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Abstract

Technological advances have enabled the use of DNA sequencing as a flexible tool to characterize 

genetic variation and to measure the activity of diverse cellular phenomena such as gene isoform 

expression and transcription factor binding. Extracting biological insight from the experiments 

enabled by these advances demands the analysis of large, multi-dimensional datasets. This unit 

describes the use of the BEDTools toolkit for the exploration of high-throughput genomics 

datasets. I present several protocols for common genomic analyses and demonstrate how simple 

BEDTools operations may be combined to create bespoke pipelines addressing complex 

questions.
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INTRODUCTION

Modern genomics research combines high throughput DNA sequencing with computational 

analysis to gain insight into genome biology. Both the spectrum of experimental assays that 

are now possible and the scale of the datasets generated complicate the interpretation of 

experimental results. Additional complexity comes from the fact that the genomics research 

community employs multiple file formats, such as BED(Kent et al., 2002), GFF, 

VCF(Danecek et al., 2011), BAM(Li et al., 2009), and BigWig(Kent et al., 2010), to 

represent experimental datasets and genome annotations. While these data formats differ in 

their structure and intended use, they each describe the attributes of one or more genome 

intervals (a.k.a. genome “features”). A single genome interval represents a consecutive 

stretch of nucleotides on a chromosome or assembly scaffold. Despite file format 

differences, most analyses involving multiple sets of genome intervals can be distilled to 

what I colloquially refer to as “genome arithmetic”: that is, the analysis of sets of genome 

intervals via multiple comparative operations. For example, quantifying transcript 

expression in RNA-seq experiments is essentially a process of counting the number of 

cDNA alignments (i.e., intervals in BAM format) that intersect (overlap) transcript 

annotations (i.e., intervals in GFF or BED format).
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BEDTools is an open source software package comprised of multiple tools for comparing 

and exploring genomic datasets via fundamental “genome arithmetic” tasks. The individual 

tools in the BEDTools suite are each focused on a relatively simple operation, such as those 

illustrated in Figure 1. The goals of this unit are to introduce the basic concepts of genome 

arithmetic with BEDTools and to demonstrate, via biologically relevant examples, how 

analytical power is conferred through clever combinations of individual BEDTools 

operations. This unit is intended to give new users a sense of what is possible with the 

BEDTools suite. I encourage the reader to subsequently read the BEDTools documentation 

(bedtools.readthedocs.org), since only the most widely useful subset of the nearly forty 

individual operations is covered.

STRATEGIC PLANNING

Completion of the protocols covered will require a computer with an UNIX, Linux, or Apple 

OS X operating system. Microsoft Windows users may also complete the unit if they first 

install Cygwin, but Windows usage is not directly supported. In the following sections, I 

will describe how to install BEDTools and other required software, as well as provide an 

overview of basic usage concepts.

Conventions

Throughout this unit, I will demonstrate BEDTools usage via commands issued on the 

UNIX command line. Such commands will use a different font and appear in bold. Also, the 

“$” character is merely intended to represent the command prompt and should not be 
typed.

$ bedtools --help

Additionally, this unit will include commands in the R programming language, primarily as 

a means for creating plots describing the results of BEDTools analyses. Such commands 

will use the same font, yet will be preceded by a “>“ to denote the R command prompt, 

which should likewise not be typed.

> x <- c(1,2,3)

Each protocol will also provide brief comments (preceded with a “#”) that describe the basic 

intent of the subsequent command. Comment lines can be copied and pasted or typed, but 

are merely provided to document the purpose of the command.

# The following command invokes the BEDTools help menu from the command line

$ bedtools --help

Lastly, a single command will often span multiple lines. In order to function properly, the 

entire command (except for the leading “$”), spanning multiple lines, must be copied and 
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pasted into one’s command prompt. As an example, below are two different multi-line 

commands. Each would be copied and pasted separately into the command prompt including 

each line of each command.

# Multi-line command number 1

$ bedtools intersect \

-a foo.bed \

-b bar.bed \

> foobar.bed

# Multi-line command number 2

$ bedtools intersect \

-a fiz.bed \

-b biz.bed \

> fizbiz.bed

Background knowledge

This unit assumes that the reader has previous experience working on the UNIX command 

line, as well as a basic understanding of common genomics file formats such as BED(Kent 

et al., 2002), VCF, GFF, and BAM. If not, I encourage you to first read the BEDTools 

documentation (bedtools.readthedocs.org), as well as the papers (Danecek et al., 2011; Kent 

et al., 2002; Li et al., 2009) describing the above formats. There are also many freely 

available tutorials on the Internet that describe the basics of working on the UNIX command 

line.

SUPPORT PROTOCOL 1: INSTALLING AND PREPARING TO USE 

BEDTOOLS

BEDTools is freely available software that is archived and maintained on GitHub. The latest 

version of BEDTools can be found at the following URL: https://github.com/arq5x/

bedtools2/releases. At the time this unit as written, the latest release was 2.19.1. Future 

readers should check for subsequent releases and adjust the installation commands below 

accordingly.

Necessary Resources

A C/C++ compiler such as GCC. For OS X users, this typically requires the installation 

of the Xcode developer tools.

The zlib and zlib-devel compression libraries (installed by default on many systems)

Installation options

The first installation strategy requires that one downloads and compiles the latest version of 

BEDTools directly from the source code. In this example, we will download and install 

version 2.19.1.

1a Download the BEDTools source code.
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$ curl -OL

https://github.com/arq5x/bedtools2/releases/download/v2.19.1/

bedtools-2.19.1.tar.gz

2a Extract the source code into a new directory.

$ tar -zxvf bedtools-2.19.1.tar.gz

3a Navigate to the new directory containing the source code.

$ cd bedtools2-2.19.1

4a Compile the source code into executable software.

$ make

5a At this point, you need to make the bedtools executable accessible on your 

system. Make a new “bin” directory within your home directory (“~”) and copy 

the executable to the new “bin” directory. Then update your PATH to include 

the new “bin” directory so that the BEDTools executable code can be found.

$ mkdir ~/bin

$ cp bin/bedtools ~/bin

$ PATH=PATH:~/bin

1b Alternatively, BEDTools may also be more installed via automatic package 

management software available on most UNIX systems.

# Fedora / Centos

$ yum install bedtools

# Debian / Ubuntu

$ apt-get install bedtools

# OSX (via HomeBrew: http://brew.sh/)

$ brew install bedtools

Downloading datasets for this unit—Throughout this unit, you will be using 

BEDTools to analyze several datasets in various genomics data formats. Therefore, you will 

first need to download the following files before beginning the analysis protocols that 

follow.

6 Use the ‘curl’ command to download example datasets to your computer.
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$ curl -OL

http://quinlanlab.cs.virginia.edu/bedtools-protocols/cpg.bed

$ curl -OL

http://quinlanlab.cs.virginia.edu/bedtools-protocols/exons.bed

$ curl -OL

http://quinlanlab.cs.virginia.edu/bedtools-protocols/human.hg19.genome

The bedtools help menu

7 The BEDTools software package is comprised of many sub-tools. One can be 

reminded of the tools available and a brief summary of their functionality by 

typing the following on the command line:

$ bedtools --help

If BEDTools has been installed correctly, on your system, you should see several examples 

of the BEDTools “subcommands”. If not, please refer back to the installation instructions 

above.

$ bedtools --help

bedtools: flexible tools for genome arithmetic and DNA sequence analysis.

usage: bedtools

<subcommand>

[options]

The bedtools sub-commands include:

[

Genome arithmetic

]

intersect

Find overlapping intervals in various ways.

window

Find overlapping intervals within a window around an interval.

closest

Find the closest, potentially non-overlapping interval.

coverage

Compute the coverage over defined intervals.

map

Apply a function to a column for each overlapping interval.

genomecov

Compute the coverage over an entire genome.

merge

Combine overlapping/nearby intervals into a single interval.

cluster
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Cluster (but do not merge)

overlapping/nearby

intervals.

complement

Extract intervals_not_represented by an interval file.

subtract

Remove intervals based on overlaps b/w two files.

slop

Adjust the size of intervals.

flank

Create new intervals from the flanks of existing intervals.

sort

Order the intervals in a file.

random

Generate random intervals in a genome.

shuffle

Randomly redistribute intervals in a genome.

sample

Sample random records from file using reservoir sampling.

annotate

Annotate coverage of features from multiple files.

8 In order to conduct an analysis of genomic intervals with BEDTools, one must 

employ one or more of the BEDTools subcommands. I will illustrate this with 

the intersect subcommand (more details will be provided in the first protocol). 

For example, to intersect BED files representing Alu elements and CpG islands, 

one would use the following command.

$ bedtools intersect -a alu.bed -b cpg.bed

One may also request a detailed help menu regarding the specifics of each tool as follows.

$ bedtools intersect -h

All other subcommands follow the same basic convention.

$ bedtools [SUBCOMMAND] [OPTIONS]

Working with “genome-sorted” datasets

9 The default algorithm that BEDTools leverages to detect intersections loads one 

of the two files into a tree data structure based on the UCSC binning 

algorithm(Kent et al., 2002). While fast, it can consume substantial memory, 
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especially for very large files. For this reason, we provide an alternative, yet 

very fast and memory efficient algorithm that requires one’s input files to be 

“genome-sorted”: that is, sorted first by chromosome and then by start position. 

When both input files are genome-sorted, the algorithm can “sweep” through the 

data and detect overlaps on the fly in a manner much like the way database 

systems join two tables. As an example, I demonstrate how to sort a BED file in 

this manner below (the first column of the BED format represents the 

chromosome and the second column represents the start coordinate.

$ sort -k1,1 –k2,2n fileA.bed > fileA.sorted.bed

This algorithm is invoked via the -sorted option and its use is demonstrated in subsequent 

sections. The substantial performance gains conferred through the use of “genome-sorted” 

datasets are illustrated in Figure 2.

Genome files

10 In order to function correctly, some of the BEDTools subcommands need to be 

informed of the length of each chromosome in the organism you are studying. 

These “genome” files must be tab delimited; the first column must be the 

chromosome label and the second column must be the length of the 

chromosome. For example, below is an example “genome” file for build 37 

(a.k.a “hg19”) of the human genome.

$ head -5 human.hg19.genome

chr1 249250621

chr2 243199373

chr3 198022430

chr4 191154276

chr5 180915260

BASIC PROTOCOL 1: FINDING INTERSECTIONS BETWEEN GENOME 

INTERVAL FILES

One of the most common questions asked of two sets of genomic intervals is whether or not 

any of the intervals in the two sets “overlap” with one another. This is known as interval 

intersection. Given its broad utility, the intersect command is the most widely-used utility in 

the BEDTools suite. By default, intersect reports the subset of intervals that are common to 

your two files. The “A” file is considered the “query” file, whereas the “B” file is considered 

the “database” file. To demonstrate the basic functionality of the intersect utility, we will use 

the BED files we downloaded in the Strategic Planning section to identify CpG islands that 

overlap exons in the human genome.
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Necessary Resources

See Support Protocol 1

1 Display the first five BED intervals reflecting CpG islands.

$ head -n 5 cpg.bed

chr1 28735 29810 CpG:_116

chr1 135124 135563 CpG:_30

chr1 327790 328229 CpG:_29

chr1 437151 438164 CpG:_84

chr1 449273 450544 CpG:_99

2 Display the first five BED intervals reflecting exons.

$ head -n 5 exons.bed

chr1 11873 12227 NR_046018_exon0

chr1 12612 12721 NR_046018_exon1

chr1 13220 14409 NR_046018_exon2

chr1 14361 14829 NR_024540_exon0

chr1 14969 15038 NR_024540_exon1

3a Identify the CpG (file ‘A’) coordinates that overlap exons (file ‘B’).

$ bedtools intersect -a cpg.bed -b exons.bed | head -n 5

chr1 29320 29370 CpG:_116

chr1 135124 135563 CpG:_30

chr1 327790 328229 CpG:_29

chr1 327790 328229 CpG:_29

chr1 327790 328229 CpG:_29

In this example, the BED file representing CpG islands is treated as the “query” file, and as 

such, the reported intervals reflect the portion of each original CpG island that overlap one 

or more exons in the “database” file. For example, the first CpG island above contained 75 

base pairs (29810-28735, where the start coordinate 28735 is zero-based), yet the interval 

that the intersect tool reports reflects the subset of 50 base pairs that actually overlapped an 

exon.

Rather than report solely the intersecting intervals, it is often desirable to instead report the 

original intervals that intersected from both files. For each intersection between the two 

input files, the “write A” and “write B” options (-wa and –wb) report the original interval 

from the “A” and the “B” file, respectively.

3b Alternative: show overlaps with both CpG and exon coordinates (-wa, -wb).
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$ bedtools intersect -a cpg.bed -b exons.bed -wa -wb | head -n 5

chr1 28735 29810 CpG:_116 chr1 29320 29370 NR_024540_exon10

chr1 135124 135563 CpG:_30 chr1 134772 139696 NR_039983_exon0

chr1 327790 328229 CpG:_29 chr1 324438 328581 NR_028322_exon2

chr1 327790 328229 CpG:_29 chr1 324438 328581 NR_028325_exon2

chr1 327790 328229 CpG:_29 chr1 327035 328581 NR_028327_exon3

While this demonstrates how the -wa and –wb options allow us to understand which exact 

intervals from each file intersected, it is not immediately apparent (without squinting) how 

many base pairs of overlap exist between the intersecting features. The “write overlap” (-

wo) option addresses this by reporting the original intervals followed by the number of 

overlapping bases observed between each interval pair.

3c Alternative: show the overlap with both CpG and exon coordinates (-wo).

$ bedtools intersect -a cpg.bed -b exons.bed -wo | head –n 5

chr1 28735 29810 CpG:_116 chr1 29320 29370 NR_024540_exon10 50

chr1 135124 135563 CpG:_30 chr1 134772 139696 NR_039983_exon0 439

chr1 327790 328229 CpG:_29 chr1 324438 328581 NR_028322_exon2 439

chr1 327790 328229 CpG:_29 chr1 324438 328581 NR_028325_exon2 439

chr1 327790 328229 CpG:_29 chr1 327035 328581 NR_028327_exon3 439

In many situations, one is less concerned with enumerating every single overlapping interval 

between two files. Using the -c option, one can simply count the number of intervals that 

intersect each “query” interval.

3d Alternative: show the count of exons that overlap CpG islands (-c).

$ bedtools intersect -a cpg.bed -b exons.bed -c | head –n 5

chr1 28735 29810 CpG:_116 1

chr1 135124 135563 CpG:_30 1

chr1 327790 328229 CpG:_29 3

chr1 437151 438164 CpG:_84 0

chr1 449273 450544 CpG:_99 0

Similarly, the -v option allows one to focus solely on the CpG islands that do not overlap 

exons.

3e Alternative: show those CpG islands that do not overlap exons (-v).

$ bedtools intersect -a cpg.bed -b exons.bed -v | head –n 5

chr1 437151 438164 CpG:_84

chr1 449273 450544 CpG:_99

Quinlan Page 9

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2015 September 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



chr1 533219 534114 CpG:_94

chr1 544738 546649 CpG:_171

chr1 801975 802338 CpG:_24

The examples presented thus far have demonstrated intersections that require a single base 

pair of overlap in order to be reported as output. There are many cases, however, where the 

biological question at hand demands stricter criteria. For example, if one is interested in 

studying exons that have a role in transcript regulation, one could begin by using the –f 0.5 

option to identify CpG islands where at least half of the DNA content is comprised of 

coding exons.

4 Display CpG islands with >= 50% of the interval overlapped by an exon (-f 

0.50).

$ bedtools intersect -a cpg.bed -b exons.bed –f 0.50 -wo | head –n 5

chr1 135124 135563 CpG:_30 chr1 134772 139696 NR_039983_exon0 439

chr1 327790 328229 CpG:_29 chr1 324438 328581 NR_028322_exon2 439

chr1 327790 328229 CpG:_29 chr1 324438 328581 NR_028325_exon2 439

chr1 327790 328229 CpG:_29 chr1 327035 328581 NR_028327_exon3 439

chr1 788863 789211 CpG:_28 chr1 788770 794826 NR_047519_exon5 348

BASIC PROTOCOL 2: MEASURING COVERAGE IN WHOLE-GENOME DNA 

SEQUENCING EXPERIMENTS

The fundamental utility of whole genome sequencing is the ability to characterize the full 

spectrum of genetic variation present in the individual’s genome. However, the power to 

detect genetic variation is a function of the number of times a given nucleotide is 

independently sampled by the sequencing experiment. For example, if a diploid individual is 

heterozygous at a given position in the genome, then a single aligned sequence from modern 

DNA sequencing technologies (e.g., Illumina) will sample only one of the two inherited 

alleles. Therefore, the more that each nucleotide is sampled, the more likely it is that both 

inherited alleles will be detected. While coverage is typically modeled as a Poisson 

distribution, biases such as GC content and the number of PCR cycles used to amplify DNA 

prior to sequencing prevent uniform genome coverage to a degree that is greater than would 

be expected by a Poisson distribution. Given known biases and the importance of coverage 

to quality of the experiment, it is standard practice to assess the empirical coverage 

distribution as a quality control measure. The BEDTools genomecov tool is designed for 

precisely this purpose. The following example computes a histogram of sequence coverage 

for each chromosome as well as for the entire genome. Specifically, this histogram measures 

the fraction of each chromosome (and the genome as a whole) that is sampled by 0, 1, 2,…N 

independent sequence alignments.

Before beginning this protocol, you must first download an example dataset from the 1000 

Genomes Project (Durbin et al., 2010). This dataset represents whole genome sequencing of 

a Yoruban individual (NA19146) using the Illumina sequencing platform. The DNA 
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sequences have been aligned to build 37 of the human reference genome and the resulting 

alignments are stored in BAM format. You should anticipate the download to require 15 to 

30 minutes.

Necessary Resources

See Support Protocol 1

1 Download a BAM alignment file for NA19146 from the 1000 Genomes website.

$ KGFTP=ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/NA19146/alignment

$ curl -0 $KGFTP/NA19146.mapped.ILLUMINA.bwa.YRI.low_coverage.20130415.bam

2 Create a symbolic link to the file for brevity.

$ ln -s NA19146.mapped.ILLUMINA.bwa.YRI.low_coverage.20130415.bam NA19146.bam

Now that we have downloaded a whole-genome sequencing dataset for the N19146 

individual, we can use the genomecov tool to compute a histogram of aligned DNA 

sequence coverage observed throughout the genome of this sample.

3 Use the genomecov tool to compute a genome-wide histogram of sequence 

coverage.

$ bedtools genomecov -ibam NA19146.bam > NA19146.coverage.hist.txt

# The output format of the resulting file is a tab-delimited file with

# the following columns:

# column 1 = chromosome

# column 2 = depth

# column 3 = number of base pairs with depth=column2

# column 4 = size of the chromosome

# column 5 = fraction of base pairs with depth=column2

4 Display the first 11 lines of the coverage histogram for chromosome 1.

$ head -n 11 NA19146.coverage.hist.txt

1 0 29172804 249250621 0.117042

1 1 7196069 249250621 0.0288708

1 2 9698769 249250621 0.0389117

1 3 11608275 249250621 0.0465727

1 4 12960686 249250621 0.0519986

1 5 13769135 249250621 0.0552421

1 6 14188765 249250621 0.0569257

1 7 14176958 249250621 0.0568783
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1 8 13950378 249250621 0.0559693

1 9 13432208 249250621 0.0538904

1 10 12732827 249250621 0.0510844

5 Display the first 11 lines of the coverage histogram for the entire genome.

$ grep ^genome NA19146.coverage.hist.txt | head –n 11

genome 0 321856083 3137454505 0.102585

genome 1 117285058 3137454505 0.0373822

genome 2 152949464 3137454505 0.0487495

genome 3 176290526 3137454505 0.056189

genome 4 189358028 3137454505 0.060354

genome 5 194473449 3137454505 0.0619845

genome 6 193704084 3137454505 0.0617392

genome 7 188548984 3137454505 0.0600962

genome 8 180274956 3137454505 0.057459

genome 9 169595911 3137454505 0.0540553

genome 10 157422837 3137454505 0.0501753

The output of the genomecov histogram consists of the chromosome (column 1), the 

observed aligned sequence depth (column 2), the number of base pairs with this observed 

sequencing depth (column 3), the size of the chromosome (column 4), and the fraction of 

base pairs with this observed sequencing depth (column 5). This output allows us to observe 

that 11.7% of NA19146’s chromosome 1 was not sampled by a single aligned sequence, and 

by extension, 88.3% of chromosome 1 had one or more aligned sequences. Similarly, we see 

that 10.3% of the entire genome lacked a single aligned sequence and therefore 89.7% of the 

genome was sampled by one or more aligned sequences. Using the following R code, one 

can convert the text histogram produced by the genomecov tool into a plot (the result is 

presented in Figure 3) that describes the distribution of genome-wide sequencing coverage. 

Plotting the sequence coverage distribution allows one to observe that, on average, this 

individual’s genome was sampled by ~5 independent sequences alignments. This reflects the 

fact that this dataset was generated as part of the 1000 Genome Projects “low coverage” 

study.

6 Invoke R from the command line.

$ R

7 Plot a histogram of genome-wide coverage for NA19146. The following R 

commands will produce a plot identical to Figure 3.

# 7a. Load the output of genomecov into an R data frame

> cov = read.table(‘NA19146.coverage.hist.txt’)
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# 7b. Extract the genome-wide histogram entries

> gcov = cov[cov[,1] == ‘genome’,]

# 7c. Plot the histogram

> plot(gcov[1:51,2], gcov[1:51,5], type=‘h’, col=‘darkgreen’, lwd=3, 

xlab=‘Depth’,

ylab=‘Fraction of genome at depth’)

# 7d. Add axis labels

> axis(1,at=c(1,5,10,15,20,25,30,35,40,45,50))

ALTERNATE PROTOCOL 2: IDENTIFYING SPECIFIC GENOMIC REGIONS 

WITH HIGH OR LOW SEQUENCE COVERAGE

While Basic Protocol 2 demonstrates a strategy for measuring genome wide coverage 

statistics, it merely provides a summary of coverage without cataloging the observed 

coverage at each base pair in the genome. Such details are necessary in order to identify 

specific genomic regions (e.g., genes) where insufficient coverage is available and to 

identify regions where excessively high coverage was observed, perhaps owing to technical 

artifacts such as biases in GC content. Through the use of the -bga option, the genomecov 
tool produces BEDGRAPH output that describes the sequence coverage observed at discrete 

genome intervals.

Necessary Resources

See Support Protocol 1

1 Calculate a genome-wide BEDGRAPH of coverage.

$ bedtools genomecov \

-ibam NA19146.bam \

-bga \

> NA19146.coverage.bedgraph

2 Display the first ten lines of the output.

$ head –n 10 NA19146.coverage.bedgraph

1 0 9994 0

1 9994 9996 1

1 9996 9999 2

1 9999 10000 4

1 10000 10001 42

1 10001 10002 82

1 10002 10003 112

1 10003 10004 145
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1 10004 10005 184

1 10005 10006 233

At this point, we have created a BEDGRAPH representing the coverage through the entire 

genome of NA19146. The first three columns represent each genome interval in BED format 

and the fourth column represents the number of aligned sequences observed at each interval. 

The UNIX awk utility can be used to extract intervals with insufficient coverage. For 

example, based on the distribution shown in Figure 3, one might wish to identify genomic 

regions with less than five aligned sequences.

3a Identify regions with less than 5 reads.

$ awk ‘$4 < 5’ NA19146.coverage.bedgraph \

| head -n 10

1 0 9994 0

1 9994 9996 1

1 9996 9999 2

1 9999 10000 4

1 10525 10526 4

1 10526 10534 3

1 10534 10550 2

1 10550 10576 1

1 10576 10589 2

1 10589 10617 1

Similarly, we can identify regions with excessive coverage, which based on the distribution 

described in Figure 3, we will define as intervals with more than 25 aligned sequences.

3b Identify regions with more than 25 reads.

$ awk ‘$4 > 25’ NA19146.coverage.bedgraph \

| head -n 10

1 10000 10001 42

1 10001 10002 82

1 10002 10003 112

1 10003 10004 145

1 10004 10005 184

1 10005 10006 233

1 10006 10007 250

1 10007 10008 258

1 10008 10009 306

1 10009 10010 313
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Notice that many of the intervals with excessive coverage (yet differing individual coverage 

measurements) are adjacent to one another. In such cases, we may wish to combine these 

adjacent bases into single, consecutive, high-coverage intervals. This can easily be 

accomplished with the BEDTools merge tool. The following example demonstrates how 

multiple BEDTools operations can be combined to conduct more sophisticated analyses. 

The use of “-i -” follows the UNIX convention of specifying to the merge tool that the input 

be being passed directly from the output of the awk command, rather than from a file.

3c Merge coordinates with high coverage. This is an example of how one may 

refine analyses by passing the output from one BEDTools command as input to 

another command. Note that we specify to the merge tool that input is being 

passed directly (as opposed to a proper file) from the awk command via the use 

of ‘-’ as the input.

$ awk ‘$4 > 25’ NA19146.coverage.bedgraph \

| bedtools merge -i - \

| head -n 10

1 10000 10287

1 10337 10465

1 11740 11741

1 11742 11822

1 11834 13924

1 13931 15266

1 15305 15308

1 15310 15311

1 15317 15528

1 15568 15576

BASIC PROTOCOL 3: MEASURING COVERAGE IN TARGETED DNA 

SEQUENCING EXPERIMENTS

By focusing the fixed sequencing “budget” (that is, a fixed number of sequences at a given 

cost) of current sequencing platforms on a subset of the genome, targeted DNA sequencing 

strategies are used to confer greater power to detect genetic variation in the genomic regions 

of interest. For example, exome capture kits focus the sequence budget on the 1–2% of the 

genome that encodes protein coding genes and UTRs(Ng et al., 2010). Consequently, many 

more sequences are aligned to these regions than would be possible with whole genome 

sequencing, thus allowing more sensitive detection of heterozygous loci in the sequenced 

individual.

However, current targeted capture assays require DNA hybridization and have biases in GC 

content. This often leads to extensive variability in the sequence coverage observed at each 

targeted genomic region. As a result, it is crucial to measure the uniformity of coverage at 

the targeted regions in order to assess overall discovery potential, since those regions with 

lower coverage are inherently less empowered for the discovery of genetic variation.
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Necessary Resources

Before beginning this protocol, you must first download another example dataset from the 

1000 Genomes Project. This dataset represents exome sequencing of a CEU individual 

(NA12891) using the Illumina sequencing platform. The DNA sequences have been aligned 

to build 37 of the human reference genome and the resulting alignments are stored in BAM 

format. In addition, we must also download a BED file whose genomic intervals represent 

the DNA probes that were used to selectively hybridize DNA from coding exons. You 

should anticipate the file downloads to require 15 to 30 minutes.

1 Make a shortcut to the 1000 Genomes FTP site.

$ KGFTP=ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/

phase3_EX_or_LC_only_alignment/data/NA12891/exome_alignment/

2 Download the NA19146 BAM alignment file from the 1000 Genomes website.

$ curl -O $KGFTP/NA12891.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam

3 Create a symbolic link to the long filename for brevity.

$ ln -s NA12891.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam NA12891.exome.bam

4 Download the exome capture targets.

$ KGFTP=ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference

$ curl -O $KGFTP/exome_pull_down_targets/20130108.exome.targets.bed

5 Use “sed” to remove “chr” from the chromosome labels so that they match the 

BAM file.

sed -e ‘s/chr//’ 20130108.exome.targets.bed \

> targets.numeric.chroms.bed

The following command illustrates how to use the BEDTools coverage tool to investigate 

the uniformity of coverage for targeted DNA sequencing experiments. This command 

computes, for each targeted interval in the BED file (-b), a histogram of coverage observed 

among the aligned sequences from the BAM file. The output of the coverage histogram for 

each interval consists of the chromosome (column 1), start (column 2) and end (column 3) 

of the targeted interval, followed by the observed aligned sequence depth (column 5), the 

number of base pairs in the interval with this observed sequencing depth (column 6), the size 

of the interval (column 6), and finally, the fraction of base pairs in the interval with this 
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observed sequencing depth (column 7). In addition, the report contains a summary of the 

coverage histogram among all of the targeted intervals. The output of this overall summary 

is structured slightly differently and is described in the example below.

1 Compute a histogram of coverage for each target and for all targets as a whole.

$ bedtools coverage \

-hist \

-abam NA12891.exome.bam \

-b targets.numeric.chroms.bed \

> NA12891.exome.coverage.hist.txt

# The output format of the resulting file is a tab-delimited file with

# the following columns:

# column 1 = chromosome

# column 2 = start coordinate of the interval

# column 3 = end coordinate of the interval

# column 4 = depth

# column 5 = number of base pairs in the interval with depth=column 4

# column 6 = size of the interval

# column 7 = fraction of base pairs in the interval with depth=column 4

2 Display the first 10 lines of the coverage histogram for one of the intervals.

$ head -n 10 NA12891.exome.coverage.hist.txt

1 39845860 39846100 41 2 240 0.0083333

1 39845860 39846100 43 2 240 0.0083333

1 39845860 39846100 45 1 240 0.0041667

1 39845860 39846100 47 1 240 0.0041667

1 39845860 39846100 48 2 240 0.0083333

1 39845860 39846100 49 1 240 0.0041667

1 39845860 39846100 50 1 240 0.0041667

1 39845860 39846100 51 4 240 0.0166667

1 39845860 39846100 52 4 240 0.0166667

1 39845860 39846100 53 3 240 0.0125000

3 Display the first 10 lines of the coverage histogram among all intervals.

$ grep ^all NA12891.exome.coverage.hist.txt | head -n 10

all 0 329870 46492725 0.0070951

all 1 252695 46492725 0.0054352

all 2 256906 46492725 0.0055257

all 3 259382 46492725 0.0055790

all 4 261672 46492725 0.0056282
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all 5 264214 46492725 0.0056829

all 6 266291 46492725 0.0057276

all 7 263126 46492725 0.0056595

all 8 264020 46492725 0.0056787

all 9 262028 46492725 0.0056359

4 Create a subset reflecting solely the coverage observed across all targets

$ grep ^all NA12891.exome.coverage.hist.txt > NA12891.exome.coverage.all.txt

By examining the observed coverage among all targeted intervals, we can quickly see that a 

mere 329,870 base pairs, or 0.7% of the targeted bases had no detectable sequence coverage. 

Plotting a cumulative coverage distribution based upon these results allows one to assess the 

fraction of targeted bases with various levels of coverage (and thus power to detect genetic 

variation).

5 Load the output of ‘coverage’ into an R data frame.

> cov = read.table(‘NA12891.exome.coverage.all.txt’)

6 Create a cumulative distribution from the “raw” histogram.

# Note: we will truncate the x axis at depth >=400)

> allcov_cumul = 1 - cumsum(cov[,5])

7 Create a plot of the cumulative density function of the target coverage. The code 

below will result in a plot identical to Figure 4.

> plot(cov[2:401,2], allcov_cumul[1:400], col=‘darkred’, type=‘l’, lwd=2,

xlab=“Depth”, ylab=“Fraction of capture target bases >= depth”, 

ylim=c(0,1.0))

# 7a. Add gridlines to the plot

> abline(v = 20, col = “gray60”)

> abline(v = 50, col = “gray60”)

> abline(v = 80, col = “gray60”)

> abline(v = 100, col = “gray60”)

> abline(h = 0.50, col = “gray60”)

> abline(h = 0.90, col = “gray60”)

# 7b. Add axis labels to the plot

> axis(1, at=c(20,50,80), labels=c(20,50,80))

> axis(2, at=c(0.90), labels=c(0.90))

> axis(2, at=c(0.50), labels=c(0.50))
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Figure 4 demonstrates that, for this sample from the 1000 Genomes Project, just under 90% 

of the targeted bases had at least 20 aligned sequences and over half the targeted bases had 

at least 80 aligned sequences.

ALTERNATE PROTOCOL 3: IDENTIFYING SPECIFIC TARGETED 

INTERVALS THAT LACKED COVERAGE

While the previous protocol measured the overall fraction of targeted bases having sufficient 

coverage for genetic discovery, it did not reveal specific intervals that, despite being 

targeted, completely lacked any sequence coverage. It could be important to identify such 

intervals, as they may prove to be problematic (perhaps owing to a lack of sequence 

complexity) for all samples studied and could therefore be candidates for new capture probe 

design. The following alternative protocol illustrates how identify such intervals. It 

combines the BEDGRAPH output of the genomecov tool with both awk and the intersect 
tool to first identify genomic intervals with zero coverage and then intersect such zero-

coverage intervals with the targeted genomic intervals to reveal targeted intervals (or 

portions thereof) that lack coverage.

1 Create a BEDGRAPH of coverage genome wide but use awk to filter solely for 

intervals having zero coverage.

$ bedtools genomecov \

-ibam NA12891.exome.bam \

-bga \

awk ‘$4 == 0’ \

> NA12891.uncovered.bedg

2 Intersect intervals having 0 coverage against the original targeted intervals to 

reveal targeted intervals having zero coverage.

$ bedtools intersect \

-a targets.numeric.chroms.bed \

-b NA12891.uncovered.bedg \

-sorted \

> unsequenced.exome.target.intervals.bed

3 Display the first ten intervals that completely lacked coverage.

$ head unsequenced.exome.target.intervals.bed

1 15903 15930

1 16714 16719

1 69551 69560

1 129150 129152
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1 877795 877813

1 878015 878017

1 878068 878123

1 896053 896180

1 896634 896659

1 899929 899939

1 896053 896180

1 896634 896659

1 899929 899939

BASIC PROTOCOL 4: MEASURING TRANSCRIPTION FACTOR 

OCCUPANCY AT TRANSCRIPTION START SITES

The goal of this protocol is to demonstrate how create plots that describe global occupancy 

profiles of transcription factors at transcription start sites (TSS) throughout the human 

genome.

Necessary Resources

To demonstrate the use of BEDTools for TSS occupancy profiles, we will use ChIP-seq (in 

BigWig format) datasets for the Sp1 transcription factor, as well as a reverse cross-linked 

control, both from the ENCODE project (Dunham et al., 2012).

1 Create a shortcut to the ENCODE data hosting site.

$ ENCODE=http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

2 Download a BigWig file for the Sp1 ChIP-seq assay in H1hesc cells.

$ wget $ENCODE/wgEncodeHaibTfbs/wgEncodeHaibTfbsH1hescSp1Pcr1xRawRep1.bigWig

3 Download a BigWig file for the reversed crosslink control.

$ wget $ENCODE/wgEncodeHaibTfbs/

wgEncodeHaibTfbsH1hescRxlchPcr1xRawRep1.bigWig

Next, we must download a BED file of the transcription start sites for every gene in the 

UCSC Genome Browser’s “knownGene” track; I have pre-computed this file and it can be 

directly downloaded with the following command.

4 Download a BED file of transcription start sites (TSS).

$ curl -OL

http://quinlanlab.cs.virginia.edu/bedtools-protocols/tss.bed
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5 Display the first 5 lines of the TSS BED file.

$ head -5 tss.bed

chr1 11873 11874 DDX11L1 1 +

chr1 16764 16765 WASH7P 1 -

chr1 17750 17751 WASH7P 1 -

chr1 18060 18061 WASH7P 1 -

chr1 19758 19759 WASH7P 1 -

Since we are interested in transcription factor occupancy both upstream and downstream of 

the TSS, we must extend the single base pair of each TSS by, for example, 1000 base pairs 

upstream and downstream of the TSS. To do this, we will use the BEDTools slop command.

6 Add 1000 base pairs both (-b) upstream and downstream of each TSS BED 

record.

$ bedtools slop \

-b 1000 \

-i tss.bed \

-g hg19.chromsizes \

> tss.plusminus.1000bp.bed

7 Display the first 5 lines of the “expanded” (by 2000 bp) TSS BED file.

$ head -n 5 tss.plusminus.1000bp.bed

chr1 10873 12874 DDX11L1 1 +

chr1 15764 17765 WASH7P 1 -

chr1 16750 18751 WASH7P 1 -

chr1 17060 19061 WASH7P 1 -

chr1 18758 20759 WASH7P 1 -

To provide greater resolution to the plot we will produce, we will break up each 2000bp 

(TSS +/− 1000bp) interval flanking each TSS into 400, 5bp “sub-windows”. One can easily 

do this with the BEDTools makewindows command.

8 Create 5 base pair BED “sub-records” across each 2 kilobase TSS and its flanks.

# The ‘tr’ command makes the window number the 5th column. This will be used

# to summarize the coverage observed at each of the 2000 bases flanking the

# TSS across all TSSs. The ‘sort’ command ensures that each sub-window 

remains

# in “genome” order (that is, in ascending order by start position).

$ bedtools makewindows \
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-b tss.plusminus.1000bp.bed \

-w 5 \

-i srcwinnum \

| sort -k1,1 -k2,2n \

| tr “_” “\t” \

> tss.plusminus.1000bp.5bp.windows.bed

Lastly, at the time this unit was written, BEDTools did not have native support for BigWig 

files. Since the Sp1 and control ChIP-seq datasets downloaded from ENCODE are in 

BigWig format, we need to download the bigWigToBedGraph utility from the UCSC 

Genome Browser in order to convert the BigWig files to the BEDGRAPH format that 

BEDTools supports.

10 Create a shortcut to the UCSC tools website.

$ UCSC=http://hgdownload.cse.ucsc.edu/admin/exe/

11a Download and install ‘bigWigToBedGraph’ for LINUX operating systems.

$ curl -O $UCSC/linux.x86_64/bigWigToBedGraph

$ chmod a+x bigWigToBedGraph

$ cp bigWigToBedGraph ~/bin

11b Download and install ‘bigWigToBedGraph’ for OS X operating systems.

$ curl -O $UCSC/macOSX.x86_64/bigWigToBedGraph

$ chmod a+x bigWigToBedGraph

$ cp bigWigToBedGraph ~/bin

Now that we have downloaded and created the appropriate datasets, we must compare the 

ChIP-seq peaks for both the Sp1 transcription factor and the negative control to the BED file 

representing the 2,000 base pair intervals flanking (1,000 bp on each side) each TSS. Recall 

that we created 5 bp “windows” across each 2,000 bp interval in order to measure 

transcription factor occupancy at greater resolution than a single statistic count for the entire 

2kb interval. Therefore, there are 400 such windows in BED format for each TSS, and our 

goal is to tabulate the average observed ChIP-seq alignment coverage from the ENCODE 

BigWig files for each of the 5 base pair windows. As illustrated below, we see that one 

complication is that there may be multiple discrete BigWig signals that overlap the same (or 

multiple) 5bp window from a given TSS.

12 Peek at the BigWig file (converted to BEDGRAPH format) for Sp1

# Note that the last four records are for four different base pairs and will
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# thus overlap the same 5bp TSS window.

$ bigWigToBedGraph wgEncodeHaibTfbsH1hescSp1Pcr1xRawRep1.bigWig stdout /

| head -n 5

chr1 10159 10174 0.25732

chr1 10240 10241 0.32165

chr1 10241 10243 0.38598

chr1 10243 10244 0.45031

chr1 10244 10255 0.51464

In such cases, we will need to summarize each individual observation from the BigWig file 

to produce a single measure for each 5 bp window. The BEDTools map tool allows one to 

summarize data from overlapping features in a “B” file onto features in an “A” file by 

applying summary statistics to specific columns in the B file (Figure 5). In this case we will 

use map to compute the average BigWig intensity for each ChIP-seq interval from the 

BigWig file. However, in order to do this, we will first have to convert the BigWig file to 

BedGraph format for use with BEDTools. Once converted, we will compute the mean of the 

score (4th) column, which represents the normalized ChIP-seq intensity observed for each 

interval.

First, we will use the map tool to summarize both the Sp1 and negative control ChIP-seq 

intensities. Note that the BigWig file is converted to BedGraph “on the fly” via a UNIX 

FIFO so that we don’t have to store the data redundantly as both a BigWig and a BedGraph 

file. Secondly, if there are no overlaps between a given 5 bp window and the BigWig file, 

we default that window’s value to 0 using the -null option.

13 Map the Sp1 transcription factor to the 5bp windows flanking TSS loci.

# Notes:

# (a) ‘-c 4 -o mean’: get the mean of the coverage

# (b) ‘-null 0’: if no overlap with bigwig, set to zero

$ bedtools map \

-a tss.plusminus.1000bp.5bp.windows.bed \

-b <(bigWigToBedGraph wgEncodeHaibTfbsH1hescSp1Pcr1xRawRep1.bigWig stdout) \

-c 4 \

-o mean \

-null 0 \

> sp1.tss.window.coverage.bedg

14 Map the Rx1 reverse x-linked control to the 5bp windows flanking TSS loci

$ bedtools map \

-a tss.plusminus.1000bp.5bp.windows.bed \

-b <(bigWigToBedGraph wgEncodeHaibTfbsH1hescRxlchPcr1xRawRep1.bigWig stdout) 

\
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-c 4 \

-o mean \

-null 0 \

> rxl.tss.window.coverage.bedg

At this point, we have summarized the ChIP-seq signal for both Sp1 and the negative control 

for each 5bp interval flanking each transcript’s TSS. Our goal, however, is to summarize the 

transcription factor occupancy across all TSS in the entire genome. Recall that when 

creating the 5bp windows for each TSS, we added a 5th column reflecting which of the 400 

distinct 5bp windows each interval represents. We can now take advantage of this by using 

the BEDTools groupby tool, which will group input data by a particular column (or 

columns) and for each distinct group, it will summarize the values observed in other 

columns for each group. In this case, we want to calculate the sum of all mean ChiP-seq 

intensity values observed for each of the 400, 5bp windows measured for each TSS. The 

window number is the 5th column and represents our “grouping” column, and the mean 

ChiP-seq intensity values are in the 6th column and reflects the column that we want to 

summarize for each group (i.e., 5bp window number). In order to group the data efficiently, 

the groupby tool requires that the input data be pre-sorted by the grouping column.

15 Sum the Sp1 ChIP-seq signal observed for each 5bp window at each TSS start 

site.

# Note: sort by the window number -t$’\t’ to specify that TABS

# should be used as the delimiter

$ sort -t$’\t’ -k5,5n sp1.tss.window.coverage.bedg \

| bedtools groupby \

-i - \

-g 5 \

-c 6 \

-o sum \

> sp1.tss.window.counts.txt

16 Sum the reverse cross-linked control ChIP-seq signal observed for each 5bp 

window at each TSS start site.

$ sort -t$’\t’ -k5,5n rxl.tss.window.coverage.bedg \

| bedtools groupby \

-i - \

-g 5 \

-c 6 \

-o sum \

> rxl.tss.window.counts.txt
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At this point, the resulting files will contain the 401 5bp windows describing summary of all 

2000bp intervals surrounding (and including) every TSS. Since the TSS themselves will 

always be window number 200, we can compare the ChIP-seq signal at the TSS from both 

the Sp1 and negative control experiments.

17 Display the Sp1 signal observed at the TSS (col 1 = 200) and the five 5bp 

windows upstream and downstream of the TSS.

$ grep -C 5 ^200 sp1.tss.window.counts.txt

195 2510.08048816667860592

196 2526.00322200000437078

197 2551.78026433334161993

198 2575.32502633334479469

199 2587.95086900001206232

200 2580.09832033333896106

201 2556.6253755000034289

202 2543.30477683333856476

203 2520.3936473333401409

204 2477.16924816667051346

205 2462.13425500001221735

18 Display the control signal observed at the TSS (col 1 = 200) and the five distinct 

5bp windows upstream and downstream of the TSS.

$ grep -C 5 ^200 rxl.tss.window.counts.txt

195 140.054976083333343695

196 136.446768416666657231

197 140.504492583333330913

198 143.949013100000001941

199 147.90348491666665609

200 155.239274333333298728

201 160.626802333333330353

202 154.804520766666655618

203 146.191233833333342318

204 141.775147250000031818

205 133.537657333333356746

As expected, the ChIP-seq signal closest to the TSS is substantial stronger for Sp1 (a well-

characterized transcription factor), than for the negative control. Using the following R 

script, we can visualize the occupancy of these two experiments relative to the 2000 bp 

intervals flanking all TSS.

19 Create a plot of the cumulative density function of the target coverage. The 

result of the following commands will produce a plot identical to Figure 6.
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# 19a. Load the TSS profiles for Sp1 and the negative control into data 

frames.

> sp1 <- read.table(‘sp1.tss.window.counts.txt’)

> rxl <- read.table(‘rxl.tss.window.counts.txt’)

# 19b. Plot the SP1 profile.

> plot(sp1[,1], sp1[,2], col=‘darkred’, xaxt = “n”, xlab=“Distance from TSS”,

ylab=“Depth”)

# 19c. Plot the negative control profile.

> points(rxl[,1], rxl[,2], col=‘darkgrey’)

# 19d. Adjust labels based on distance to TSS.

# Recall that the window size is 5 base pairs

> axis(1, at=seq(0,400,40), labels=seq(-1000,1000,200))

# 19e. Add a vertical line at the TSS.

> abline(v = 200, col = “gray60”, lwd=3, lty=3)

# 19f. Add a legend.

> legend(‘topright’, c(“SP1 Trans. factor”,”Reverse cross-link Control”), 

lty=1,

col=c(‘darkred’, ‘darkgrey’), bty=‘n’)

BASIC PROTOCOL 5: COMPARING INTERVALS AMONG MANY DATASETS

The protocols described thus far have described how to compare pairs of genome interval 

files with BEDTools. This unit will introduce the multiinter and unionbedg tools, which are 

each designed to facilitate the comparison of intervals among many distinct files.

Necessary Resources

To demonstrate the utility of the multiinter tool, we will download files representing Dnase I 

hypersensitivity sites observed by Maurano et al among multiple human tissues (Maurano et 

al., 2012). I have selected Dnase I hypersensitivity sites from a random subset of 20 fetal 

tissue samples. Before beginning this protocol, we must first download and extract the 20 

individual files.

1 Download an archive of Dnase I hypersensitivity sites from 20 cells.

$ curl -O

http://quinlanlab.cs.virginia.edu/bedtools-protocols/maurano.dnaseI.tgz

2 Extract the 20 individual files.

$ tar -zxvf maurano.dnaseI.tgz
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At this point, your directory should now contain 20 new BED files, which reflect Dnase I 

hypersensitivity sites measured in twenty different fetal tissue samples from the brain, heart, 

intestine, kidney, lung, muscle, skin, and stomach.

3 List the 20 BED files of Dnase I hypersensitivity sites.

$ ls *fdr0.05.merge.bed

fBrain-DS14718.hotspot.twopass.fdr0.05.merge.bed

fBrain-DS16302.hotspot.twopass.fdr0.05.merge.bed

fHeart-DS15643.hotspot.twopass.fdr0.05.merge.bed

fHeart-DS15839.hotspot.twopass.fdr0.05.merge.bed

fHeart-DS16621.hotspot.twopass.fdr0.05.merge.bed

fIntestine_Sm-DS16559.hotspot.twopass.fdr0.05.merge.bed

fIntestine_Sm-DS16712.hg19.hotspot.twopass.fdr0.05.merge.bed

fIntestine_Sm-DS16822.hotspot.twopass.fdr0.05.merge.bed

fIntestine_Sm-DS17808.hg19.hotspot.twopass.fdr0.05.merge.bed

fIntestine_Sm-DS18495.hg19.hotspot.twopass.fdr0.05.merge.bed

fKidney_renal_cortex_L-DS17550.hg19.hotspot.twopass.fdr0.05.merge.bed

fLung_L-DS17154.hg19.hotspot.twopass.fdr0.05.merge.bed

fLung_L-DS18421.hg19.hotspot.twopass.fdr0.05.merge.bed

fLung_R-DS15632.hotspot.twopass.fdr0.05.merge.bed

fMuscle_arm-DS19053.hg19.hotspot.twopass.fdr0.05.merge.bed

fMuscle_back-DS18454.hg19.hotspot.twopass.fdr0.05.merge.bed

fMuscle_leg-DS19115.hg19.hotspot.twopass.fdr0.05.merge.bed

fMuscle_leg-DS19158.hg19.hotspot.twopass.fdr0.05.merge.bed

fSkin_fibro_bicep_R-DS19745.hg19.hotspot.twopass.fdr0.05.merge.bed

fStomach-DS17659.hg19.hotspot.twopass.fdr0.05.merge.bed

By inspecting the BedGraph file for a single sample, we see that each interval represents a 

site of Dnase I hypersensitivity and the value (column 4) reflects the “signal” of 

hypersensitivity reflected in the normalized number of aligned reads.

4 Display the first five lines of one of the Dnase I hypersensitivity BED files.

$ head -n 5 fBrain-DS14718.hotspot.twopass.fdr0.05.merge.bed

chr1 10152 10318 15.5324

chr1 16220 16278 5.45397

chr1 237727 237784 8.80646

chr1 521559 521614 16.5749

chr1 569891 569982 82.3494

Given that Dnase I hypersensitivity sites reflect putative regulatory elements, a natural 

analysis is the identification of hypersensitivity sites that are either private to a single cell 

type or common to many cell types. By simultaneously detecting intersections among 
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multiple files, the multiinter tool will report, for every interval observed among the input 

files, the number and identity of those files having a interval that overlaps with the reported 

interval. For example, below we use the multiinter tool to report intersecting 

hypersensitivity sites among the five fetal intestine files. The first three columns reflect the 

interval in question, followed by the number of input files having intersections at the 

interval, a list of the file labels (provide by the -names parameter). Lastly, there are five 

additional columns reflecting whether each file had (value=1) or lacked (value=0) an 

intersection with the interval in question.

5 Report the intervals that are common to 1 or more of the sets of Dnase I 

hypersensitivity sites from the five fetal intestine samples.

$ bedtools multiinter -i fIntestine*.bed \

-header \

-names DS16559 DS16712 DS16822 DS17808 DS18495 \

| head

chrom start end num list DS16559 DS16712 DS16822 DS17808 DS18495

chr1 10148 10150 2 DS16712,DS17808 0 1 0 1 0

chr1 10150 10151 3 DS16712,DS16822,DS17808 0 1 1 1 0

chr1 10151 10284 4 DS16559,DS16712,DS16822,DS17808 1 1 1 1 0

chr1 10284 10315 3 DS16559,DS16712,DS17808 1 1 0 1 0

chr1 10315 10353 2 DS16712,DS17808 0 1 0 1 0

chr1 237719 237721 1 DS16822 0 0 1 0 0

chr1 237721 237728 3 DS16712,DS16822,DS17808 0 1 1 1 0

chr1 237728 237783 4 DS16559,DS16712,DS16822,DS17808 1 1 1 1 0

chr1 237783 237784 3 DS16559,DS16712,DS16822 1 1 1 0 0

By inspecting the fourth column, one can identify hypersensitivity sites that were exclusive 

to a single sample, or common to all five intestinal samples.

6 Find hypersensitivity sites that are private to a single sample.

$ bedtools multiinter -i fIntestine*.bed \

-header \

-names DS16559 DS16712 DS16822 DS17808 DS18495 \

| awk ‘$4 == 1’ \

| head -n 5

chr1 237719 237721 1 DS16822 0 0 1 0 0

chr1 237787 237788 1 DS16822 0 0 1 0 0

chr1 521474 521559 1 DS18495 0 0 0 0 1

chr1 521571 521614 1 DS16712 0 1 0 0 0

chr1 567615 567712 1 DS16822 0 0 1 0 0

7 Find hypersensitivity sites that are common to all samples.
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$ bedtools multiinter -i fIntestine*.bed \

-header \

-names DS16559 DS16712 DS16822 DS17808 DS18495 \

| awk ‘$4 == 5’ \

| head -n 5

chr1 569819 569961 5 DS16559,DS16712,DS16822,DS17808,DS18495 1 1 1 1 1

chr1 713936 714345 5 DS16559,DS16712,DS16822,DS17808,DS18495 1 1 1 1 1

chr1 762672 763140 5 DS16559,DS16712,DS16822,DS17808,DS18495 1 1 1 1 1

chr1 840068 840231 5 DS16559,DS16712,DS16822,DS17808,DS18495 1 1 1 1 1

chr1 840681 840910 5 DS16559,DS16712,DS16822,DS17808,DS18495 1 1 1 1 1

Similarly, we can combine the multiinter tool with the groupby tool to measure the 

proportion of hypersensitive bases that are common to the 20 tissue samples assayed.

8 Measure how many bases were observed to be hypersensitive in 1,2,…20 

samples.

$ bedtools multiinter -i *.bed \

| awk ‘{print $4”\t”$3-$2}’ \

| sort -k1,1n \

| bedtools groupby -g 1 -c 2 -o sum \

> dnase.occupancy.dist.txt

9 Display the number of bases common to 1,2,3,4 and 5 samples.

# Column 1 = Number of cell types

# Column 2 = Number of base pairs

$ head -n 5 dnase.occupancy.dist.txt

1 172639699

2 70626095

3 51945770

4 35992709

5 27751090

10 As before, we will use R to plot the distribution of hypersensitive base pairs 

common to the 20 samples. The resulting plot (Figure 7) demonstrates that 

among the assayed tissues, the majority of hypersensitive bases are exclusive to 

a single cell.

# 10a. Load the Dnase I hypersensitivity distribution into an R dataframe.

> dnase_occ <- read.table(‘dnase.occupancy.dist.txt’)

# 10b. Plot the fraction of bases hypersensitive in 1,2,...20 assayed cells.
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> plot(dnase_occ[,1], dnase_occ[,2] / sum(dnase_occ[,2]), ‘h’, 

col=“darkred”, lwd=4,

xlab=“No. of assayed cells”, ylab=“Fraction of bases”)

ALTERNATE PROTOCOL 5: COMPARING QUANTITATIVE MEASURES 

AMONG MULTIPLE BEDGRAPH FILES

We demonstrated how the multiinter tool can be used to identify specific intervals that were 

either private to a single file or common to one or more genomic interval files. However, the 

output of the multiinter tool solely reports whether or not a given file had an interval that 

intersected the reported interval; it does not report the value associated with the BedGraph 

interval from each file. The unionbedg tool provides the ability to report overlapping 

intervals from multiple BedGraph files while also reporting the scores observed in each file.

$ bedtools unionbedg -i fIntestine*.bed \

-header \

-names DS16559 DS16712 DS16822 DS17808 DS18495 \

| head

chrom start end DS16559 DS16712 DS16822 DS17808 DS18495

chr1 10148 10150 0 7.76326 0 12.6573 0

chr1 10150 10151 0 7.76326 9.704 12.6573 0

chr1 10151 10284 9.71568 7.76326 9.704 12.6573 0

chr1 10284 10315 9.71568 7.76326 0 12.6573 0

chr1 10315 10353 0 7.76326 0 12.6573 0

chr1 237719 237721 0 0 7.36415 0 0

chr1 237721 237728 0 11.4351 7.36415 7.88268 0

chr1 237728 237783 8.57969 11.4351 7.36415 7.88268 0

chr1 237783 237784 8.57969 11.4351 7.36415 0 0

BASIC PROTOCOL 6: STATISTICS FOR MEASURING DATASET 

SIMILARITY

As we demonstrated in the previous protocol, the multiinter and unionbedg tools can be used 

to examine the individual intervals (and their respective scores) that are shared among 

multiple genome interval files. However, genome datasets are typically comprised of many 

thousands or millions of individual intervals; this scale complicates simple measurements 

reflecting the overall similarity of two or more datasets. In this protocol, we will use the 

jaccard tool to provide a simple similarity metric for pairs of datasets and to facilitate 

assessments of the similarity of many datasets.

The Jaccard similarity coefficient is a standard metric from set theory that measures the ratio 

of the size of the intersection of two sets to the size of the union of the two sets. Favorov et 

al introduced the use of the Jaccard statistic to reflect the similarity of two genome interval 

sets(Favorov et al., 2012). The authors proposed the metric as the ratio of the total number 
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of intersecting base pairs to the total number of base pairs represented by the intervals in the 

two sets. As such, the more overlap, the higher the ratio. BEDTools instead calculates the 

jaccard statistic as the ratio of intersecting base pairs to the union of the two interval sets (in 

base pairs) minus the intersecting base pairs (Figure 8). This allows the score to range from 

0 (no interval overlap) to 1 instead of 0 to 0.5, where the metric is equal to 1 (not 0.5) when 

the sets are identical.

To demonstrate, we will compute the Jaccard metric for two Dnase I hypersensitivity 

intervals from independent samples of the same tissue type. The output reports: 1) the total 

number of intersecting base pairs, 2) the total number of base pairs in the two sets minus the 

intersecting bases, 3) the Jaccard index, and 4) the total number of interval intersections 

observed between the two sets. In this example, the Jaccard index exceeds 0.50, reflecting 

the high similarity of the putative regulatory elements identified in two different fetal heart 

samples.

1 Compute the intersection, union-intersection, Jaccard statistic and the total 

number of intersections between two fetal heart samples.

$ bedtools jaccard \

-a fHeart-DS16621.hotspot.twopass.fdr0.05.merge.bed \

-b fHeart-DS15839.hotspot.twopass.fdr0.05.merge.bed

intersection union-intersection jaccard n_intersections

81269248 160493950 0.50637 130852

Intuitively, however, the Jaccard index is substantially lower when comparing the overall 

similarity of regulatory elements observed in a fetal heart and a fetal skin sample.

2 Compute the intersection, union-intersection, Jaccard statistic and the total 

number of intersections between two different tissue samples.

$ bedtools jaccard \

-a fHeart-DS16621.hotspot.twopass.fdr0.05.merge.bed \

-b fHeart-DS15839.hotspot.twopass.fdr0.05.merge.bed

intersection union-intersection jaccard n_intersections

28076951 164197278 0.170995 73261

This demonstrates how the jaccard tool can be used to produce a simple statistic to reduce 

the dimensionality associated with comparing two large (e.g., often containing thousands or 

millions of intervals) genomic datasets.

We will now extend this analysis to leverage the Jaccard statistic to measure the pairwise 

similarities among all 20 fetal tissue samples. We will use BASH loops to automatically 

compute the Jaccard statistic for all 400 (20*20) pairwise comparisons.

3 Construct a list of shorter, more reasonable file labels.
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$ file_labels=`ls *.bed | \

sed -e ‘s/.hotspot.twopass.fdr0.05.merge.bed//g’ -e ‘s/.hg19//g’`

4 Use the short labels as a header for the output file.

$ echo name” “$file_labels ≫ pairwise_jaccard.txt

5 Make a matrix of the Jaccard statistic for all 400 (20*20) file comparisons.

$ for file1 in `ls *.bed`

do

file1_short=`echo $file1 \

| sed -e ‘s/.hotspot.twopass.fdr0.05.merge.bed//g’ \

-e ‘s/.hg19//g’`

echo -n $file1_short ≫ pairwise_jaccard.txt

for file2 in `ls *.bed`;

do

jaccard=`bedtools jaccard \

-a $file1 \

-b $file2 \

-valueOnly`

echo -n “ “$jaccard ≫ pairwise_jaccard.txt

done

echo ≫ pairwise_jaccard.txt

done

The result is a text representing a matrix of the 400 pairwise Jaccard metrics observed.

6 Display the first 10 tens of the Jaccard matrix.

$ head pairwise_jaccard.txt

name fBrain-DS14718 fBrain-DS16302 fHeart-DS15643 fHeart-DS15839 fHeart-

DS16621

fIntestine_Sm-DS16559 fIntestine_Sm-DS16712 fIntestine_Sm-DS16822 

fIntestine_Sm-

DS17808 fIntestine_Sm-DS18495 fKidney_renal_cortex_L-DS17550 fLung_L-DS17154 

fLung_L-

DS18421 fLung_R-DS15632 fMuscle_arm-DS19053 fMuscle_back-DS18454 fMuscle_leg-

DS19115

fMuscle_leg-DS19158 fSkin_fibro_bicep_R-DS19745 fStomach-DS17659

fBrain-DS14718 1 0.354341 0.240543 0.220058 0.227235 0.208477 0.206108 

0.201616
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0.215246 0.190694 0.260935 0.254287 0.254171 0.260759 0.263694 0.265446 

0.266905

0.244176 0.156081 0.248627

fBrain-DS16302 0.354341 1 0.231572 0.209814 0.226111 0.194993 0.178761 

0.183642

0.191958 0.175087 0.237877 0.258712 0.251358 0.259236 0.252318 0.24471 

0.249426

0.244333 0.135481 0.215611

fHeart-DS15643 0.240543 0.231572 1 0.501461 0.612504 0.274962 0.252228 

0.259867

0.279572 0.247334 0.305129 0.321958 0.323752 0.327154 0.322472 0.327793 

0.321603

0.297134 0.18551 0.295738

fHeart-DS15839 0.220057 0.209813 0.501456 1 0.50637 0.253843 0.234683 

0.236505

0.262172 0.220866 0.278114 0.289965 0.285643 0.280371 0.273637 0.273879 

0.265811

0.250537 0.155952 0.2491

fHeart-DS16621 0.227235 0.226111 0.612502 0.50637 1 0.270273 0.226441 

0.248787

0.262197 0.23503 0.296984 0.319891 0.317823 0.309777 0.305358 0.309559 

0.301319

0.291388 0.170995 0.267889

fIntestine_Sm-DS16559 0.208473 0.194993 0.274958 0.253843 0.270273 1 0.451537

0.607371 0.57613 0.554788 0.313097 0.313202 0.325796 0.310454 0.27922 

0.276469

0.273837 0.264617 0.177436 0.347187

fIntestine_Sm-DS16712 0.206104 0.17876 0.252223 0.234683 0.226441 0.451538 1 

0.481841

0.523854 0.480868 0.269365 0.251144 0.26833 0.273746 0.242071 0.241538 

0.240317

0.210362 0.190258 0.344375

fIntestine_Sm-DS16822 0.201612 0.183641 0.259862 0.236505 0.248787 0.607371 

0.481841

1 0.59865 0.569733 0.289532 0.28457 0.300228 0.289781 0.256284 0.258686 

0.255764

0.238165 0.18352 0.355715

fIntestine_Sm-DS17808 0.215237 0.191957 0.279561 0.262172 0.262196 0.57613 

0.523853

0.59865 1 0.538442 0.311739 0.304329 0.315083 0.306872 0.274056 0.27464 

0.272167

0.24807 0.184359 0.361087

This is obviously too much information to discern a sense of the overall patterns observed 

among the 20 datasets. Yet since the Jaccard statistic serves as a measure of the similarity of 
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two datasets, we may graphically convey the overall similarity of all 20 Dnase I 

hypersensitivity patterns using a heatmap.

7 Plot the Jaccard matrix as a heatmap using R. The result will be identical to 

Figure 9.

# 7a. Install RColorBrewer package if missing.

> if (!require(“RColorBrewer”)) { install.packages(“RColorBrewer”);

library(RColorBrewer)}

# 7b. Install heatmap2 package if missing.

> if (!require(“gplots”)) { install.packages(“gplots”); library(glots)}

# 7c. Load the Jaccard matrix into an R data frame.

> jaccard_table <- read.table(‘pairwise_jaccard.txt’, header=TRUE)

# 7d. Add dataset labels.

> row.names(jaccard_table) <- jaccard_table$name

# 7e. Strip the label from the first column

> jaccard_table <- jaccard_table[, -1]

# 7f. Convert the data frame to a matrix for use with the heatmap.2 function.

> jaccard_matrix <- as.matrix(jaccard_table)

# 7g. Plot the Jaccard matrix as a heatmap.

> heatmap.2(jaccard_matrix, col=brewer.pal(9,”Blues”), margins = c(14, 14),

density.info = “none”, lhei = c(2, 8), trace”=none”)

This demonstrates that independent samples of the same fetal tissue have the high degree of 

similarity among their putative regulatory elements. Moreover, there are, as expected, 

several examples cases where similar tissue types (e.g., fetal muscle and fetal lung) also 

exhibit substantial similarity.

GUIDELINES FOR UNDERSTANDING RESULTS

The protocols presented in this unit demonstrate how to compare, explore, and interpret 

genomics datasets with the BEDTools suite of command line utilities. Each protocol is 

designed such that the results presented will exactly match those obtained by the reader if 

the instructions are followed precisely. The results of each protocol will either be a 

generated plot that should be identical to the relevant plot in the text or an output file whose 

contents should match the contents presented. If problems arise with individual BEDTools 

commands, an error message should be generated indicating the source of the error. In the 

case of errors in the creating of figures using the R statistical package, the reader will be 

aware that an error has occurred when a plot is not generated that matches the figure in the 

text.
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COMMENTARY

TROUBLESHOOTING

Readers may receive support in the use of BEDTools via an active email mailing list (https://

groups.google.com/forum/#!forum/bedtools-discuss), an extensive documentation site 

(http://bedtools.readthedocs.org/), and the Biostars bioinformatics question and answer 

website (http://www.biostarts.org).
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Figure 1. Examples of genome arithmetic operations
Each tool in the BEDTools suite performs a relatively simple operation on one, a pair, or 

multiple genome interval datasets. The examples presented here reflect genome arithmetic 

operations on two genome interval files (green and blue). For example, if blue intervals 

represent gene annotations and green intervals represent DNA sequence alignments, then the 

result of the intersect tool (gray interval) represents the genomic interval that is shared 

between a single gene annotation and sequence alignment.
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Figure 2. BEDTools scalability
The runtime in seconds (left panel) and memory usage (right panel) are compared when 

using either unsorted genome intervals (dashed red) or genome intervals that have been pre-

sorted in genome order (solid red). As a basis of comparison, the BEDTools performance is 

compared to the BEDOPS toolset, both with (solid gray) and without (dashed gray) 

automatic error checking.
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Figure 3. 
Histogram of genome-wide sequencing coverage for NA19146.
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Figure 4. 
Cumulative distribution of sequencing coverage observed among all exome-targeted bases 

for NA12891.
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Figure 5. Schematic of the BEDTools map tool’s functionality
The map tool summarizes the overlaps observed between two interval files, A and B. The 

result is a summary of all intervals in B that overlapped each interval in A. The summary is 

computed based on operations such as mean or max, which compute the average or 

maximum value for a given column from all of the intersecting B intervals.
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Figure 6. Transcription factor binding occupancy at transcription start sites
Depicted are the consensus binding profiles of the Sp1 transcription factor (red) and a 

reverse cross-linked negative control (gray) as observed among all transcription start sites 

(TSS) in the human genome.
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Figure 7. 
Histogram of the fraction of Dnase I hypersensitivity sites common to the 20 cell types 

compared.
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Figure 8. Schematic of the BEDTools jaccard tool’s functionality
See main text for details.
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Figure 9. 
Heatmap of Jaccard similarities observed for 20 fetal tissue samples based upon Dnase I 

hypersensitivity profiles.
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