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Abstract

Background: Identifying insertion/deletion polymorphisms (INDELs) with high confidence has been intrinsically
challenging in short-read sequencing data. Here we report our approach for improving INDEL calling accuracy by
using a machine learning algorithm to combine call sets generated with three independent methods, and by
leveraging the strengths of each individual pipeline. Utilizing this approach, we generated a consensus exome
INDEL call set from a large dataset generated by the 1000 Genomes Project (1000G), maximizing both the sensitivity
and the specificity of the calls.

Results: This consensus exome INDEL call set features 7,210 INDELs, from 1,128 individuals across 13 populations
included in the 1000 Genomes Phase 1 dataset, with a false discovery rate (FDR) of about 7.0%.

Conclusions: In our study we further characterize the patterns and distributions of these exonic INDELs with
respect to density, allele length, and site frequency spectrum, as well as the potential mutagenic mechanisms of
coding INDELs in humans.
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Background
The difficulties in identifying true INDELs in coding
exomes are threefold: (1) next-generation sequencing
(NGS) methods are prone to produce INDEL artifacts
[1], (2) mapping can be problematic [2,3], and (3) low
INDEL density in the coding regions of the genome re-
sults in a very low signal to noise ratio (that is, the ratio
between the number of true INDEL loci versus the num-
ber of sequencing and alignment artifacts is low) [4,5].
Many tools and analysis pipeline have been developed for
the purpose of identifying indels in NGS data [6,7]. How-
ever, previous studies have demonstrated that the different
exome variant calling pipelines produce indel call sets
with very low concordance (less than 30%) [8].
The 1000G aims to provide a comprehensive resource

of human genetic variation throughout the world by
sequencing the whole genomes (with low coverage) and
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exomes (with high coverage) of 2,500 individuals from di-
verse global populations [4,5]. In Phase 1 of the project,
exome sequencing data of 1,128 individuals was generated
and released. In our study we generated a consensus call
of the exome INDELs from these 1,128 individuals and
characterized the INDELs in terms of density, allele
length and frequency, selection patterns, and mecha-
nisms of mutagenesis.

Results
Generating a high quality consensus call set from three
different call sets
Mapping and INDEL calling in the 1,128 exomes from
the 1000G [5] were initially performed using multiple
pipelines (i.e. Atlas2 [9,10], FreeBayes [11] and GATK-
UnifiedGenotyper [2]) by three different groups (see
Methods, Additional file 1: Figure S1). The different call
sets were merged into a union call set with 14,611 can-
didate INDEL loci (Additional file 1: Figure S2). Next,
through our consensus procedure using a random forest
model (Methods), we identified 7,210 short (<100 base
pairs) coding INDELs (Table 1). This is considered as our
consensus call set and based upon for further analysis in
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Table 1 Summary statistics of the consensus INDEL call
set from the exomes of the 1000 Genomes Project

Continental group Total
merged

Africa Americas Asia Europe

# Samples 250 199 293 386 1128

# INDEL loci 2689 2057 2334 2555 7210

% Novel (not in low
coverage)

78.0 71.5 84.7 81.6 90.03

% Rare (AAF < 1%) 68.1 71.3 78.3 79.3 96.7

# INDELs per exome 173 146 133 142 147

% frameshift INDELs
per exome

44.1 40.3 40.1 41.9 41.7
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this study. The random forest model evaluated the
strength of evidence for each individual INDEL allele
based on a series of parameters, e.g. the number of sup-
porting call sets, read-based quality metrics, and the nor-
malized average of the INDEL qualities reported by the
different variant callers (see Methods, Additional file 1:
Table S1). Most of these parameters have been reported
by the calling pipelines directly in their variant call out-
puts (in variant call format or VCF files), making it un-
necessary to re-process the original BAMs when making
the consensus call set, rendering the consensus generation
procedure very efficient. After the consensus call set i.e.
the sites of INDEL variants were generated, each sample
was re-genotyped at each variant site (Additional file 1:
Figure S1), by going back to the primary sequence align-
ment (or BAM) file.
To evaluate the quality of the consensus call set versus

the initial union set, 800 INDELs were randomly selected
from the union call set (by allele frequency) and submitted
for PCR Roche 454 validation (see Methods). On the basis
of the validation results, we estimated an FDR of 7.0% and
Figure 1 Validation results at population level for both the initial uni
experiment involved validating 800 randomly selected INDEL sites in up to
consensus call set. The consensus process lowers the estimated FDR by 29
36% for the consensus call set and the union call set re-
spectively (Figure 1). However, the consensus call set
lost 14% of the true INDELs in the union set. On a
single-sample level validation of two individuals, we
estimated FDRs of 9.2% and 10.8% (Additional file 1:
Figure S3), respectively.
A second validation was also performed confirming

the exact loci and alleles of the consensus set INDELs
using the Illumina HiSeq and MiSeq platforms at high
depth coverage on two individuals. This validation esti-
mated an FDR of 7.5% and 4.4% and confirmed over 99%
of the true positives from the Roche 454 validation experi-
ment (see Methods).
We also compared the consensus call set to the 1000G

low-coverage whole-genome Phase 1 dataset (i.e. low
coverage whole genome data in the same samples where
we examined deep coverage exome sequences), and found
that 90.03% of the INDELs we found were novel (Table 1).
This can be attributed to the fact that coding exome
INDELs are predominately rare, with 96.7% having an al-
ternative allele frequency (AAF) less than 1%, and there-
fore are inaccessible to low coverage sequencing [4,12].
Our exome-based consensus INDEL call set had an
average of 1.5 times more deletions than insertions per-
individual exome. In contrast, the deletion to insertion
ratio in the 1000G low-coverage dataset was 1.7 [13];
the similar ratios indicate that the surplus of deletions is
not due to DNA capture issues in the exome data, but
more likely due to the difficulty of mapping short reads
containing insertions.

Negative Darwinian selection against coding exome INDELs
We also observed that selection pressure against coding
INDELs is notably higher than SNPs, resulting in reduced
INDEL density. We calculated the average variant density
per individual (Table 2, see Methods), and found an exome
on call set and the consensus call set. The population validation
5 individuals. Among the validated loci, 423 loci were in our
.3%.



Table 2 The variant density per individual is compared
for exome INDELs, exome SNPs and whole genome
INDELs from the 1000 Genomes Project

Average density
per individual
(INDELs/Mb)

Genomic region

Exome INDELs 5.5 1000G exome

Exome SNPs 649.4 1000G exome

Non-coding INDELs 134.7 1000G whole genome
(without exome region)

HuRef exome INDELs 4.1 1000G exome

YanHuang exome INDELs* 2.6 1000G exome

For exome INDELs the consensus set is also compared to the HuRef and
YanHuang call sets. Variant density was calculated by dividing the average
variants per individual by the size of the analyzed exome target region or
non-coding genome as indicated. *The YanHuang exome only includes INDELs
of length 3 bp or less.
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INDEL density of 5.52 INDELs per mega-base (Mb),
which is 118 times lower than the exome SNP density,
and 24 times lower than the whole genome INDEL density
calculated from the 1000G Phase 1 data [5].
Frameshift INDELs (INDEL length is not multiple of

three bases) are under especially strong scrutiny as they
generally result in a nonsense mutation and changes in
amino acid sequences. In order to further characterize this
effect we evaluated the distribution of INDEL lengths
(Figure 2a). In our call set we discovered INDELs ran-
ging in size from −84 to 12 base pairs (deletion lengths
are represented as negative numbers). The vast majority
(95%) of the INDELs are short (<10 base-pairs), and the
distribution is strongly enriched for in-frame INDELs (i.e.
where INDEL length is a multiple of three bases) (39%).
Short INDELs were the most frequent with an average of
1.50 1 bp-INDELs per Mb of sequence, and an average of
0.19 large (>10 bp) INDELs per Mb (Figure 2a). At the in-
dividual exome level, selection against frameshift INDELs
is even more pronounced, with an average of 2.31 frame-
shift INDELs per Mb, and an average of 3.21 inframe
INDELs per Mb. In fact, larger in-frame INDELs are ob-
served more frequently than shorter frameshift INDELs.
These findings are directly related to the power law of
INDEL mutagenesis and clearly demonstrate selection
against frameshift INDELs.
We calculated the INDEL density of each individual

across different allele frequencies to characterize the
allele frequency spectrum in individuals (Figure 2b). The
results confirmed that protein coding INDELs are in-
deed predominantly common on the individual level,
with an individual harboring an average of 4.03 INDELs
per Mb with an allele frequency of 10% or greater, 0.86
INDELs per Mb with an allele frequency between 1%
and 10%, and 0.50 INDELs per Mb with an allele fre-
quency less than 1%. When comparing the population
level distribution of allele frequency on exome INDELs,
low-coverage whole genome SNPs, and INDELs and ex-
ome SNPs (Additional file 1: Figure S4), we found that
the exome INDELs and frameshift INDELs in particular
are rarer than SNPs or non-coding INDELs, with a sig-
nificantly lower minor allele frequency (MAF) (p < 2.2e-
16, Wilcoxon Rank Sum test)

Polymerase slippage is the predominant mechanism of
exome INDEL mutagenesis
One of the well-known mechanisms of INDEL mutations
is the occurrence of polymerase slippage during replication
which generally results in the expansion or contraction of
tandem repeat regions [14]. In this analyses, INDELs re-
lated to the mechanism of polymerase slippage are classi-
fied as change in copy count (CCC) INDELs, where the
smallest repeat motif of the INDEL represents either an
expansion or a contraction of the adjacent reference
base or bases (Figure 3a). To estimate what proportion
of the INDELs were likely formed through polymerase
slippage events, we classified each of the INDELs as ei-
ther CCC or not-CCC (NCCC) (Figure 3b).
We discovered that the majority of INDELs (63.0%) in

our consensus call set are CCC and therefore likely
caused by polymerase slippage. The FDR is expected to
be higher in lower-complexity regions, but the low overall
FDR (estimated at 7%) means this is true even if all the
FPs are CCC. When we further classified the INDELs into
insertion and deletion, we found that the proportions of
CCC insertions and deletions were 21.6% to 41.4% (signifi-
cantly higher P < 0.0001) respectively. And the fractions of
NCCC insertion to deletion in the consensus dataset were
3.0% to 34.0%, respectively. This represents a seven-fold
enrichment of CCC insertion events than NCCC insertion
events. While insertions are known to be more difficult to
map and identify in short-read sequencing data, the
NCCC insertions are less repetitive and should be easier
to discover than CCC insertions. These findings show that
polymerase slippage or similar repeat-based events are the
mechanism for nearly all insertions.
The prevalence of CCC INDELs, and CCC insertions in

particular, has been observed in a previous study which an-
alyzed CCC INDELs at the whole genome level [13], but in
order to further establish that they are not due to technical
or analytical artifacts, we performed this same analysis on
the INDELs from our population validation experiment,
the HuRef [15] and YanHuang [16] exomes, and on ran-
domly generated INDEL call sets based on the consensus
set’s length distribution (see Methods). The validation ex-
periment, the HuRef and Yan Huang analyses all show the
same lack of NCCC insertions, indicating that the effect is
not due to technical or analytical artifacts. The randomly
simulated data sets serve as controls to show what is ex-
pected to occur by chance for an INDEL call set with the
given length distribution and exome target region.



Figure 2 Exome INDEL call set analysis per individual. a. To characterize the exome INDEL length distribution in individuals we calculated the
density of exome INDELs of different lengths in each individual. Shorter INDELs are generally common with a strong bias towards INDEL lengths
that are a multiple of 3 (inframe). The INDEL density for the HuRef and YanHuang exome are also shown for reference. Deletions are shown with
negative length. b. To characterize the allele frequency distribution in individuals we calculated the exome INDEL density in each individual
across 7 logarithmic allele frequency bins. The results confirm that most of the exome INDELs in an individual are common (>10%), but most
individuals harbor a small number of extremely rare exome INDELs (i.e. singletons).
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Even the small percentage of NCCC insertions (3.0%)
may be explained by complex events with underlying
CCC disrupted by SNPs. If complex events were the ma-
jority of NCCC insertions, we would expect them to be
rarer in population and more prevalent at the individual
level. The time for complex events to occur and disrupt
the repeat pattern is more recent. We calculated the aver-
age number of CCC and NCCC INDELs per individual in
the call set and confirmed that the average percent of
CCC insertions is indeed higher (23.8%) than the NCCC
insertion ratio (11.5%).
If indeed the NCCC insertions were derived from

CCC mutagenesis initially, we would also expect NCCC
insertions to have characteristics (such as frameshift rate)
similar to those characteristics of the CCC INDELs. To test
this we calculated the average frameshift rate for CCC and
NCCC insertions and deletions. For the insertions we con-
firmed that the NCCC frameshift rate is in fact very similar
(within 2%) to CCC insertions (Additional file 1: Table S2),
consistent with the hypothesis that most of the NCCC
insertions were originally CCC insertions. Deletions on the
other hand had an elevated frameshift rate in NCCC de-
letions (12.3% higher than CCC). The higher frameshift
rate suggests that some mechanism other than polymer-
ase slippage is more likely involved in generating frame-
shift NCCC deletions.

Discussion
In this study we have identified 7,210 coding INDELs in a
diverse global population of 1,128 individuals. By lever-
aging the high depth of coverage afforded by exome cap-
ture technology we are able to identify more rare variants
than is possible through low coverage sequence. Using
multiple independent INDEL calling pipelines with ma-
chine learning based consensus model algorithm to pro-
duce a consensus call set we were able to maximize the
consensus call set’s sensitivity and specificity. The valid-
ation of 800 INDELs across the population and by individ-
ual level demonstrated that the consensus call set is of
high quality with an FDR of approximately 7%.
As expected, the consensus call set shows that coding

exome INDELs are under strong selection compared to
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Figure 3 CCC analysis. a. All INDELs in the analysis we classified as either change in copy count (CCC) or not change in copy count (NCCC) as
defined in the figure. b. The CCC vs NCCC percent distribution of insertions (blue) and deletions (red) was calculated at both the population level
(row 1) and the individuals level (row 4). The distributions were also compared against validation results, random simulations (see Methods),
HuRef, YanHuang, and the human reference genome (deletions only). c. The counts of CCC vs NCCC distribution in insertions and deletions.
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SNPs and non-coding INDELs. This is evident in the
overall density where exome INDELs have a significantly
lower density than the other variant types. It is also ap-
parent in the allele frequency distributions, with exome
INDELs having significantly lower MAFs than the other
variant types. The selection is also apparent at the indi-
vidual level as there are very few rare (and thus more
likely damaging) INDELs in each individual. Frameshift
INDELs are clearly shown to be under even greater selec-
tion pressure as their density is significantly lower than in-
frame INDELs and the length distribution violates the
power law expected for INDEL mutagenesis.

Conclusions
Previous studies have shown that INDELs more com-
monly occur in repeat regions or as CCC INDELs in the
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human genome, possibly by polymerase slippage mechan-
ism [13]. While long repeat regions are rare in the exome,
our findings confirm that there is significant enrichment
of CCC INDELs, indicating that polymerase slippage is a
primary driver of INDEL mutagenesis in the human ex-
ome. Furthermore, our data provides evidence that nearly
all exome insertions are the result of polymerase slippage
events, including most of the NCCC insertions.
One limitation of this study is that the findings are

drawn from an INDEL calling pipeline which was not
designed specifically for detection of CCC or repeat region
INDELs. Future analysis using variant calling pipelines
more specialized for these repeat-based INDELs [17,18]
will likely reveal additional insights on their mutagenesis
and other characteristics.
Methods
INDEL calling
Sequencing data was obtained from the 1000 Genomes
Phase 1 exome project [12]. Additional post-processing
mapping and INDEL calling was performed independ-
ently at the Baylor College of Medicine (BCM), Boston
College (BC) and the Broad Institute (BI).
BCM INDEL calling pipeline
The HGSC-BCM INDEL calling pipeline was run on all
1,128 samples in the 1000G Phase 1 Exome project using
the officially released BAM files (MOSAIK [19] mappings
for Illumina, BFAST [20] mapping for SOLiD). The SOLiD
BAM files were locally realigned using the GATK local re-
alignment utility [2]. The Illumina BAM files have already
undergone local realignment as part of the 1000G produc-
tion pipeline. INDEL calls were made on each individual
using the Atlas2 variant analysis suite [9,10]. The resulting
variant call format (VCF) files were then merged into a
population VCF where non-variant depth and genotypes
were filled in.
BC INDEL calling pipeline
The BC INDEL calling pipeline was run on all 1,128
samples in the 1000G Phase 1 Exome project using the
officially released BAM files. In order to ensure consist-
ent representation of INDELs, both SOLiD and Illumina
BAM files were realigned at runtime using the left align-
ment utility in the FreeBayes variant caller package
(bamleftalign), and were split in cases where mismatches
could be resolved by a larger insertion or deletion using
gap-opening realignment (ogap) [11]. INDEL, SNP, and
complex variant calls were generated simultaneously using
the FreeBayes variant detector. Subsequently, loci contain-
ing INDELs were extracted using utilities in the vcflib
VCF manipulation suite.
BI INDEL calling pipeline
The BI INDEL calling pipeline was run on only the 822
Illumina samples in 1000G Phase 1 Exome project using
the officially released FASTQ files mapped using the
BWA aligner [21]. BAM files were locally-realigned and
the base-qualities recalibrated using GATK. INDEL calls
were then made using the GATK Unified Genotyper [2].

Union call Set
Each of these call sets was merged into a union set after
complex events were split into simple INDEL events and
left aligning the INDELs. This merging, like all other
analyses in this study, was limited to autosomal chromo-
somes. The union set was regenotyped using the Atlas2
genotyping method and the BAM files used in the HGSC-
BCM INDEL calling pipeline. Rather than the official
1000G BAM files BC used an alternative mapping method.
For INDELs unique to the alternative mappings, the geno-
types reported in the original call set were used. This
union was annotated to indicate which centers called each
INDEL, what INDEL quality scores were reported, and
what other metrics we considered likely to be useful for
generating a high quality consensus.

Random forest model
The Random Forest model was developed by calculating
and collecting data for 31 covariates from the union set
at loci in samples that overlapped with calls made using
the Complete Genomics (CGI) analysis pipeline. For the
purpose of training the model, INDELs from the union
set that were confirmed by the CGI data were considered
true positives and those not confirmed were considered
false positives. The Affymetrix Axiom exome genotyping
array [22] was also tested as a standard, but did not per-
form as well (data not shown).
From this training set a variety of machine-learning

methods were evaluated based on sensitivity and preci-
sion (Additional file 1: Figure S6). The random forest
methods were found to be most effective. The random
forest method was selected as the final method because
of its nearly equivalent performance and much faster run-
time. Covariates that were determined to be too biased,
redundant, or ineffective were removed from the random
forest model. The final consensus model includes the 6
covariates described in Additional file 1: Table S1.

Consensus call Set
Using the random forest model, we generated a probabil-
ity of being a true INDEL for each INDEL allele. INDEL
alleles with a probability less than 0.4 were not included in
the final consensus set. To make the indel genotypes con-
sistent, the final consensus set was regenotyped, and geno-
type likelihoods were calculated using a modified version
of the latest Atlas-INDEL2 genotyper. This changed the
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genotype of individuals and in some cases the genotype
was determined to be homozygous reference. After rege-
notyping, INDELs which were no longer called in any in-
dividuals were removed from the call set.
Variant density, allele length and frequency
The average variant density and percent heterozygous
were calculated for the consensus exome INDEL set and
compared against the exome SNPs and non-coding
INDELs of the 1000G phase 1 integrated call set. These
values were calculated for each individual in the call
sets, and then averaged. The variant density was calcu-
lated by dividing the number of called variants by the
number of base-pairs in the analysis. For the exome
SNPs and INDELs this region was the autosomal region
of the consensus exome capture target used in phase 1
of 1000G [ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/
analysis_results/supporting/exome_pull_down/20110225.
called_exome_targets.consensus.bed]. For the exome
INDELs, which did not undergo imputation analysis, we
further limited this region to bases with a read depth of
at least one (region was calculated independently for each
individual). For the he HuRef and YanHuang exomes the
same 1000G exome target region was used. For non-
coding INDELs the size of the accessible genome as re-
ported in the 1000 Genomes Phase 1 publication [5] was
used excluding the consensus exome capture target. This
same analysis was repeated for each INDEL length cat-
egory (Figure 2a) and for seven alternative allele frequency
bins (Figure 2b). Within these same regions the percent
heterozygous was calculated by dividing the number of
heterozygous variants by the total number of called vari-
ants in each individual, and then taking the average.
The minor allele frequency (MAF) was calculated for

the consensus exome INDEL call set and compared against
the MAFs of the official 1000G phase 1 whole genome
SNP and INDEL call sets (Additional file 1: Figure S4). We
also filtered the whole-genome SNP call set to the 1000G
phase 1 consensus exome capture target region to include
the exome SNPs in the comparison. In addition, we split
the consensus exome INDEL call set into frameshift and
inframe call sets and calculated the MAF distribution for
each of these. In comparing all these MAF distributions
we used the Wilcoxon Rank Sum test as a test of signifi-
cant difference.
In silico validation
In silico validation of the 1000G phase 1 exome INDEL
consensus and the union sets was performed by compari-
son to INDELs obtained from 1000 Genomes phase 1 low
coverage [ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/
analysis_results/integrated_call_sets/] and whole exome
INDEL genotypes from Affymetrix Axiom Genotyping
Solution [ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/
analysis_results/supporting/axiom_genotypes].
The analysis was performed on a single individual level

by comparing each overlapping individual separately
between the call sets. All INDELs were left aligned and
filtered to restrict the comparison to protein coding re-
gions as defined in the 1000G phase 1 exome project
[ftp://ftp.trace.ncbi.nih.gov/1000genomes/ftp/phase1/analy-
sis_results/supporting/exome_pull_down/20110225.called_
exome_targets.consensus.bed]. INDELs were compared on
the basis of the genomic position. For every overlapping
individual, confirmation and rediscovery rate were de-
termined and the average individual confirmation and
rediscovery rate across all overlapping individuals was
calculated. Confirmation rate is defined as total number
of INDELs in consensus or union set matching an
INDEL in the validation set. Rediscovery rate is the
number of INDELs called in the validation set matching
an INDEL in the consensus or union set.

Experimental validation
Experimental validation was performed using the HGSC-
BCM PCR-Roche 454 INDEL validation pipeline. The val-
idation included both a population level experiment and
an individual level experiment. For the population valid-
ation experiment, 800 INDEL sites were randomly se-
lected from the union set using GATK to preserve the
allele frequency distribution. For each site up to five indi-
viduals that have variant were randomly selected for valid-
ation (fewer if less than 5 were variants). The individual
validation experiment was performed on two samples:
NA19238 and NA10851. We validated all INDEL sites
that were designated as variant in these two samples in
the union set.
Once the validation site and samples were selected,

primers were designed using the Primer3 based HGSC-
BCM Primer Pipeline. After PCR amplification and
normalization the DNA was sequenced on the Roche
454 sequencing platform. After the sequenced reads
were mapped to the human reference genome (Build
37) with BLAT [23], the mapped reads were aligned to
the amplicon sequence using CrossMatch [24]. INDELs
identified in the aligned reads were considered match-
ing if they were within 30 bp of the original INDEL
(5 bp for 1 bp INDELs) and of the exact same INDEL
length. In order to be considered confirmed, the variant
read ratio (number of reads with the INDEL divided by
the total read depth) had to be at least 20% (40% for
1 bp INDELs) and the average base quality had to be at
least 10 (20 for 1 bp INDELs). INDELs with a variant
read ratio less than 3% (5% for 1 bp INDELs) are consid-
ered false positives. INDELs with variant read ratio be-
tween these values are considered ambiguous. If the site
failed in primary design, or PCR, or if there were fewer

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/exome_pull_down/20110225.called_exome_targets.consensus.bed
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/exome_pull_down/20110225.called_exome_targets.consensus.bed
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/exome_pull_down/20110225.called_exome_targets.consensus.bed
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/axiom_genotypes
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/axiom_genotypes
ftp://ftp.trace.ncbi.nih.gov/1000genomes/ftp/phase1/analysis_results/supporting/exome_pull_down/20110225.called_exome_targets.consensus.bed
ftp://ftp.trace.ncbi.nih.gov/1000genomes/ftp/phase1/analysis_results/supporting/exome_pull_down/20110225.called_exome_targets.consensus.bed
ftp://ftp.trace.ncbi.nih.gov/1000genomes/ftp/phase1/analysis_results/supporting/exome_pull_down/20110225.called_exome_targets.consensus.bed
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than 20 reads covering the site, the validation was con-
sidered a failure, and no conclusions were drawn.
A follow up validation was also performed confirming

the exact loci and alleles of the consensus set indels in
two individuals. This validation was performed using
both the HiSeq and MiSeq Illumina sequencers at the
Broad Institute. Analysis-ready BAM files were gener-
ated for both MiSeq and HiSeq with the best practices
data processing pipeline (BWA alignment, Picard’s Mark
Duplicates, GATK’s Base Quality Score Recalibration, and
GATK’s Indel Realignment).
The consensus set indel calls were passed as input al-

leles to GATK’s Unified Genotyper in “Genotype Given
Alleles” mode. In that mode the genotyper does not do
discovery but rather attempts to genotype the provided
alleles against the information in the BAM file. The al-
leles are genotyped exactly as is (in the position with the
exact base composition). All discrepant (the 2 techs dis-
agreed) or monomorphic (the 2 techs agreed against the
consensus calls) sites were manually confirmed by visual
inspection in Integrative Genomic Viewer (IGV) [25].

Validation analysis
Once the validation results were received, the FDR was
estimated as follows:

FDR ¼ TP
TP þ FP

The validated results were then subset to only include
INDEL sites included in the consensus set, and this
subset was used to estimate the consensus set FDR
(Figure 1). Additionally, the consensus set’s relative sen-
sitivity (Sconsensus) or rediscovery rate was calculated by
dividing the number of consensus TPs by the number of
union TPs.

Sconsensus ¼ relative sensitivity ¼ TPconsensus

TPunion

For the individual validation we also estimated the ac-
tual number of INDELs detectable in the data. This was
done by summing the number of INDELs confirmed in
the union set, the number of consensus ambiguous/failed
sites times one minus the consensus FDR, and the num-
ber of consensus ambiguous/failed sites times one minus
the consensus rediscovery rate.

detectable indels ¼ TPunion

þ AMBGconensus þ FAILconsensusð Þ � 1−Sconsensusð Þ
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