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executing nondependent pipeline components simultaneously. 
SpeedSeq translates raw 50× WGS data into prioritized single-
nucleotide variants (SNVs), short insertions and deletions (indels) 
and structural variants (SVs) in 13 h on a single 32-thread server 
with 128 GB of RAM and a current cost of <$10,000. Moreover, 
our accelerated implementations show little to no difference in 
results compared to the original software (Supplementary Note 1).  
This represents, at a minimum, a several-fold speed increase over 
current practices using typical computing resources.

We assessed the accuracy of SpeedSeq’s SNV and indel calls 
against the Genome in a Bottle Consortium (GIAB) truth set 
derived from the well-studied human sample NA12878 (2,803,144 
SNVs and 364,031 indels)6. SpeedSeq achieved sensitivities of 
99.9% and 89.9% for germline SNVs and indels, respectively, 
with acceptably low false discovery rates (FDRs) (0.4% and 1.1%, 
respectively) (Fig. 1b,c). These detection rates exceeded those 
of GATK’s UnifiedGenotyper (GATK-UG) tool (SNVs: 99.7%, 
indels: 89.0%) with similar FDRs (SNVs: 0.5%, indels: 1.0%). 
The GATK HaplotypeCaller tool (GATK-HC) showed superior 
indel detection sensitivity (SNVs: 99.8%, indels: 95.7%) with 
lower FDRs for both variant types (SNVs: 0.2%, indels: 0.6%). 
SpeedSeq’s implementation of FreeBayes therefore exhibits com-
parable, albeit slightly inferior, performance to GATK-HC when 
tested on the GIAB call set7. However, the GIAB truth set is biased 
toward GATK because it was primarily derived from GATK-based 
analyses. We therefore assessed SpeedSeq’s performance against 
an unbiased truth set of 689,788 SNVs at 2,177,040 sites (Illumina 
Omni 2.5) in which SpeedSeq attained the highest sensitivity at 
the minor expense of specificity as compared to results obtained 
with GATK-UG or GATK-HC (Supplementary Fig. 1). Miscalled 
variants were enriched in repetitive regions of the genome and in 
regions adjacent to assembly gaps (Supplementary Note 2 and 
Supplementary Table 1). SpeedSeq also supports joint multi-
sample variant calling and de novo germline mutation detection 
in families (Supplementary Note 3), which is crucial for clinical 
applications such as rapid diagnosis in newborns8.

Cancer genome analysis is a common WGS application 
in research and clinical environments, and it can be a time- 
sensitive component of patient care. To emulate a WGS data set 
from a heterogeneous tumor-normal pair, we defined NA12877 
as the ‘normal’ sample and pooled raw data from his 11 children 
in equal proportions to generate a single 50× ‘tumor’ sample. 
The 875,206 SNVs present in the mother (NA12878) but absent 
from the father (NA12877) were defined as somatic mutations, 
with variant-allele frequencies (VAFs) ranging from 0.05 to 0.5 
(Supplementary Fig. 2a). Using this evaluation paradigm, we 
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speedseq is an open-source genome analysis platform that 
accomplishes alignment, variant detection and functional 
annotation of a 50× human genome in 13 h on a low-cost 
server and alleviates a bioinformatics bottleneck that typically 
demands weeks of computation with extensive hands-on expert 
involvement. speedseq offers performance competitive with or 
superior to current methods for detecting germline and somatic 
single-nucleotide variants, structural variants, insertions and 
deletions, and it includes novel functionality for streamlined 
interpretation.

Technical advances in second-generation DNA sequencing  
technologies have reduced both the cost and the time required 
to generate whole-genome sequencing (WGS) data, thereby 
creating opportunities in healthcare and academic research  
to survey the human genome with unprecedented depth and 
scope. However, bottlenecks in computational processing  
and variant interpretation have hindered the adoption of  
these technologies for time-sensitive and large-scale projects.  
A standard pipeline using the Burrow-Wheeler Aligner (BWA)1, 
the Genome Analysis Toolkit (GATK)2, the Sequence Alignment-
Map tools (SAMtools)3 and the Picard set of tools requires 60–70 h  
to process a 50× human genome from raw sequence data to 
variant calls on a 32-thread server (Supplementary Note 1). 
Furthermore, distinguishing pathogenic from benign mutations 
is a labor-intensive process that can take hours or days of manual 
curation per patient4.

SpeedSeq is an open-source software suite designed for rapid 
whole-genome variant detection and interpretation (https://
github.com/hall-lab/speedseq and Supplementary Software).  
Its modular architecture and universal formats confer adaptability 
to a variety of experimental designs and compatibility with stand-
ard industry software (Fig. 1a). It achieves superior processing 
efficiency through rapid duplicate marking with SAMBLASTER5, 
through balanced parallelization of external applications and by 
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compared SpeedSeq’s performance to 
three other leading somatic-variant call-
ing tools: MuTect9, SomaticSniper10 and 
VarScan 2 (ref. 11). SpeedSeq recalled 96.6% of the somatic 
variants in the ‘tumor’ with an FDR of 3.3%, outperforming 
SomaticSniper in both sensitivity and specificity and delivering 
competitive performance against MuTect and VarScan 2 (Fig. 1d 
and Supplementary Fig. 2b,c).

To test SpeedSeq’s performance on real cancer data, we obtained 
WGS reads (50× tumor, 30× normal) from five tumor-normal 
pairs with validated somatic mutations, as ascertained by deep 
exome sequencing, from The Cancer Genome Atlas (TCGA). 
SpeedSeq recalled 96.4% of the 2,746 orthogonally validated 
mutations across all five data sets, including 98.8% of muta-
tions in genes that have been causally implicated in cancer12 
(Supplementary Table 2).

Ascertainment of structural variants (copy number variants 
(CNVs), balanced rearrangements and mobile element inser-
tions) is a critical component of comprehensive genome analysis.  

SV detection poses two key technical challenges. First, SVs 
are extremely difficult to detect reliably13. Second, functional  
interpretation of SVs requires specialized logic because of  
their variable size and diverse configurations and because SV 
breakpoints are often mapped imprecisely. As a result of these 
challenges, few established genome-analysis pipelines attempt  
to rigorously detect and interpret SVs.

SpeedSeq achieves comprehensive SV analysis with a suite  
of three complementary tools that are sensitive to a range of  
SV signals. At its core is LUMPY, a state-of-the-art breakpoint-
detection tool that integrates split-read and discordant paired-end 
data14. Next, a custom parallelized implementation of CNVnator 
uses read-depth analysis to detect CNVs that may be invisible  
to LUMPY due to unmappable or repetitive sequences at their 
breakpoints15. Finally, SpeedSeq genotypes SVs with SVTyper, 
a novel Bayesian likelihood algorithm that can operate on  
copy-neutral events (such as inversions and translocations)  
and CNVs (Online Methods). This step produces SV genotypes 
that are crucial for meaningful variant interpretation and pro-
vides quantitative estimates of breakpoint allele frequencies that  
allow inference of the fraction of tumor cells that carry a par-
ticular variant.

Measuring SV detection performance on real data is difficult 
because of the lack of established truth sets. If we accept the  
1000 Genomes Project (1KGP) deletion call set for NA12878 
as ground truth16,17, then SpeedSeq achieves a sensitivity of 
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figure 1 | SpeedSeq workflow. (a) SpeedSeq 
converts raw reads into prioritized variants in 
13 h for a 50× human data set. Var/somatic, 
SpeedSeq var and SpeedSeq somatic software 
modules for germline and somatic SNP-indel 
calling, respectively. (b,c) Germline SNV  
(N = 2,803,144) and indel (N = 364,031)  
receiver-operating characteristic (ROC) curves 
(c) over the GIAB truth set for SpeedSeq,  
GATK-UG and GATK-HC. (d) Somatic SNV detection  
ROC curves for a simulated 50× tumor-normal 
pair using SpeedSeq and three other tools  
(N = 875,206). Open circles in b–d denote  
the data points reported in the main text.  
(e) SpeedSeq’s SV detection performance  
by quality score (QUAL) of all SVs (black),  
those with split-read and paired-end support 
(blue) and those with read-depth support  
from CNVnator (red), as validated by either  
PacBio or Moleculo long reads or 1KGP.  
(f) Schematic of haplotype-based SV  
validation showing undetected (open circles), 
consistently segregating (black circles) and 
inconsistently segregating (red circles)  
SVs through the CEPH 1463 pedigree.

$ gemini load –v tumor.vcf.gz –t VEP –p sample.ped tumor.db

$ gemini set_somatic tumor.db

$ gemini fusions ––in_cosmic_census ––min_qual 1 tumor.db

chr3 178905990 chr3 176909982 – + complex PIK3CA TBL1XR1

$ gemini actionable_mutations tumor.db

chr17 7578460 7578461 TP53 non_syn_coding
chr17 59861630 59861641 BRIP1 inframe_codon_loss
chr2 128046288 128046289 ERCC3 non_syn_coding
chrX 132838304 132838328 GPC3 splice_region
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figure 2 | Case study in a tumor-normal pair. A SpeedSeq workflow 
demonstrating the seven succinct commands required to process a tumor-
normal pair (TCGA-E2-A14P) from raw FASTQ reads to clinically actionable 
somatic mutations with predicted damaging consequences. In this tumor, 
SpeedSeq detected a previously reported somatic gene fusion product 
between exon 1 of TBL1XR1 and exon 2 of PIK3CA20.
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61.9% (2,089/3,376) and a positive predictive value of 60.8% 
(2,089/3,438) for detecting deletions, which is consistent with 
our recent comparative performance tests for LUMPY14 and 
by inference shows that SpeedSeq achieves state-of-the-art SV 
detection relative to other tools. However, this test probably  
underestimates absolute performance because the 1KGP call set 
has known false positives and negatives. We therefore developed 
a composite strategy in which SVs in NA12878 could be validated 
either by overlap with split-read mapping of deep (30×) long-
read data from PacBio and Illumina Moleculo platforms or by 
overlap with 1KGP. On the basis of this hybrid approach, SVs 
with quality scores of 100 or greater showed a positive predic-
tive value of 86.0% (2,823/3,282) (Fig. 1e and Supplementary  
Fig. 3). Virtually none of these SVs are likely to have been validated 
by random chance, as 100 permutations of the call set resulted 
in a validation rate of 0.073% (± 6.1 × 10−3, 95% confidence  
interval). Moreover, SVTyper’s quality scores provide a tunable 
parameter for refining call sets to a desired confidence threshold. 
By requiring both paired-end and split-read support, users can 
generate an extremely high-confidence call set of 1,663 SVs with 
a 97.8% validation rate.

As an independent measure of SV detection and genotyping 
performance, we developed a haplotype-based test that exploits 
the structure of the CEPH 1463 pedigree. First, we phased the 
pedigree by SNV transmission to produce haplotype lineage maps 
that allowed us to attribute an average of 63.0% of the mappable 
genome of each F2 individual to a particular founding grand-
parent (Fig. 1f). Next, we performed joint SV detection on the 
pedigree to generate 1,722 high-confidence autosomal SVs that 
could be assigned to a founding grandparent by transmission; 
this resulted in a truth set of 8,397 predicted SV observations 
across the 11 grandchildren with known genotypes. SpeedSeq 
showed a detection sensitivity of 90.2% (7,578/8,397) for these 
predicted SVs, encompassing 1,660 of the 1,722 unique variants 
(Supplementary Table 3). Among the SVs that were detected, 
SVTyper reported the correct genotype at 96.6% (6,845/7,083) of 
the heterozygous variants and 72.3% (358/495) of the homozygous 
variants. Moreover, the high specificity of this call set is apparent 
from the infrequency of Mendelian violations (5.0%) and the con-
sistent cosegregation of SVs with SNV-based haplotypes (93.8%) 
(Supplementary Table 4).

Results from SpeedSeq seamlessly integrate into the GEMINI 
(GEnome MINIng) variant-interpretation framework, which 
annotates calls with information from external databases  
including dbSNP, ENCODE, ClinVar, CADD, ESP and ExAC 
for efficient filtering with command-line queries or a graphical 
browser interface18. In concert with SpeedSeq, we have made 
numerous enhancements to GEMINI, particularly in handling 
structural variants and interpreting somatic mutations. Users 
can rapidly prioritize somatic mutations through queries on two 
newly added databases: the COSMIC catalog of somatic mutations 
in cancer12 and DGIdb, the Drug-Gene Interaction database19. In 
addition, GEMINI can now identify both structural variants that 
alter gene dosage or interrupt transcripts and putative somatic 
gene fusions that affect COSMIC cancer genes.

Finally, to provide an example of a typical cancer analysis inter-
pretation, we performed somatic-variant calling on the tumor-
normal pair of an invasive breast carcinoma from TCGA that 
carries a known gene fusion20. With four concise commands and 
less than an hour of computation, we loaded the variant call format 
(VCF) file into GEMINI, filtered variant calls for high confidence, 
clinically informative somatic mutations and predicted gene fusion 
events (Fig. 2). These analyses demonstrate the ease with which 
high-impact somatic point mutations and genomic rearrange-
ments can be identified using the SpeedSeq framework. 

methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. European Nucleotide Archive (ENA): ERP001960.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
Software availability. The SpeedSeq v0.0.3a source code, docu-
mentation and example data files are available in Supplementary 
Software, as well as at https://github.com/hall-lab/speedseq.

Hardware. All timings reported herein were performed on a 
single machine with 128 GB RAM and two Intel Xeon E5-2670 
processors, each with 16 threads.

Data. We benchmarked SpeedSeq’s processing time using the 
NA12878 genome from the Illumina Platinum Genomes data set 
(European Nucleotide Archive: ERP001960), which comprises 
50× WGS data sets for each of the 17 members of the three- 
generation CEPH 1463 pedigree (Supplementary Fig. 4).

WGS data from five matched tumor-normal pairs and their 
orthogonally validated somatic mutations were obtained from 
The Cancer Genome Atlas (TCGA). These included three color-
ectal tumors (TCGA-A6-6141, TCGA-CA-6718 and TCGA- 
D5-6540), one ovarian tumor (TCGA-13-0751) and one breast 
tumor (TCGA-B6-A0I6). Raw FASTQ reads were down-sampled 
to 50× coverage in the tumor and 30× coverage in the normal 
sample. Samples were processed with SpeedSeq for alignment, 
somatic mutations and structural variants using default param-
eters and then loaded into GEMINI for variant interpretation.  
We also analyzed WGS data from a tumor-normal pair (63× 
tumor, 49× normal coverage) of a patient with an invasive breast 
carcinoma (TCGA-E2-A14P) containing a previously reported 
gene fusion between TBL1XR1 and PIK3CA20.

FASTQ alignment and BAM processing. SpeedSeq aligns  
paired-end FASTQ files to the human GRCh37 reference genome 
with BWA-MEM 0.7.8 (ref. 1) using the “-M” flag to mark shorter 
alignments as secondary. Aligned reads are streamed directly into 
SAMBLASTER5, which seizes idle CPU cycles that are periodically 
liberated each time BWA reads a FASTQ data chunk into the buffer. 
Marking duplicates on the presorted BAM file allows simultaneous 
extraction of discordant read pairs and split-read alignments, fol-
lowed by rapid sorting and BAM compression with Sambamba21.

SNV and indel detection strategy. SpeedSeq runs FreeBayes  
version 0.9.16 with “–min-repeat-entropy 1” and “–experimental- 
gls” parameters for germline variant calling7. To increase specifi-
city, SpeedSeq also requires at least one read on both the left and 
the right to support the variant allele. For somatic variant detec-
tion, SpeedSeq uses parameters tuned to increase sensitivity over 
low-frequency variants (–pooled-discrete –genotype-qualities  
–min-alternate-fraction 0.05 –min-alternate-count 2 –min-repeat- 
entropy 1) and reports a somatic score (SSC) to estimate the  
confidence of each variant. The SSC is the sum of the log odds 
ratios for the tumor (LODT) and normal (LODN) samples,  
which is based on the genotype likelihood probabilities from 
FreeBayes (PT and PN for tumor and normal genotype probabilities,  
respectively). The SSC is the preferred tuning parameter as it is 
robust to sequencing depth by design; however, the minimum 
alternate fraction and minimum alternate count can also be 
adjusted on the SpeedSeq command line. 

LOD
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P referenceT
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= log

( )
( )  
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LOD
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P referenceN
N

N
= log

( )
( )  

SSC LOD LODT N= +

SpeedSeq’s implementation of FreeBayes is parallelized over 
34,123 windowed regions of the GRCh37 genome using GNU 
Parallel22. We generated these regions, which average 84 kb in 
length, by partitioning the genome into bins of approximately 
equal numbers of reads based upon the aggregate coverage depth 
of all 17 members of the CEPH 1463 family pedigree and excluding 
high-depth sequences (Supplementary Note 4, Supplementary 
Table 5 and Supplementary Fig. 5). This binning scheme bal-
ances the computational load over the FreeBayes instances by 
allocating processors depending on the quantity of expected input 
data. It is 13.3-fold faster than the single-threaded version and 
34.9% faster than naive parallelization over each chromosome 
(Supplementary Note 1).

Structural variation detection and genotyping strategy. 
SpeedSeq runs LUMPY with “-msw 4 -tt 0 min_clip 20 min_non_
overlap 101 min_mapping_threshold 20 discordant_z 5 back_ 
distance 10” and weights of 1 for both paired-end and split-read 
evidence. SpeedSeq’s implementation of CNVnator parallelizes 
the genome by chromosome and performs copy number segmen-
tation with a window size of 100 bp.

SVTyper is a maximum-likelihood Bayesian classification algo-
rithm that infers an underlying genotype at each SV. Alignments at 
SV breakpoints either support the alternate allele with discordant  
or split-reads or support the reference allele with concordant reads or 
read-pairs that span the breakpoint. The ratio and quantity of these 
observations allow probabilistic inference of genotype likelihood.  
Under the assumption of diploidy, the set of possible genotypes 
at any locus is G = {reference, heterozygous, homozygous}. We 
defined the function S, where S(g) is the prior probability of 
observing a variant read in a single trial given a genotype g at 
any locus. These priors were set to 0.1, 0.4 and 0.8 for reference, 
heterozygous and homozygous deletions, respectively. Assuming 
a random sampling of reads, the number of observed alternate (A) 
and reference (R) reads (scaled by mapping quality, 10(-mapq/10)) 
will follow a binomial distribution B(A+R, S(g′)), where g′ ∈ G is  
the true underlying genotype. Using Bayes’s theorem we can 
derive the conditional probability of each underlying genotype 
state from the observed read counts (equation (4)), assuming an  
a priori probability P(g) of 1/3 for each genotype. Finally, we calcu-
late ĝ as the inferred genotype for the variant. Since the algorithm 
only interrogates SVs in the VCF file that have passed LUMPY 
filters as nonreference, it reports the more likely genotype of  
heterozygous or homozygous alternate states. 
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SNV and indel evaluation. We compared SpeedSeq’s germ-
line SNV- and indel-variant calling against two independent  
truth sets for NA12878, one derived from the Genome in a  
Bottle (GIAB) NA12878 gold standard calls and the other  
based on Omni microarray data from the 1000 Genomes  
Project (1KGP). The GIAB 2.17 truth set contained 2,803,144 
SNVs and 364,031 indels within highly confident regions 
(excluding segmental duplications, simple repeats, decoy 
sequence and CNVs) and spanned 2.2 Gb (77.6% of the map-
pable genome) for which nonvariant sites could be confidently 
considered homozygous reference. The Omni microarray truth 
set contained 2,177,040 informative SNVs, of which 689,788 
were nonreference in NA12878, excluding markers within  
50 bp of known indels.

We aligned the NA12878 raw reads from the Illumina Platinum 
data with SpeedSeq and then called germline SNVs and indels 
using SpeedSeq’s default parameters. To evaluate SpeedSeq’s 
performance against other standard tools, we also processed the 
aligned BAM files according to the Genome Analysis Toolkit  
(version 3.2-2-gec30cee) best practices workflow, including  
realignment around indels, base recalibration, and variant  
calling with Unified Genotyper (GATK-UG) and Haplotype 
Caller (GATK-HC). Variant quality score recalibration was 
performed on the GATK results using a passing tranche filter 
of <99%. We normalized and compared variant calls accord-
ing to the GIAB protocol with vcfallelicprimatives, GATK’s 
LeftAlignAndTrimVariants and VcfComparator2,6. We filtered 
variants for sensitivity and FDR against the GIAB truth set using a 
minimum quality score of 100 for GATK tools and 1 for SpeedSeq 
(open circles, Fig. 1b,c).

To evaluate performance in detecting somatic variants, we gen-
erated a simulated tumor-normal matched pair from the CEPH 
1463 family Illumina Platinum data. The ‘tumor’ data set was 
an equal mixture of all 11 members of the F2 generation, down-
sampled to 50× coverage and aligned with SpeedSeq. The father 
of the F2 generation (NA12877) represented the 50×-matched 
normal sample. For inclusion in the somatic SNV truth set, we 
required a variant to be diallelic and autosomal in the NA12878 
GIAB truth set, and called nonreference in NA12878 and  
reference in NA12877 (refs. 6,23) by Real Time Genomics (RTG). 
Additionally, variants were disqualified from the truth set if  
they violated Mendelian inheritance patterns. These criteria 
resulted in a set of 875,206 high-confidence SNVs covering 77.6% 
of the mappable genome. The truth set of variants in the chimeric 

(6)(6)

(7)(7)

tumor followed the expected binomial pattern of inheritance  
in her children, with a peak at 0.5 VAF from homozygous  
SNVs in NA12878 (Supplementary Fig. 2a).

We processed the simulated tumor data with SpeedSeq, MuTect 
1.1.4, SomaticSniper and VarScan 2 using parameters designed  
to target variants as low as 5% variant-allele fraction. Receiver-
operating characteristic (ROC) curves were generated by varying 
SSC for SpeedSeq, SomaticSniper and VarScan 2. For MuTect, 
which does not produce a single quality score for somatic variants, 
we varied the t_lod_fstar value to construct the ROC curve.

Structural variant evaluation. We constructed the 1KGP 
truth set by integrating deletions from the Pilot and Phase 1 
call sets16,17. For long-read validation of SV breakpoints, we 
obtained 30× PacBio (ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/technical/working/20131209_na12878_pacbio) data from  
1KGP. We realigned the PacBio data with BWA-MEM 0.7.10 
using the -x pacbio flag for consistency with the Moleculo  
alignments. Validations were performed according to previously 
published methods14. Custom scripts for this analysis are available 
at https://github.com/hall-lab/long-read-validation. To construct 
haplotype maps of the CEPH 1463 F2 genomes, we called SNVs 
with SpeedSeq on the entire 17-member pedigree and phased 
SNVs by transmission at polymorphic sites in the parents. We 
smoothed the chromosomes for contiguous blocks of inheritance 
by selecting informative bases where 95% of each run of 101 SNVs 
reported a consistent parent of origin. We then merged regions 
that shared inheritance and that were within 100 kb of each other. 
This allowed us to trace an average of 1.8 Gb (63.4%) of each 
F2 chromosome back to a particular grandparent, encapsulating 
meiotic crossovers that occurred in the F1 germline (Fig. 1f). We 
then used SpeedSeq to jointly call structural variants on the entire 
pedigree, filtering for deletions that had at least seven pieces of 
support in at least one member of the pedigree, that had legal 
Mendelian transmission and whose origin could be unambigu-
ously attributed to a single grandparent. Variants for which the 
founding grandparent by SV transmission agreed with the found-
ing grandparent by SNV phasing were considered to be concord-
ant, with strong supporting evidence for their authenticity. To 
test whether the 1,722 informative SVs were representative of the 
data set as a whole, and not of misleadingly high quality due to 
their ascertainment criteria, we assessed their validation rate as 
described above using the 1KGP call set and long-read sequenc-
ing (Supplementary Table 4). The 1,722 informative SVs had a 
similar validation rate as the remaining 6,734 SVs, suggesting that 
they are representative of overall call-set quality.

21. Tarasov, A., Vilella, A.J., Cuppen, E., Nijman, I.J. & Prins, P. 
Bioinformatics doi: 10.1093/bioinformatics/btv098 (2015).

22. Tange, O. The USENIX Magazine 36, 42–47 (2011).
23. Cleary, J.G. et al. J. Comput. Biol. 21, 405–419 (2014).
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