
[12:18 30/5/2011 Bioinformatics-btr174.tex] Page: 1691 1691–1692

BIOINFORMATICS APPLICATIONS NOTE Vol. 27 no. 12 2011, pages 1691–1692
doi:10.1093/bioinformatics/btr174

Genome analysis Advance Access publication April 14, 2011

BamTools: a C++ API and toolkit for analyzing and
managing BAM files
Derek W. Barnett1,∗, Erik K. Garrison1, Aaron R. Quinlan2, Michael P. Strömberg3

and Gabor T. Marth1

1Department of Biology, Boston College, Chestnut Hill, MA 02467, 2Department of Public Health Sciences and
Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908 and
3Illumina, Inc., San Diego, CA 92121, USA
Associate Editor: Alfonso Valencia

ABSTRACT

Motivation: Analysis of genomic sequencing data requires
efficient, easy-to-use access to alignment results and flexible data
management tools (e.g. filtering, merging, sorting, etc.). However,
the enormous amount of data produced by current sequencing
technologies is typically stored in compressed, binary formats that
are not easily handled by the text-based parsers commonly used in
bioinformatics research.
Results: We introduce a software suite for programmers and end
users that facilitates research analysis and data management using
BAM files. BamTools provides both the first C++ API publicly
available for BAM file support as well as a command-line toolkit.
Availability: BamTools was written in C++, and is supported on
Linux, Mac OSX and MS Windows. Source code and documentation
are freely available at http://github.org/pezmaster31/bamtools.
Contact: barnetde@bc.edu

Received on December 21, 2010; revised on March 23, 2011;
accepted on March 31, 2011

1 INTRODUCTION
The 1000 Genomes Project created the Sequence Alignment/Map
(SAM) format and its sister format, the Binary Alignment/Map
(BAM), to provide a ‘generic and modular approach to the analysis
of genomic sequencing data’ (Li et al., 2009). Such formats are
necessary to provide a standardized vehicle for reporting alignment
results and analyzing them using a wide variety of tools. The binary,
compressed nature of BAM has made it the format of choice in
many large-scale sequencing projects—where the text-based SAM
does not scale to the massive amounts of data produced. However,
storing the data in binary, compressed form comes at a cost as well.
Casual programmers and end-users can no longer use the text-based
parsing techniques to which they are typically accustomed. APIs
and tools that can accomplish similar tasks, while managing BAM’s
more complex data storage behind the scenes, are vital to genomics
researchers. BamTools is a flexible, efficient and easy-to-use suite
designed to serve just these sorts of operations.

∗To whom correspondence should be addressed.

2 FEATURES AND METHODS

2.1 The API
The BamTools API provides programmers with intuitive interfaces for
querying and generating BAM files. The primary classes used by client
code include BamReader, BamWriter and the BamAlignment data structure.
A few additional modules exist as convenience classes: BamMultiReader
allows synchronized reading from several BAM files, SamHeader provides
direct query and modification of the SAM-formatted header text that is
included in BAM files, and BamIndex, which serves as an interface hook for
advanced clients to implement their own custom index schemes. While APIs
for processing BAM files exist for other languages (Li et al., 2009; McKenna
et al., 2010), to our knowledge the BamTools library is the only C++-specific
BAM API freely available at the time of writing. By offering a BAM API
implemented in C++, we provide the large community of C++ developers
a tool that can leverage that language’s main advantage—combining raw
performance with the benefits of object-oriented design. These include
clearly labeled data structures, intuitive class interfaces and utilizing the
RAII (Resource Acquisition Is Initialization) idiom, which makes client code
simpler and safer. The following example illustrates how to create a new
BAM file containing only high-quality alignments from the forward strand
of a reference sequence:

BamReader reader;
BamWriter writer;
// .. open reader & writer with desired files

BamAlignment al;
while (reader.GetNextAlignment(al)) {

if (!al.IsReverseStrand() && al.MapQuality >= 75)
writer.SaveAlignment(al);

}

We tested the raw read-through time on a BAM file containing the
reads from 56 CEU samples from the 1000 Genomes low-coverage Pilot
Project (The 1000 Genomes Project Consortium, 2010), resulting in 116-fold
coverage of chromosome 20. It took on average 5:32 min to read every
alignment sequentially from this file, on a single CPU (corresponding to
∼4.5 h for a whole-genome file, at the same coverage). Resource usage
is ultimately application dependent; however, the basic process of reading
alignments from BAM files is I/O bound rather than CPU bound.

2.2 The toolkit
The BamTools command-line toolkit provides end-users with a suite of
utilities for querying and manipulating BAM files. Table 1 offers a subset of
the currently available tools. There is some overlap of features found in the
BamTools and SAMtools suites. However, it is not our intention to attempt
to replace SAMtools. Instead, BamTools provide features that extend the
flexibility of next-generation sequencing analysis. These features include an

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 1691

[12:18 30/5/2011 Bioinformatics-btr174.tex] Page: 1692 1691–1692

D.W.Barnett et al.

Table 1. BamTools command-line toolkit

Utility Description

convert Converts between BAM and a number of other formats.
count Prints number of alignments in BAM file(s).
coverage Prints coverage information from a BAM file.
filter Filters BAM file(s) based on user-specified criteria.
header Prints BAM header information.
index Generates index for BAM file (either BAI or BTI).
merge Merges multiple BAM files into single file.
sort Sorts the BAM file.
split Splits a BAM file into multiple files, based on some criteria.
stats Prints general statistics from input BAM file(s).

alternative indexing format, basic coverage output, conversion of alignment
data to other text formats (e.g. BED, JSON, YAML), the ability to split a
BAM into multiple files based on some criteria (e.g. reference, read group,
mapped status) in a single command and a more comprehensive filtering
scheme.

2.2.1 Scriptable filtering The filter utility in BamTools provides a
powerful scripting feature that allows a user to create complex filter
operations. While various toolkits offer some level of filtering capability, the
ability to utilize combinations of bothAND and OR logic is a novel and useful
feature. The script is based on JavaScript Object Notation (JSON), providing
intuitive named fields to define filter properties and an optional ‘rule’. The
example script shown below will result in an output BAM file containing only
alignments that have high map quality OR both mates mapped (inclusive),
while excluding alignments from read groups starting with the pattern ‘ERR’:

{ "filters" : [
{ "id" : "inAnyErrorReadGroup",
"tag" : "RG:ERR*"

},
{ "id" : "highMapQuality",
"mapQuality" : ">=75"

},
{ "id:" : "bothMatesMapped",
"isMapped" : "true",
"isMateMapped" : "true"

}
],

"rule" : "!inAnyErrorReadGroup &
(highMapQuality | bothMatesMapped)"

}

2.3 BamTools index format
Indexing a sorted BAM file allows a (semi-)random-access jump to a
particular region of interest. The BAM format describes a standard index
format (BAI), which uses a binning scheme similar to the one implemented
in the UCSC Genome Browser (Kent et al., 2002). This BAI scheme provides
quick access to the beginning of the contiguous run of alignments (or ‘chunk’)
that overlaps the beginning of a region of interest. However in large datasets,
where coverage is high, a significant number of alignments may be read and
immediately discarded before finding an alignment that actually overlaps the
region of interest. In response to this, we created an alternative BamTools
index scheme (BTI) that is based, not on alignment position, but on a fixed
read count. Thus, the number of alignments that must be read and discarded
always has a fixed upper bound. Choosing the bin size depends on a trade-off

Table 2. BamTools index performance

Index type Jump times (µs)

Mean SD Worst-case

BAI 446 13669.81 1 291 278
BTI 40 665.38 121 403

Generated from performing 1 million random jumps in a BAM file containing 116-fold
coverage of human chromosome 20.

between disk space versus access speed, and can be configured as needed.
In our own index files, we use bins of 1000 alignments. Based on 1 million
jumps to random positions in the chromosome 20 BAM file mentioned above,
our new indexing method provides, on average, 10 times faster access than
the standard BAI (with an SD roughly 20 times lower). The slowest access
time (worst case) was also roughly 10 times faster for BTI than the worst
case for BAI (Table 2).

3 CONCLUSION
The BamTools C++ API/library has been successfully integrated
into a variety of applications. It provides the BAM file
support for several utilities in the BEDtools suite (Quinlan
et al., 2010). Using BamTools, the freeBayes variant caller
(https://github.com/ekg/freebayes) has produced whole-genome
calls for the NCBI’s new 1000 Genomes pipeline on up to 1000
BAM files simultaneously. The data management utilities (indexing,
merging, etc.) provided by the BamTools command-line toolkit
also play an integral role in this pipeline. Visualization software
like Gambit (http://bioinformatics.bc.edu/marthlab/Gambit), uses
the BamTools API to efficiently access alignment data in a setting
where real-time performance is critical.

ACKNOWLEDGEMENT
We would like to thank Baptiste Lepilleur for the public-domain
JSON parser (JsonCPP) and Heng Li, primary developer of the
SAMtools suite.

Funding: National Institutes of Health grants (RO1 HG004719 and
RC2 HG005552).

Conflict of Interest: none declared.

REFERENCES
The 1000 Genomes Project Consortium. (2010) A map of human genome variation from

population-scale sequencing. Nature, 467, 1061–1073.
Kent,W.J. et al. (2002) The human genome browser at UCSC. Genome Res., 12,

996–1106.
Li,H. et al. (2009) The sequence alignment/map format and SAMtools. Bionformatics.,

25, 2078–2079.
McKenna, A. et al. (2010) The genome analysis toolkit: a MapReduce framework for

analyzing next-generation DNA sequencing data. Genome Res., 20, 1297–303.
Quinlan,A.R. et al. (2010) BEDTools: a flexible suite of utilities for comparing genomic

features. Bionformatics., 26, 841–842.

1692

