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The study of genetic influences on drug response and efficacy (‘pharmacogenetics’) has existed for over 50
years. Yet, we still lack a complete picture of how genetic variation, both common and rare, affects each indivi-
dual’s responses to medications. Exome sequencing is a promising alternative method for pharmacogenetic
discovery as it provides information on both common and rare variation in large numbers of individuals. Using
exome data from 2203 AA and 4300 Caucasian individuals through the NHLBI Exome Sequencing Project, we con-
ducted a survey of coding variation within 12 Cytochrome P450 (CYP) genes that are collectively responsible for
catalyzing nearly 75% of all known Phase I drug oxidation reactions. In addition to identifying many polymorph-
isms with known pharmacogenetic effects, we discovered over 730 novel nonsynonymous alleles across the 12
CYP genes of interest. These alleles include many with diverse functional effects such as premature stop
codons, aberrant splicesites and mutations at conserved active site residues. Our analysis considering both
novel, predicted functional alleles as well as known, actionable CYP alleles reveals that rare, deleterious variation
contributesmarkedly to theoverallburdenofpharmacogeneticalleleswithin thepopulationsconsidered,andthat
the contribution of rare variation to this burden is over three times greater in AA individuals as compared with
Caucasians. While most of these impactful alleles are individually rare, 7.6–11.7% of individuals interrogated in
the study carry at least one newly described potentially deleterious alleles in a major drug-metabolizing CYP.
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INTRODUCTION

Genetic influences on drug action (‘pharmacogenetics’) have
been studied directly for several decades, yet we still lack a com-
prehensive understanding of how genetic variation, both
common and rare, affects an individual’s responses to medica-
tions (1). Exome sequencing provides a promising new approach
for accelerating pharmacogenetic discovery because it assesses
both common (i.e. minor allele frequency (MAF) .5%) and rare
(MAF , 1%) variation in virtually all genes in an individual at
relatively low cost. To this end, exome sequencing can simultan-
eously capture variation across many genes with diverse roles in
pharmacological pathways; these include the ‘pharmacokinetic’
proteins that catalyze drug-metabolism reactions, the proteins
that influence drug absorption and excretion, and the ‘pharmaco-
dynamic’ proteins that are the targets for drug action. A recent
resequencing study of 202 drug-target genes in over 14 000 in-
dividuals revealed an excess of rare coding variation, 90% of
that had not been previously identified. Ninety-five percent of
variants had an MAF , 0.5%, and �75% of variants were
present in only one or two individuals (2). The current study sug-
gests that rare variation in drug-metabolism genes is also exten-
sive, and this variation may explain, in part, the observed
variation in overall drug response. While some drug-metabolism
genes were included in the previous study, no members of the
Cytochrome P450 family were included, despite their well-
established connection to variation in drug efficacy and toxicity
(3). In this report, we report on the variation and predicted
functional implication of rare coding variants on a set of 12
Cytochrome P450 (CYP) genes.

The CYP genes are of particular interest because they catalyze
oxidation reactions on a wide variety of drugs. While the human
genome contains 57 CYP genes (4), a subset of just 12 genes
(designated as CYP-12) are collectively responsible for �75%
of all known drug oxidation reactions (3) and most of these are
already known to influence clinically important phenotypes
such as the efficacy of clopidogrel and the maintenance dosing
of warfarin (5,6). For example, CYP2C9 encodes the enzyme
that catalyzes the oxidation of warfarin. Two CYP2C9 missense
variants impairprotein functionsuch that individualsheterozygous

for either variant require a lower dose of warfarin to achieve the
same steady-state concentrations (7).

RESULTS

Using large-scale exome sequencing data generated by the
NHLBI Exome Sequencing Project (ESP), we identified and
characterized variation within the CYP-12 to define the full spec-
trum of variation (i.e. rare and common variants) that potentially
shapes inter-individual differences in drug response. Specifical-
ly, we analyzed exome sequence data from 6503 individuals of
AA (n ¼ 2203) and European-American (EA; n ¼ 4300) ances-
try (8). This dataset is available to the public through the ESP
Exome Variant Server (http://eversusgs.washington.edu/EVS/).

Across the CYP-12, 98.1% of coding sequence was covered
with an average depth of 30× or greater. We discovered a
total of 1006 unique variants in the CYP-12. This included 275
(27.3%) known and 731 (72.7%) novel variants compared with
dbSNP (build 132, http://www.ncbi.nlm.nih.gov/projects/SNP/
) of which 486 were missense variants and 42 were nonsense/
splicesite variants or frameshifting insertion/deletion (indel)
variants (Fig. 1). Compared with all other genes across the
exome, the CYP-12 do not appear to have exceptionally more
or less missense variation than most genes. For example,
among the CYP-12, CYP2A6, CYP2B6 and CYP2D6 contain
the most nonsynonymous variation and are the only CYP-12
genes in the top 20% of genes assessed. Additionally, the
CYP-12 appear to be a representative sample of the nonsynon-
ymous variation observed in among the 57 human Cytochrome
P450s this gene family, spanning the range of diversity in
these genes while containing neither the most nor the least
diverse human CYPs (Supplementary Material, Fig. S2). We
estimated the MAF of each CYP variant in EA and AA separately
and the site frequency spectrum of known and novel CYP alleles
(Fig. 2). Overall, the majority of variation in these genes are
exceedingly rare in both AA and EA. Indeed, 474 (64.8%) of
novel variants (177 in AA and 297 in EA) were found on only
a single chromosome and only one novel variant had an
MAF . 2%. In addition to this novel variation, we identified

Figure 1. Distribution of exonicvariation across the 12 drug-metabolizing CYP genes separated by variant consequence. Variant types (missense, nonsense, synonym-
ous, splicesite, frameshift) were determined using SeattleSeq annotation. For genes that produce more than one known transcript (CYP2D6, CYP2C8, CYP3A4),
annotation was based on the primary transcript.
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many known functional exonic variants across the CYP-12, in-
cluding clinically relevant alleles such as CYP2C9∗2,
CYP2B6∗6 and CYP2D6∗4. Table 1 provides MAFs in both
EA and AA for these and other functional variants, many of
which have not been genotyped in a cohort as large as the ESP
to date. However, while virtually all of the common exonic var-
iants in the CYP-12 in AA and EA have been identified, exome
sequencing revealed that most of the variants that are predicted
to be functional are rare and yet to be discovered (Fig. 3).

Identifying putatively functional variation using prediction
algorithms is challenging and each approach has its own
strengths and weaknesses. In the CYP-12, PolyPhen2, SIFT
and Condel (9) predict that most of the novel variants we
found were functional. Yet, these algorithms also fail to accur-
ately predict the effects of some CYP-12 variants recognized ex-
perimentally to be functional (Supplementary Material, Fig. S1,
Supplementary Material, Table S1). Accordingly, to make func-
tional predictions about the novel variants discovered in the
CYP-12, we used a combination of orthogonal approaches that
consider information on evolutionary, biochemical and struc-
tural constraint.

To estimate the evolutionary constraint of each missense
variant, Genomic Evolutionary Rate Profiling (GERP) scores
(10) were calculated for each variant. SNVs with GERP scores
.3 are predicted to more likely affect protein function and
thus be enriched for alleles with phenotypic effect (11). We
also calculated a Grantham score (12) for each missense
variant. The Grantham score assesses the “severity” of a substi-
tution by comparing biochemical properties of each amino acid
residue; missense variants with a Grantham score .100 are pre-
dicted to result in “damaging” substitutions (12). Finally, we
used published crystallographic and mutagenic studies to manu-
ally annotate residues that have a critical role in overall enzyme

structure and function. Missense variants with GERP scores .3
or Grantham scores .100 were considered putatively function-
al. Because of their highly predictable effect on protein structure,
all nonsense and splicesite variants as well as frameshifting
indels were considered putatively functional. Using these cri-
teria, we identified 219 novel, rare, putatively functional variants
including 180 missense variants, 21 nonsense/splicesite variants
and 18 frameshifting indels. Accordingly, we estimated that
�30% (219/731) of the novel variants we found in the CYP-12
are predicted to be functional (Supplementary Material,
Table S2). Our results are comparable to the previous study of
variation in drug targets; �90% of variants reported in sequenced
drug targets were novel (CYP-12, this study: 72.7%), and 39.2%
of novel drug-target variants were predicted to have a functional
effect (CYP-12, this study: 30%) (2). In comparison, the previous
study hadboth larger samplesize (n ¼ 14 002) and a broader set of
genes (n ¼ 202), which likely contributed to the slightly higher
values reported by the study.

The extent to which these rare, novel predicted function var-
iants in the CYP-12 contribute to overall -rug metabolism pheno-
types remains to be tested. However, each of these CYP genes
participates in the metabolism of diverse pharmaceuticals; there-
fore, a functional variant in any one of these genes could affect a
broad range of drug responses. To this end, we counted the
number of individuals who harbored one or more putatively
functional novel variants in the CYP-12 (Table 2). We found
that 11.7% of AA and 7.6% of EA carry a predicted functional
novel allele in at least one major drug-metabolizing CYP gene,
and while most individuals have only a single putatively func-
tional allele, 25 individuals carried two or more predicted func-
tional alleles. Known common actionable alleles, defined by
exonic CYP-12 alleles with evidence rated at “Level 1 evidence”
by PharmGKB, are widespread; 36.8% of AA and 57.2% of EA

Figure 2. MAF for novel and known variants across the CYP-12 in EAs and AAs.
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carry at least one such allele. Moreover, if both novel predicted
functional alleles and known exonic functional alleles are
considered, 43.4% of AA and 59.3% of EA carried at least one
putatively functional allele. Overall, 818 individuals (12.6%)
had two or more predicted functional alleles in major drug-
metabolizing CYP genes (Table 3). While the burden of
potentially functional alleles increases in both populations when
considering novel, rare variation, this increase is disproportionate
in AA, whose individual burden increases by a factor of more than
three compared with EA (+6.6 and +2.1%, respectively). This
difference highlights the need for further studies of pharmacoge-
nomic variation in admixed, understudied populations such as
AAs. Because the data analyzed here are drawn from exome se-
quencing,wedonotexamine rareor common noncodingvariation
which could also contribute to overall drug response. Since there
are several noncoding variants known to affect drug response in
these genes (13), it is likely that our results are underestimates
of the true burden of impactful CYP-12 variation within an indi-
vidual.

DISCUSSION

To fully understand the effect of rare CYP variation on human
drug metabolism and its clinical relevance, direct functional as-
sessment and studies of genotype–phenotype relationships of
each variant will be required. Our studies provide investigators
with nearly 200 new high-priority candidate variants to test. Fur-
thermore, some of the variants we identified have perhaps an
even higher prior likelihood of being of clinical utility. For
example, we identified 13 variants in CYP2C9 that putatively
affect its function and may, therefore, alter warfarin metabolism.
These include variants predicted to disrupt known substrate-
binding residues (Arg97Thr) (14), alter protein translation
(Met1Val) and result in damaging substitutions at conserved
sites (Pro363Leu; GERP ¼ 3.51, Grantham ¼ 98) (15). Previ-
ous in vitro mutagenesis studies have demonstrated that
Arg97Thr is a loss-of-function variant that compromises heme
cofactor binding, substrate specificity and overall protein stabil-
ity (14,16). The functional effect of Met1Val has not been

Table 1. CYP variants with a known effect on drug response found among ESP individuals, along with their MAF, in individuals of either EA (n ¼ 4300) or AA
(n ¼ 2203) ancestry

Chromosome Position rsID Allele Gene Star allele Amino acid change ESP AA MAF ESP EA freq

10 96522463 rs28399504 G CYP2C19 ∗4 M/V 0.000920 0.00518
10 96702047 rs1799853 T CYP2C9 ∗2 R/C 0.0588 0.264
10 96741053 rs1057910 C CYP2C9 ∗3 I/L 0.0276 0.129
10 96798749 rs10509681 C CYP2C8 ∗3 K/R 0.0515 0.248
10 96818106 rs11572103 A CYP2C8 ∗2 I/F 0.312 0.00370
10 96827030 rs11572080 T CYP2C8 ∗3 R/K 0.0515 0.247
19 41512841 rs3745274 T CYP2B6 ∗6 Q/H 0.259 0.491
19 41518221 rs28399499 C CYP2B6 ∗16 I/T 0.119 0.00148
19 41522715 rs3211371 T CYP2B6 ∗5 R/C 0.0599 0.228
22 42523610 rs59421388 T CYP2D6 ∗29 V/M 0.183 0
22 42523943 rs16947 G CYP2D6 ∗2 C/R 0.494 0.136
22 42526694 rs1065852 A CYP2D6 ∗10 P/S 0.236 0.441
22 42524947 rs3892097 T CYP2D6 ∗4 Splice-3′ 0.072854 .190723

Variants were gathered from PharmGKB annotations of the 12 drug-metabolizing CYP genes.

Figure 3. MAF for all CYP-12 variants as well as for only nonsynonymous variants (missense, nonsense, splicespite, indels).
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similarly studied, but can be inferred from an analogous
Met1Val mutation in the highly homologous CYP2C19. This
variant, CYP2C19∗4, is a well-characterized loss-of-function
allele (17), and individuals carrying this allele along with a
second loss-of-function allele are known to exhibit the clinically
actionable clopidogrel ‘poor metabolizer’ phenotype (17).
These data suggest that the CYP2C9 Met1Val allele leads to a
similar functional consequence due to the high homology
between these genes and the nature of the mutation.

Only a fraction of phenotypic variance in warfarin mainten-
ance dose is explained by the currently known variants, in
VKORC1 (25% of the variance) and CYP2C9 (10% of the vari-
ance) (18). Accordingly, rare variants in CYP2C9, such as
those identified herein, likely account for part of the variance
that remains unexplained. While common variants such as those
in CYP2C9 were successfully identified through a GWAS ap-
proach, rare and private variants with an effect of drug phenotypes
areunlikely tobe identified through thismethod due to insufficient
sequence coverage and study power. In recent years, the advent of
next-generation sequencing has led to a rapid increase in the quan-
tity of personal genomes and exomes available for analysis. This

explosion of data is revealing that the vast majority of human vari-
ation is quite rare, and that this rare variation is enriched for var-
iants predicted to alter gene function (8,19,20). As sequencing
begins to enter the clinical environment, understanding the
burden of rare and private variants on an individual’s genome is
critical to the interpretation of personal genome data inherent to
personalized medicine.

In summary, we discovered a large number of novel variants,
nearly a third of which are predicted to be functional, in 12 CYP
genes that affect the metabolism of �75% of pharmaceuticals.
Collectively 9% of individuals carry at least one of the novel pre-
dicted functional variant we found herein and together with
known variants, 16.7% of individuals are predicted to carry a
functional variant. As the pharmacokinetic reactions catalyzed
by the CYP-12 represent only a small subset of the processes
and pathways that collectively determine drug response, our
findings likely represent an estimate of the lower bound of
overall pharmacogenetic burden. Indeed, other large-scale
studies of rare and private variation within pharmacodynamic
genes (drug targets) reveal a similar abundance of rare, putative-
ly functional variants that are individually rare, yet collectively
common (2). Additionally, smaller-scale studies are revealing
that this trend likely extends to genes involved in other aspects
of drug response, including membrane transport (21). Given
the results of our survey and others, we hypothesize that virtually
every individual is likely to contain at least one predicted
or known functional variant of pharmacogenetic relevance.
Genotyping-based platforms that test only for known common
variants are likely to misclassify as heterozygotes those indivi-
duals who are in fact compound heterozygotes, carrying both a
common and a rare functional variant on separate haplotypes.
Thus, while the potentially functional variation presented here
is quite rare, and likely found in the homozygous state in very
few individuals, we believe that consideration of such variation
is necessary as clinical pharmacogenetic testing becomes in-
creasingly popular. Although high-throughput techniques to ex-
perimentally evaluate the true functional effects of these variants
are needed, our results indicate that rare variation, pervasive
throughout these 12 critical genes, should be assessed and con-
sidered carefully in future pharmacogenetics work in bothresearch
and clinical settings. Understanding the phenotypic consequences
of such rare variation will be a major next step forward in explain-
ing the inter-individual variation in drug responses that have been
observed for centuries and will provide better guidance for imple-
menting personal genome sequencing at the clinical level.

MATERIALS AND METHODS

Study sample

The NHLBI ESP is a multi-center study to deeply sequence the
exomes of individuals segregating a variety of heart, lung and
blood disorders. The 6503 individuals used in the analysis
were generated from samples ascertained from 20 different
cohorts (detailed information of cohorts can be found in 19). Al-
though these individuals are not a random sample, they were
ascertained on a variety of distinct phenotypes such that cohort-
specific effects are not expected to bias patterns of SNVs. Indeed,
detailed analyses of a large subset (n ¼ 2440) of these 6503 indi-
viduals found no systematic biases in patterns and characteristics

Table 2. Amount of putative novel functional variation per CYP gene

Gene Total number of putative
functional variants

Number of individuals with
putative functional variants
AAs
(n ¼ 2203)

EAs
(n ¼ 4300)

CYP1A1 36 24 89
CYP1A2 21 19 18
CYP2A6 7 7 8
CYP2B6 14 11 26
CYP2C19 28 67 27
CYP2C8 22 32 41
CYP2C9 13 13 10
CYP2D6 21 40 39
CYP2E1 13 4 14
CYP3A4 19 9 17
CYP3A5 16 21 32
CYP3A7 9 11 5
Total 219 258 326

Columns 3 and 4 show the number of individuals that carry at least one allele of a
candidate variant in the given gene.

Table 3. Burden of predicted functional CYP-12 variation per individual across
the ESP6500 data, EA (n ¼ 4300) or AA (n ¼ 2203) ancestry

Known
(PharmGKB)
only

Novel (ESP)
only

Known
(PharmGKB)
and Novel (ESP)

EA AA EA AA EA AA

4 alleles 0 0 0 1 6 3
3 alleles 5 0 0 1 44 13
2 alleles 527 100 10 13 591 161
1 allele 1928 712 231 207 1910 779
None 1840 1391 4059 1981 1749 1247

The number of individuals with 0, 1, 2, 3 or 4 predicted functional CYP-12 alleles.
‘Novel’ refers to predicted functional alleles discovered in ESP6500; ‘Known’
refers to exonic CYP-12 variants with “level 1 evidence” for functional
association as reported by PharmGKB. ‘Known and Novel’ include both ESP and
PharmGKB variants.
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of SNVs attributable to cohort or technical sources of variation.
All study participants in each of the component studies provided
written informed consent for the use of their DNA in studies
aimed at identifying genetic risk variants for disease and for
broad data sharing. Institutional certification was obtained for
each sample to allow deposition of phenotype and genotype
data in dbGaP and BAM files in the short-read archive.

Exome resequencing, variant calling and filtering

The processes of library construction, exome capture, sequen-
cing and mapping were performed as previously described
(19). SNVs were called using the UMAKE pipeline at University
of Michigan, which allowed all samples to be analyzed simultan-
eously, both for variant calling and filtering. Briefly, we used
BAM files summarizing BWA alignments generated at the Uni-
versity of Washington and the Broad Institute as input. These
BAM files summarized alignments generated by BWA, refined
by duplicate removal, recalibration and indel re-alignment. We
excludedall reads thatwerenotconfidentlymapped(Phred-scaled
mapping quality ,20) from further analysis. To avoid PCR arti-
facts, we clipped overlapping ends in paired reads. We then com-
puted genotype likelihoods for exome targeted regions and 50
flanking bases, accounting for per base alignment quality using
samtools. Variable sites and their allele frequencies were identi-
fied using a maximum-likelihood model, implemented in
glfMultiples. These analyses assumed a uniform prior probabil-
ity of polymorphism at each site. We used a support vector
machine (SVM) classifier, which is a machine-learning algo-
rithm, to separate likely true-positive and false-positive variant
sites. SVM filtering started by collecting a series of features
related to quality of each SNV, including overall depth, fraction
of samples with coverage, fraction of reference bases in hetero-
zygous individuals (allele balance), correlation of alternative
alleles with strand and read position (strand and cycle bias),
and inbreeding coefficient for each variant. SNVs that deviated
significantly from expected values in three or more categories
were flagged as likely false positives when training the SVM
filter. SNVs at HapMap polymorphic sites and Omni 2.5 array
polymorphic sites in the 1000 Genomes project data were
flagged as likely true positives. After examining this training
set, the SVM classifier was used to identify all likely false-
positive sites, which were excluded from downstream analyses.
A total of 1 908 614 SNVs passed the SVM filter, with an overall
transversion to transition ratio (Ts/Tv) of 2.84.

After the initial SNV calls were generated, we re-examined
the VCF files and applied filters considering total read depth,
the number of individuals with coverage at the site, the fraction
of variant reads in each heterozygote, the ratio of forward and
reverse strand reads for reads carrying reference and variant
alleles, and the average position of variant alleles along a read.
Next, the SNV call set included variants that were called with
posterior probability .99% (glfMultiples SNP quality .20),
were at least 5 bp away from an indel detected in the 1000
Genomes Pilot Project, were targeted in at least 99% individuals
and had a total depth across samples between 6823 and 6 823 000
(�1–1000 reads per sample at average). Sites where the read
depth of the variant allele was .65% in heterozygotes or
where the absolute squared correlation between allele (variant
or reference) and strand (forward or reverse) was .0.15 were

excluded. In order to obtain genotypes with high accuracy
suitable for population genetics analyses, we further set individ-
ual genotype to missing data if it had quality (GQ) ,30 and/or
filtered depth (DP) ,10. After such filtering, variants with
.10% of missing genotypes across individuals were excluded
from further analysis. A sample of 145 novel, singleton variants
and 323 novel, non-singleton variants from across the exome
were selected for validation via Sanger sequencing; 143/145
(99%) of the singleton variants and 316/323 (98%) of the non-
singleton variants were validated (19).

Identification of related individuals and assignment
of ancestry

In total, 6823 exomes were obtained from individuals who self-
identified as EA (n ¼ 4419), AA (n ¼ 2343), and others (includ-
ing Asian, Hispanic and Native American). To remove related
individuals, we performed a KING analysis on the filtered
data. Specifically, we performed LD pruning using PLINK to
the variants with MAF .5%. This resulted in 34 945 SNVs for
the analysis. KING identifies kinship by pairwise comparisons
across all individuals and is robust to population structure.
Using the authors’ guidelines for a 3rd degree relationship
(i.e. first cousins), we used a kinship coefficient threshold of
0.04419. From this, we were able to form clusters of related indi-
viduals, with the majority of clusters consisting of two individuals.
When all individuals were related to all other individuals in a
cluster, we preferentially removed those with the greatest overall
missingness. When these clusters had partial relationships (i.e. A
is related to B and C but B and C are not related) then we preferen-
tially removed those who would leave the largest number of
samples. This resulted in the removal of 242 individuals. After re-
moving these individuals, we repeated the KING analysis and
found no kinships in the remaining dataset. Using the same filtered
dataset from the KING analysis, we performed a principal compo-
nent analysis (PCA) to infer genetic ancestry. Asian, Hispanic and
Native American samples were removed from the analysis.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the National Heart,
Lung, and Blood Institute (NHLBI) and the contributions of the re-
search institutions, study investigators, field staff and study partici-
pants in creating this resource for biomedical research.

Conflict of Interest statement. None declared.

FUNDING

Funding for GO ESP was provided by NHLBI grants RC2
HL-103010 (HeartGO), RC2 HL-102923 (LungGO) and RC2
HL-102924 (WHISP). The exome sequencing was performed
through NHLBI grants RC2 HL-102925 (BroadGO) and RC2
HL-102926 (SeattleGO).

1962 Human Molecular Genetics, 2014, Vol. 23, No. 8

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt588/-/DC1


REFERENCES

1. Wang, L., McLeod, H.L. and Weinshilboum, R.M. (2011) Genomics and
drug response. N. Engl. J. Med., 364, 1144–1153.

2. Nelson, M.R., Wegmann, D., Ehm, M.G., Kessner, D., St Jean, P., Verzilli,
C., Shen, J., Tang, Z., Bacanu, S.-A., Fraser, D. et al. (2012) An abundance of
rare functional variants in 202 drug target genes sequenced in 14,002 people.
Science. 10.1126/science.1217876.

3. Evans, W.E. and Relling, M.V. (1999) Pharmacogenomics: translating
functional genomics into rational therapeutics. Science, 286, 487–491.

4. Nelson, D.R., Zeldin, D.C., Hoffman, S.M.G., Maltais, L.J., Wain, H.M. and
Nebert, D.W. (2004) Comparison of cytochrome P450 (CYP) genes from the
mouseandhumangenomes, includingnomenclaturerecommendationsforgenes,
pseudogenes and alternative-splice variants. Pharmacogenetics, 14, 1–18.
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