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genetic-variation data sets. GQT creates an index of a VCF file 
by transposing the genotype data to facilitate queries based on 
the genotypes, phenotypes and relationships of one or more of 
the individuals in the study (Fig. 1c). Once transposed, variant 
columns are sorted by allele frequency to take advantage of the fact 
that the majority of genetic variation is extremely rare in the popu-
lation4,5 (Fig. 1d). Reordering by allele frequency greatly improves 
data compression, as it yields much longer runs of identical geno-
types than transposition alone (Supplementary Fig. 1). GQT also 
utilizes an efficient data-compression strategy based on Word-
Aligned Hybrid (WAH) compressed6–8 bitmap indices of the sam-
ple genotype information (Online Methods and Supplementary 
Figs. 2–4). The combination of genotype transposition and WAH 
compression maximizes query performance by allowing direct 
inspection of genotype data without decompression.

In addition to indexing genotypes, GQT can also create a 
simple database from a pedigree (PED) file describing the 
names, relationships, multiple phenotypes and other attributes 
of the samples in an associated VCF file (Fig. 1e). The sample 
database complements the GQT index of the original VCF or 
binary VCF (BCF) file and allows GQT to quickly identify the 
compressed sample genotype bitmaps that are germane to the 
query. For example, a query could search for variants where all 
affected individuals (“phenotype==2”) are heterozygous (“HET”)  
(Fig. 1e). GQT uses the sample database to find compressed geno-
type bitmaps of the affected individuals. Once these individu-
als have been identified, the relevant bit arrays for heterozygous 
genotypes are AND’ed (Supplementary Fig. 2b) to return the 
single VCF record in which all affected individuals are hetero-
zygous. With this structure, queries can exploit any attribute that 
is defined in the PED file, and one can combine multiple crite-
ria. This functionality enables, for example, searches for de novo  
mutations in a multigenerational pedigree (Supplementary  
Fig. 5) and variants having markedly different minor allele fre-
quencies in different world subpopulations or case-versus-control 
samples. Query results are ordered by genome coordinate and 
returned in VCF format, which supports sophisticated analyses 
combining GQT queries with other, variant-centric tools such as 
BEDTOOLS9, VCFTOOLS3 and BCFTOOLS.

GQT’s genotype index is a complement to the existing variant- 
centric indexing strategies3,10 available for data sets in VCF 
(or BCF). GQT creates two additional indices (BIM and VID; 
Supplementary Fig. 6) that allow variants satisfying a query to 
be quickly returned in VCF. The storage overhead of the GQT 
indices is minimal with respect to the size of the underlying  
data set. Moreover, index size relative to the size of the VCF 
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of the heritability can be attributed to known genetic variation.  
A widely held hypothesis is that the remaining heritability can  
be explained in part by rare, and thus largely unknown, genetic 
variation in the human population1. On the basis of current and 
forthcoming efforts, it is predicted that more than 1 million 
human genomes will be sequenced in the near term2. Integrated 
analyses and community sharing of such population data sets will 
clearly be critical for future discovery. In aggregate, the resulting 
data sets will include trillions of genotypes at hundreds of millions 
of polymorphic loci. Therefore, the development of more effective 
data exploration and compression strategies is crucial for broad 
use and future discovery.

The Variant Call Format3 (VCF) defines a common framework 
for representing variants, sample genotypes and variant annota-
tions from DNA-sequencing studies (Fig. 1a), and it has become 
the standard for genome-variation research. However, because 
VCF is intentionally organized from the perspective of chromo-
somal loci to support ‘variant-centric’ analyses, it is ill suited to 
queries focused on specific genotype, phenotype or inheritance 
combinations, such as which variants are homozygous exclusively 
in affected women (Fig. 1b). GQT introduces a complementary 
‘individual-centric’ strategy for indexing and mining very large 
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file continues to decrease as the cohort size grows, as most new 
variation discovered from additional samples is very rare4,5. 
Comparisons to PLINK and BCF based on the 1000 Genomes 
Project (phase 3) VCF files demonstrated that the GQT com-
pression strategy was on par with the compression scheme used 
in BCF (Supplementary Fig. 7 and Supplementary Note 1). In 
particular, the GQT genotype index alone (i.e., excluding the 
ancillary BIM and VID indices) represented merely an additional 
~10% (12.08 GB) storage burden beyond the requirement of the 
phase 3 1000 Genomes data set in BCF.

A typical tradeoff for data-compression algorithms is the cost 
of decompressing data before analysis11. We designed the GQT 
indexing strategy precisely to avoid this tradeoff and achieve 
efficient queries of cohorts involving thousands to millions of 
individuals. To demonstrate this, we compared the query per-
formance of GQT to that of both BCFTOOLS and a compre-
hensive update to PLINK (v1.90). First, we considered the time 
required to compute the alternate allele frequency among a target 
set of 10% of individuals from the 1000 Genomes VCF data set 
(Fig. 2a). Compared with BCFTOOLS, which required 1,517.5 s, 
both GQT and PLINK were substantially faster, requiring 58.4 s 
(26.0-fold increase in computation speed) and 156.3 s (9.6-fold 
increase), respectively. We emphasize that GQT’s performance 
advantage improved as the number of individuals increased, 
whereas PLINK’s performance remained relatively flat. Moreover, 
matching variants were identified almost instantly, and thus the 
majority of GQT’s runtime was spent returning the VCF results. 
For example, when the GQT “count” option was invoked to simply 
return the number of matching variants, the runtime dropped to 
4.2 s. We also compared the time required to identify rare (alter-
nate allele frequency of <1%) variants among a subset of 10% of 

the individuals (Fig. 2b). In this case, GQT was up to 45.8 times 
faster than BCFTOOLS (51.5 s versus 2,360.5 s).

When we considered the Exome Aggregation Consortium 
(ExAC; version 0.3) variant data set (9.36 million exonic vari-
ants among 60,706 human exomes), we found that the GQT index 
was only 0.2% the size of the VCF file (28 GB versus 14.1 TB), 
reflecting a storage requirement of merely 0.38 bits per genotype. 
Rare variants were found in only 2.1 min (9.98 s when excluding 
the time required to report the variants), reflecting a 443-fold 
improvement over BCFTOOLS (931.4 min) (Supplementary 
Table 1). On the basis of simulated data sets involving 100–
100,000 individuals on a 100-Mb genome, it was clear that GQT’s 
relative data compression and query performance continued to 
improve with larger cohorts. Although simulating variants from 
1 million or more individuals was computationally intractable for 
this study, extrapolation suggested that GQT’s query performance 
for a cohort of 1 million genomes was at least 218-fold faster  
than that of BCFTOOLS (Fig. 2c,d).

Because the GQT indexing strategy is fundamentally optimized 
for questions that involve comparisons of sample genotypes 
among many variant loci, it is also well suited to many common 
statistical and population-genetics measures. For example, as the 
basis for principal-component analysis of the 2,504 individuals 
in the 1000 Genomes data set, GQT produced a similarity matrix 
using the number of shared, nonreference variants in 207 min 
(Fig. 2e). A similarity matrix for the 347 admixed American indi-
viduals required merely 3 min. GQT also computed the Weir and 
Cockerham12 FST statistic for all 84.7 million variants in the phase 3  
1000 Genomes data set in 74 s, reflecting a 146-fold increase in 
computation speed over VCFTOOLS (Supplementary Fig. 8). 
These examples demonstrate how GQT indices could empower 
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figure � | Creation and data exploration of an individual-centric genotype index. (a) The variant-centric VCF standard is a genotype matrix in which rows 
correspond to variants and columns correspond to individuals. (b) Each variant row must be inspected to test all of the genotypes of specific individuals. 
(c) GQT transposes the matrix such that rows (data records) represent the full set of genotypes for each individual, which better aligns the data to 
individual-centric questions and algorithms. (d) Sorting the columns of an individual-centric matrix by alternate allele count improves compressibility. 
All genotypes for each sample are converted to WAH compressed bitmaps (supplementary note �). (e) GQT will create an SQLite database of a PED 
file describing the familial relationships, gender, ancestry, and custom, user-defined sample descriptions. The resulting database allows GQT to quickly 
extract the specific compressed bitmap records in the genotype index corresponding to a query. Once the compressed bitmaps for the relevant samples 
have been extracted, they are compared so the subset of variants that meet the genotype requirements can be quickly identified (in this example, all 
individuals must be heterozygous, as in variant V10). Chrom, chromosome; Pos, position; Ref, reference; Alt, alternate allele; Qual, quality score.
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other statistical genetics software and serve as a framework for 
future method development.

Although GQT greatly expedites individual-centric analysis, it 
is currently incapable of searching for variants in specific chro-
mosomal regions, unless the results of GQT queries are filtered 
to specific regions by variant-centric tools such as Tabix10 and 
BCFTOOLS. However, we have shown that it is a natural com-
plement to variant-centric indexing strategies that struggle with 
individual-centric queries. Considering the strengths and trade-
offs of each approach, we envision a general querying interface 
that integrates both indexing strategies and supports genomic 
data–sharing efforts such as the Global Alliance for Genomics 
and Health. Given the efficiency and inherent flexibility of 
this genotype-indexing strategy, we expect GQT to be a potent  
analysis tool and to enhance existing methods for the exploration 
of massive data sets involving millions of genomes2.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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figure � | GQT query performance and applications of the genotype  
index. (a) Increase in computation speed for the alternate allele  
frequency in a targeted 10% of the 2,504 individuals in 1,000  
Genomes (phase 3). Two versions of GQT output were considered:  
valid VCF (GQT query) and the number of matching variants (GQT  
query -c). (b) Increase in computation speed for finding variants  
with an alternate allele frequency of <1% (rare variants) in a  
targeted 10% of individuals. PLINK did not directly perform this  
operation and was excluded. (c) Query performance for simulated  
genotypes (without variant and sample metadata) on a 100-Mb  
genome with 100–100,000 individuals. The labeled times are for  
100,000 individuals, and the metrics for 1 million were estimated  
by linear fit. The increase in computation speed for the alternate  
allele frequency for 10% of individuals is presented. (d) The increase  
in computation time for finding rare variants in 10% of simulated  
genomes. Again, PLINK was excluded. Runtimes for 2,504 individuals  
from 1,000 Genomes and for the simulation were similar because the total numbers of genotypes were nearly identical. (e) A principal-component 
analysis (PCA) of all variants from 1,000 Genomes (phase 3) took 207 min for 2,504 individuals and 3 min for 347 AMR individuals. PEL, Peruvians from 
Lima, Peru; CLM, Colombians from Medellin, Colombia; MXL, individuals of Mexican ancestry from Los Angeles, California; PUR, Puerto Ricans from Puerto 
Rico; SAS, South Asian; EAS, East Asian; AFR, African; EUR, European; EV, eigenvalue. 
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Overview of the GQT genotype-indexing strategy. Once the gen-
otypes in a VCF file have been transposed from a variant-centric 
form (Fig. 1b) to an individual-centric form (Fig. 1c), the variant 
columns are sorted by allele frequency (Fig. 1d). Each individual’s 
genotypes are then encoded into a bitmap index comprising four 
distinct bit arrays corresponding to each of the four (including 
‘unknown’) possible diploid genotypes (Supplementary Fig. 2). 
Bitmaps allow for efficient comparisons of many genotypes in a 
single operation by means of bitwise logical operations, thereby 
enabling rapid comparisons of sample genotypes among many vari-
ants in the original VCF file (Supplementary Fig. 3). Lastly, the bit-
map indices are compressed using WAH encoding6, which achieves 
near-optimal compression while still allowing bitwise operations 
directly on the compressed data (Supplementary Fig. 4). This 
encoding minimizes the disk-storage requirements of the index 
and, by eliminating the need for data inflation, improves query 
speed, as runtime is a function of the compressed input size.

Sorting by allele frequency to improve compression. Long runs 
of identical genotypes are easily compressed. We have chosen an 
alternative individual-centric data-organization strategy that, 
although it facilitates queries based on individual genotypes, 
destroys the inherent compression of the genotype runs in the 
variant-centric approach. This loss of compression is the direct 
consequence of the fact that records in the individual-centric 
approach reflect the genotypes for a given individual at each site 
of variation in the genome. Runs of identical genotypes are far 
shorter on average than those obtained with the variant-centric 
approach, and therefore the individual-centric strategy yields 
poor compression. The question then becomes how to leverage 
the query efficiency of individual-centric data organization while 
also retaining the opportunity for data compression. GQT solves 
this problem by sorting the variant columns of the transposed 
matrix in order of allele frequency. This results in fewer, longer 
runs of identical genotypes in each individual’s row of genotypes 
(Supplementary Fig. 1). For example, we compared the effect of 
sorting variants on genotype runs using chromosome 20 from 
phase 3 of the 1000 Genomes Project. As expected, sorting variants 
by allele frequency caused both a dramatic increase in the mean 
length (10.7 versus 23.2) of identical genotype runs and a decrease 
in the median number of runs per individual (158,993.5 versus 
70,718.5). Fewer, longer identical genotype runs allow for greater 
compression of each individual’s (reordered) variant genotypes.

Representing sample genotypes with bitmap indices. The 
fundamental advantage of individual-centric data organization 
is the fact that all of an individual’s genotypes can be accessed 
at once. This enables algorithms to quickly compare all variant 
genotypes from multiple samples in search of variants that meet 
specific inheritance patterns, allele frequencies or enrichments 
among subsets of individuals. Despite the improved data align-
ment, comparing sample genotypes can still require substantial 
computation. For VCF, which encodes diploid genotypes as 0/0 
for homozygotes of the reference allele, 0/1 for heterozygotes, 
1/1 for homozygotes of the alternate allele and ./. for unknown 
genotypes (Supplementary Fig. 2a), comparing the genotypes of 
two or more individuals requires iterative tests of each genotype 
for each individual.

Recognizing this inefficiency, we encode each individual’s vec-
tor of genotypes with a bitmap index. A bitmap index (bitmap) is 
an efficient strategy for indexing attributes with discrete values 
that uses a separate bit array for each possible attribute value. In 
the case of an individual’s genotypes, a bitmap comprises four 
distinct bit arrays corresponding to each of the four (including 
‘unknown’) possible diploid genotypes. The bits in each bit array 
are set to true (1) if the individual’s genotype at a given variant 
matches the genotype the array encodes (Supplementary Fig. 2a). 
Otherwise, the element is set to false (0). In turn, bitmap encoding 
facilitates the rapid comparison of individuals’ genotypes with 
highly optimized bitwise logical operations. As an example, a bit-
map search for variants where all individuals are heterozygous 
involves a series of pairwise AND operations on the entire hetero-
zygote bit array from each individual. The intermediate result of 
each pairwise AND operation is subsequently compared with that 
for the next individual, until the final bit array reflects the variants 
where all individuals are heterozygous (Supplementary Fig. 2b). 
Such queries are expedited owing to the ability of modern CPUs 
to simultaneously test multiple bits (i.e., genotypes) with a single 
bitwise logical operation.

Efficient comparisons using bitmaps. By using bitwise logical 
operations, we can compare many genotypes in a single operation, 
instead of comparing each individual value. At a low level, bitwise 
logical operations are performed on words, which are the fixed-
size unit of bits used by the CPU. Modern processors typically 
use either 32- or 64-bit words. When a bitwise logical operation 
is performed between two bit arrays (each of which corresponds 
to the genotypes of two individuals), the processor completes this 
operation on one pair of words at a time. For example, if the 
word size is 32, then computing the bitwise AND of two bit arrays 
that are each 320 bits long would require only ten ANDs. This 
optimization is equivalent to a 32-way parallel operation with 
zero overhead. Consider a search for the loci at which three indi-
viduals are heterozygous among eight variants (Supplementary  
Fig. 3). When genotypes are encoded in ASCII (as they are in 
VCF), the algorithm must loop over every individual and every 
variant to find the common sites. In total, this requires 24 itera-
tions (Supplementary Fig. 3a). In contrast, encoding genotypes 
with a bitmap allows the same computation to be completed with 
only three bitwise AND operations (Supplementary Fig. 3b). In 
effect, bitwise logical operations compare all eight genotypes in 
parallel in a single step. For brevity, an 8-bit word is used, and only 
the heterozygous bit arrays are shown, but the same principles 
hold for the larger word sizes used by GQT.

Using WAH to directly query compressed data. Although bit-
wise logical operations can drastically improve query runtime 
performance, bitmap indices require double the amount of space 
over the minimum 2 bits per genotype. To address this issue, we 
can look toward compressing that data. Although genotype data 
can be compressed with standard run-length encoding (RLE), 
bitwise logical operations require that the bits associated with 
variants be aligned, which is difficult to ensure with RLE. Instead 
we used the WAH encoding strategy, which represents run length 
in words rather than bits. RLE encodes stretches of identical val-
ues (‘runs’) as a new value in which the first bit indicates the run 
value and the remaining bits give the number of bits in the run 
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(Supplementary Fig. 4a). WAH is similar to RLE, except that 
it uses two different types of values. The ‘fill’ type encodes runs 
of identical values, and the ‘literal’ type encodes uncompressed 
binary (Supplementary Fig. 4a). This hybrid approach addresses 
an inefficiency in RLE in which short runs map to larger encoded 
values. The first bit in a WAH value indicates whether it is fill (1) 
or literal (0). For a fill value, the second bit gives the run value 
and the remaining bits give the run length in words (not bits, like 
in RLE). For a literal value, the remaining bits directly encode 
the uncompressed input. As each WAH-encoded value repre-
sents some number of words, and as bitwise logical operations 
are performed between words, these operations can be performed 
directly on compressed values.

The algorithm that performs bitwise logical operations is 
straightforward (Supplementary Fig. 4b). To operate on two 
uncompressed bit arrays, one simply moves in unison between the 
two arrays from the first to the last word and finds the result for 
each pair of words. Because each WAH value encodes one or more 
words, one must move across each WAH array independently. At 
each step the number of words that have been considered in the 
current value is tracked, and the next word is considered only once 
the words in the current value have been exhausted. Bitwise logical 
operations improve the performance of most queries by comput-
ing many genotype comparisons in parallel, but some higher-level 
queries cannot be resolved with these operations alone.

Finding the allele frequency among a set of individuals is one 
such query. In this case, each bit corresponds to the genotype of 
a particular individual at a particular genomic position, and the 
allele frequency for that position is the summation of the corre-
sponding bits across all individuals. As 32 bits are packed into a 
single word, this process can be reduced to a series of bitwise sums 
between words, which, unfortunately, is not a standard operation. 
Although no architecture provides single-instruction support for 
bitwise summation, the operation does exhibit a high degree of 
parallelism. The sum of each position is independent of all other 
positions, which allows (in principle) the sum of all positions to 
be found concurrently. This classic Single Instruction Multiple 
Data (SIMD) scenario can be exploited through the use of the 
vector processor registers and instructions that are supported by 
the most recent Intel CPUs (Haswell and beyond). These special 
registers are designed to perform instructions on a list of values 
in parallel, and by combining several instructions (logical shift, 
AND, sum) from the AVX2 instruction set one can obtain the 
bitwise sum of eight words in parallel. Although the eight-way 
parallelism lags behind what is possible for other operations, it 
still represents a meaningful increase in speed for an operation 
that is expected to be part of many queries.

The index described above has the ability to identify variants 
that meet a complex set of conditions among millions of individu-
als and billions of genotypes in seconds.

32-bit WAH word size. A fundamental choice for WAH-encoding  
bit arrays is the word size. Modern processors support up to 
64 bits, but smaller words of 32, 16 and 8 bits are also possible,  
and the choice affects both the compression ratio and the 
query runtime. As WAH uses one bit of each word to indi-
cate the type of word (fill or literal), it would seem that larger 
words would be more efficient. An 8-bit word will have 7 useful  
bits to every 1 overhead bit, whereas a 64-bit word will have a 

63:1 ratio. However, there is a large amount of waste in fill words. 
Considering that the first 2 bits of a fill word indicate the word 
type and run value and the remaining bits give the length of the 
run in words, a 64-bit fill word can encode a run that is 1.4 × 1020  
bits long. That is enough bits to encode 46.1 billion human 
genomes. In fact, we need only 27 bits to cover the full genome, 
meaning that every 64-bit fill word will have at least 35 wasted 
bits. This would seem to indicate that smaller words are more 
efficient, but as the word size decreases, the increase in the speed 
of the bitwise logical operations also decreases. A single operation 
between two 64-bit words compares eight times more bits (and 
their associated genotypes) than an operation between two 8-bit 
words. Taken together, our tests show that 32 bits gives the best 
balance between size and speed.

Contents of BCF file, PLINK index and GQT index. Direct 
compression comparisons must account for the fact that each 
tool compresses different subsets of the variant and sample geno-
type sections of a VCF file (Supplementary Fig. 6). By default, 
BCF encodes all of the data and metadata in both sections as 
binary values and then compresses those values using blocked 
LZ77 encoding. PLINK ignores both variant and sample geno-
type metadata, does not compress the variant data and simply 
encodes each genotype with 2 bits without compression. GQT 
uses a hybrid strategy for compressing VCF files. It retains all of 
the variant data and only the genotype values (no metadata) in 
the genotype section, and it stores those data in a BIM file. The 
variant data are compressed with LZ77 encoding. In addition, an 
index of individual genotypes is created by transposition, sorting 
and WAH compression. Because the variants in the BIM file are 
stored in the same order as in the original VCF and the genotype 
index columns are ordered by allele frequency, mapping between 
these two orderings must be maintained to retain the ability 
to print results in the same order as in the original VCF. This  
mapping is stored in a VID file.

Comparison of GQT index sizes to those of other file formats. 
For file-size comparisons we used an uncompressed VCF file as a 
baseline; BCFTOOLS used a compressed BCF to store both vari-
ant and sample data, PLINK used the binary plink format (BED) 
to store sample data and a BIM file to store variant data, and GQT 
used a GQT index file to store WAH-encoded sample genotype 
data and a BIM file to store LZ77-compressed variant data.

Performance comparisons. We compared GQT v0.0.1 to PLINK 
v1.90p and BCFTOOLS 1.1 (https://github.com/samtools/
bcftools) in terms of index file size and query runtime against four 
large-scale cohorts and simulated data sets. The cohorts included 
2,504 human genomes from the phase 3 1000 Genomes Project, 
28 mouse genomes from the Mouse Genomes Project, 205 fly 
genomes from the Drosophila Genetic Reference Panel, and 60,706 
human exomes from ExAC. Query comparisons included time to 
compute the alternate allele frequency for a target 10% of the 
population and time to find rare (details below) variants among 
a target 10% of the population. VCF maintains an ordered list of 
samples, and both target sets comprised the last 10% of individuals 
in that list. For all runtime comparisons, BCFTOOLS considered 
a BCF file, PLINK considered a BED and a BIM file, and GQT 
considered a GQT index and a BIM file (Supplementary Note 1).  

https://github.com/samtools/bcftools
https://github.com/samtools/bcftools
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Runtimes for GQT considered two different modes: the default 
mode that reports all matching variants in full VCF format, and 
the ‘count’ mode (specified by the “-c” option) that reports only 
the number of matching variants. The count mode is a useful 
operation in practice, and it also demonstrates speed without 
input-output overhead.

Alternate allele count. The baseline runtime for finding the alter-
nate allele count was the BCFTOOLS “stats” command with the 
“-S” option to select the subset of individuals; the PLINK com-
mand was “--freq” with the “--keep” option to select individuals, 
and the GQT command was “query” (with and without the “-c” 
option) with the “-g “count(HET HOM_ALT)” ” option to specify 
the allele count function and the “-p “BCF_ID >= N” ” option 
to select the subset (where N was the ID of the range that was 
considered).

Identifying rare variants. The baseline runtime for selecting 
the variants was the BCFTOOLS “view” command with the  
“-S” option to select the subset of individuals and the “-C” option 
to limit the frequency of the variant, and the GQT command 
was “query” (with and without the “-c” option) with the “-g 
“count(HET HOM_ALT)<=F” ” option to specify the allele count 
filter (where F was the maximum occurrence of the variant) and 
the “-p “BCF_ID >= N” ” option to select the subset (where N was 
the ID of the range that was considered). In both cases the limit 
was set to either 1% of the subset size or 1, whichever was greater. 
PLINK was omitted from this comparison because third-party 
tools are required to complete this operation with that software, 
and in our opinion it is not fair to assign the runtime of those 
tools to PLINK.

Principal-component analysis. Using the “pca-shared” com-
mand, GQT computed a score for each pair of individuals in the 
target population that reflected the number of nonreference loci 
shared between the pair. This score was calculated in two stages. 
First, an intermediate OR operation of the HET and HOM_ALT 
bitmaps in each individual produced two bitmaps (one for each 
member of the pair) that marked nonreference loci. Then an AND 
of these two bitmaps produced a final bitmap that marked the sites 
where both individuals were nonreference. GQT then counted the 
number of bits that were set in this bitmap and reported the final 
score. The “pca-shared” command also takes the target population 
as a parameter. Here two cases are considered (Fig. 2e): all 2,504 
individuals, which includes the South Asian, East Asian, Admixed 
American (AMR), African and European ‘super populations’, and 
only the 347 individuals in the AMR super population, which 
included Peruvians from Lima, Peru, Colombians from Medellin, 
Colombia, individuals of Mexican ancestry from Los Angeles, 
California, and Puerto Ricans from Puerto Rico.

This analysis considered only the autosomes in the 1000 
Genomes phase 3 variants. The result of the GQT “pca-shared” 
command is the upper half of a square symmetrical matrix. The 
Python script “fill_m.py” fills out a full matrix by reflecting those 
values, and another Python script, “pca_light.py,” calculates the 
Eigen vectors and values using the Numpy scientific computing 
library and plots the results.

The resulting GQT commands were as follows:
gqt pca-shared \

-i ALL.phase3.autosome.vcf.gz.gqt \
 -d integrated_call_samples.20130502.ALL.
spop.ped.db \
-p “*” \
-f “Population” \
-l ALL.phase3.autosome.vcf.gz.gqt.pops \
> ALL.phase3.autosome.vcf.gz.gqt.o
gqt pca-shared \
-i ALL.phase3.autosome.vcf.gz.gqt \
 -d integrated_call_samples.20130502.ALL.
spop.ped.db \
-p “Super_Population = ‘AMR’” \
-f “Population” \
-l ALL.phase3.autosome.vcf.gz.gqt.AMR.pops \
> ALL.phase3.autosome.vcf.gz.gqt.AMR.o

Fixation index. FST is a widely used measurement of the genetic 
difference between populations, and here we focused on the 
method proposed by Weir and Cockerham12. Although this 
metric has many parameters, it is fundamentally based on the 
frequency of an allele and the proportion of individuals that are 
heterozygous for that allele in each population. GQT can quickly 
calculate both metrics for various populations across the whole 
genome. The algorithm calculates allele frequency by considering 
the bits marked in both HET and HOM_ALT bitmaps. Because 
each bit in a bitmap corresponds to a specific variant, calculating 
the allele frequency of all variants involves incrementing the asso-
ciated counter for each set bit. WAH encoding makes this process 
more efficient by collapsing large stretches of reference alleles 
(which are represented by zeros in the HET and HOM_ALT bit-
maps) into a small number of words that can be quickly skipped. 
We further accelerate the processing of each word by using the 
AVX2 vector-processing instruction set. Vector-processing 
instructions are a set of special CPU instructions and registers that 
exploit data-level parallelism by operating on a vector of values 
with a single operation. These instructions allow us to consider 8 
bits in parallel, and therefore compute the resulting sum of each 
word in 4 (as opposed to 32) operations. The proportion of indi-
viduals who are heterozygous for an allele is computed in a similar 
manner, except that only the HET bitmaps are considered.

This analysis considered the 1000 Genomes phase 3 variants 
that were biallelic and had a minimum alternate allele frequency 
of 1%. The GQT “fst” command can consider two or more 
populations with the “-p” option. Here we considered two cases 
(Supplementary Fig. 8): Utah residents of Northern and Western 
European ancestry (CEU) versus Han Chinese in Beijing, China 
(CHB) (“-p “Population = ‘CHB’ ” -p “Population = ‘CEU’ ” ”), 
and CEU versus Yoruba in Ibadan, Nigeria (YRI) (“-p “Population 
= ‘CHB’ ” -p “Population = ‘YRI’ ” ”). In both cases values were 
smoothed using the mean FST value over a 10-kb window with 
a 5-kb step. The comparison to VCFTOOLS considered version 
0.1.12 and the “--weir-fst-pop” options for the CHB and CEU 
populations.

 The resulting GQT commands were as follows:
gqt fst \
 -i \ ALL.phase3_shapeit2_mvncall_inte-
grated_v5a.20130502.genotypes.vcf.gz.gqt \
-d 1kg.phase3.ped.db \
-p “Population = ‘CHB’” \



©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.3654 nature methods

-p “Population = ‘CEU’” \
> CHB_vs_CEU.gqt.fst.vcf
gqt fst \
 -i \ ALL.phase3_shapeit2_mvncall_inte-
grated_v5a.20130502.genotypes.vcf.gz.gqt \
-d 1kg.phase3.ped.db \
-p “Population = ‘YRI’” \
-p “Population = ‘CEU’” \
> YRI_vs_CEU.gqt.fst.vcf

Experimental data sets. 
•  1000 Genomes phase 3. Individual chromosome VCF files 

were retrieved from ref. 2 (last accessed December 10, 2014) 
and combined into a single file using the BCFTOOLS “concat” 
command. To understand how each tool scaled as the number 
of samples and variants increased, we subsampled the full data 
set (which included 2,504 individuals) to create new sets with 
100, 500 and 1,000 individuals. To create each data-set size, 
we randomly selected the target number of samples and then 
used the BCFTOOLS “view” command with the “-s” option to 
return just the genotypes of the target samples. We then recom-
puted the allele frequency of each variant with the BCFTOOLS 
“fill-AN-AC” plugin and filtered all nonvariable sites with the 
BCFTOOLS “view” command and the “-c 1” option.

•  ExAC. Version 3 of the ExAC data set was analyzed, and run-
times were measured on the computing infrastructure at the 
Broad Institute.

•  Mouse Genomes Project. Data were retrieved in VCF format 
from ftp://ftp-mouse.sanger.ac.uk/current_snps/mgp.v4.snps.
dbSNP.vcf.gz, last accessed November 25, 2014.

•  Drosophila Genetic Reference Panel. Data were retrieved in 
VCF format from http://dgrp2.gnets.ncsu.edu/data/website/
dgrp2.vcf, last accessed November 25, 2014.

•  CEPH 1473 pedigree. A VCF file of variants in the CEPH 1473 
pedigree that was sequenced as part of the Illumina Platinum 
Genomes Project was downloaded from ftp://ftp-trace.ncbi.
nih.gov/giab/ftp/data/NA12878/analysis/RTG_small_
variants_01132014/cohort-illumina-wgs.vcf.gz.

Simulated data sets. Genotypes were simulated using the MaCS13 
simulator version 0.5d with the mutation rate and recombination 
rate per site per 4N generations set to 0.001 and the region size set 
to 100 Mb. Because our simulation considered between 100 and 
100,000 diploid samples and MaCS only simulates haplotypes, we 
simulated 2x haplotypes for each case and combined two haplo-
types to create a single diploid genome. It was computationally 
prohibitive to produce a data set for 1 million individuals (the 
100,000-sample simulation ran for more than 4 weeks), so we 
used a simple linear fit to estimate the file size and runtimes for 
1 million individuals.

Computing environment. GQT is a tool written in C, which uses 
htslib (https://github.com/samtools/htslib) to interact with VCF 
and BCF files and zlib (http://www.zlib.net/) to compress and 
inflate variant metadata. All experiments were run on Ubuntu 
Linux v3.13.0-43, with gcc v4.9.2, 4 Intel Core i7-4790K 4.00 GHz  
CPUs with the Haswell microarchitecture, and a 550 MB/s  
read-write solid-state hard drive.

Code availability. All source code for the GQT toolkit is available 
at https://github.com/ryanlayer/gqt. Furthermore, all commands 
used for the experiments conducted in this study are available at 
https://github.com/ryanlayer/gqt_paper.
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