanger.ac.uk/current_snps/mgp.v4.snps.dbSNP.vcf.gz
ftp://ftp-mouse.sanger.ac.uk/current_snps/mgp.v4.snps.dbSNP.vcf.gz
http://dgrp2.gnets.ncsu.edu/data/website/dgrp2.vcf
http://dgrp2.gnets.ncsu.edu/data/website/dgrp2.vcf
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/analysis/RTG_small_variants_01132014/cohort-illumina-wgs.vcf.gz
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/analysis/RTG_small_variants_01132014/cohort-illumina-wgs.vcf.gz
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/analysis/RTG_small_variants_01132014/cohort-illumina-wgs.vcf.gz
https://github.com/samtools/htslib
http://www.zlib.net/
https://github.com/ryanlayer/gqt
https://github.com/ryanlayer/gqt_paper

