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Abstract

Background: Mobile elements (MEs) constitute greater than 50% of the human genome as a result of repeated
insertion events during human genome evolution. Although most of these elements are now fixed in the population,
some MEs, including ALU, L1, SVA and HERV-K elements, are still actively duplicating. Mobile element insertions (MEIs)
have been associated with human genetic disorders, including Crohn’s disease, hemophilia, and various types of cancer,
motivating the need for accurate MEI detection methods. To comprehensively identify and accurately characterize
these variants in whole genome next-generation sequencing (NGS) data, a computationally efficient detection and
genotyping method is required. Current computational tools are unable to call MEI polymorphisms with sufficiently
high sensitivity and specificity, or call individual genotypes with sufficiently high accuracy.

Results: Here we report Tangram, a computationally efficient MEI detection program that integrates read-pair (RP) and
split-read (SR) mapping signals to detect MEI events. By utilizing SR mapping in its primary detection module, a feature
unique to this software, Tangram is able to pinpoint MEI breakpoints with single-nucleotide precision. To understand
the role of MEI events in disease, it is essential to produce accurate individual genotypes in clinical samples. Tangram is
able to determine sample genotypes with very high accuracy. Using simulations and experimental datasets, we
demonstrate that Tangram has superior sensitivity, specificity, breakpoint resolution and genotyping accuracy, when
compared to other, recently developed MEI detection methods.

Conclusions: Tangram serves as the primary MEI detection tool in the 1000 Genomes Project, and is implemented as a
highly portable, memory-efficient, easy-to-use C++ computer program, built under an open-source development
model.
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Background
Structural variations (SVs), like single nucleotide poly-
morphisms (SNPs), are a ubiquitous feature of genomic
sequences and are major contributors to human genetic
diversity and disease [1-3]. With the advent of next-
generation sequencing (NGS) technologies providing
vast throughput for individual resequencing, a number
of new algorithms have been developed for various SV
types, including copy number variations (CNVs) [4-8],
and large deletion events [9]. These algorithms take ad-
vantage of various signals provided by NGS mapping al-
gorithms, primarily read-depth (RD), and read-pair (RP)
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mapping positions. However, the computational identifi-
cation of mobile element insertions (MEIs) with NGS
data is less well established because mobile elements
(MEs) are highly repetitive DNA sequences that are diffi-
cult to align against a reference genome with commonly
used mapping strategies.
The most recent estimates indicate that more than half

of the human genome is comprised of MEs [10]. Based
on their propagation mechanisms, MEs can be divided
into two classes. Class I elements encompass retrotran-
sposons that move within a genome through a two stage
copy process utilzing an RNA intermediate. In contrast,
DNA transposons rely for their mobilization on a ‘cut
and paste’ mechanism and are considered Class II ele-
ments [11-15]. While DNA transposons are thought to
have largely ceased activity in primates about 37 million
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years ago [16], retrotransposons have continued to propa-
gate throughout primate evolution including the lineage
leading to humans [13,17].
Retrotransposons represent the most successful MEs

in primates and are major drivers of genome expansion
in primates. They can be further subdivided based on
the presence/absence of long terminal repeats (LTRs). In
humans, the currently propagating non-LTR elements
include the autonomous long interspersed element 1
(LINE1 or L1), and the non-autonomous Alu and SVA
elements [12,18]. While L1 and Alu elements have been
active throughout primate evolution, SVA elements are
hominid-specific [19]. Endogenous retroviruses (ERVs)
belong to the family of LTR elements and have played a
minor role in recent human evolution. In contrast,
non-LTR elements have continued to propagate in the
human lineage since the divergence from the lineage
leading to chimpanzee. In fact, there is evidence for a
recent increase in non-LTR expansion in the human
lineage compared to chimpanzee [20]. Altogether, ME
mobilization rates varied considerably throughout primate
evolution with episodes of lower and higher expansion
[13,17]. Compared to a peak in Alu and L1 expansion in
anthropoid primates about 35–40 million years ago
[21,22], the current insertion/duplication rate of these
elements is substantially reduced. However, many genetic
disorders, such as Crohn’s disease [23], hemophilia [14]
and some cancers [24,25], have been reported to be associ-
ated with their transposition activities.
To address effective detection of MEI events we devel-

oped an MEI detection pipeline around our SPANNER
SV discovery tool (C Stewart, https://github.com/chip
stewart/Spanner), and deployed it on the Pilot data of
the 1000 Genomes Project [26]. Using this pipeline we
compiled the most comprehensive catalog of MEI events
in the human genome to date [27]. Although an effective
SV detector used extensively in the 1000GP [28],
SPANNER only uses RP signal, limiting the precision of
breakpoint resolution, detection sensitivity, as well as
the genotype accuracy that can be achieved. Also,
although the pipeline that was built around SPANNER
was able to utilize the SR signal, its split alignment algo-
rithm is only compatible with reads collected using the
now defunct 454 sequencing technology. This issue sig-
nificantly restricts its detection capability to new sequen-
cing data.
More recently, three NGS-based MEI detectors, Retro-

Seq [29], TEA [25] and VariationHunter [30], have been
published, each with specific limitations. For example,
TEA and VariationHunter do not report sample geno-
types, limiting their use for single-sample detection pipe-
lines e.g. in personal genome sequencing projects; or
genotype data likelihoods that are essential for phasing
structural variants together with SNPs and short INDELs.
Also, none of these detectors efficiently integrate the SR
and RP signals: VariationHunter detects MEIs using RP
signal alone; RetroSeq and TEA only trigger SR analysis
when RP signal suggests a potential MEI, and therefore
miss events for which only SR evidence is available from
the reads. Because of the steady increase in the read
lengths generated by today’s sequencing technologies,
there is a significant increase in the confidence of align-
ments spanning SV event breakpoints. Therefore, it is rea-
sonable to expect that using both SR and RP signal on an
equal footing, as primary observations for “nucleating” SV
event calls, will lead to more sensitive detection than RP
signal alone, or RP signal in combination with a secondary
SR search. As a more practical point, the TEA and
VariationHunter programs produce reports in non-
standard formats, rather than the well established standard
variant call format (VCF) [31], an issue for data communi-
cation and downstream analysis. Finally, all the above tools
focus on the detection of non-LTR events, such as Alu, L1
and SVA events, and they do not address the detection of
LTR elements in the human genome.

Results and discussion
Here we report a fast and convenient MEI detection
toolbox, Tangram, which effectively integrates signals
generated by both RP and SR mapping. What sets our
approach apart from existing methods is the “global” use
of SR mapping: we perform an SR mapping step for all
orphaned or substantially soft-clipped reads before the
detection begins, and therefore both RP and SR map-
pings are available at the outset, and can nucleate SV
event calls. We target both non-LTR and LTR ME types.
The global use of SR mapping substantially improves the
accuracy of identifying SV event boundaries (break-
points) and our method produces sample genotypes as
well as genotype likelihoods. Unlike other SV detection
tools, Tangram is able to simultaneously process mul-
tiple sequence alignment (BAM) [32] files to call MEI
events on population-scale data, and can deal with
multiple fragment length libraries and a mixture of read
lengths within a single detection step. Tangram is
memory and central-processing-unit (CPU) efficient as
analysis is carried out locally, i.e. event detection in any
given region only requires reading the alignments within
that region. To our knowledge, there are currently no
other detectors that can provide such a comprehensive
set of features required for the full characterization of
MEIs within a single sample, or a large collection of
samples.

Performance evaluation on simulated datasets
We evaluated the detection and genotyping performance
of Tangram with a series of in silico experiments involv-
ing the insertion of 1,000 full-length AluY and 1,000 5′
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truncated L1 elements into the sequence of human
chromosome 20, and generated simulated paired-end
sequencing reads of various lengths with realistic base
error properties (see Methods). After aligning these
reads to the human reference genome sequence using
our MOSAIK read mapping program [33], we used
Tangram to detect MEI events and to generate sample
genotype calls (see Tables 1 and 2). For comparison, we
also ran the RetroSeq program (See Methods for the
command line used to call MEIs) on the same dataset
(aligned with the BWA mapping program, using default
parameters, as instructed by the RetroSeq documenta-
tion), and compared detection sensitivity and genotyping
accuracy for various read lengths and levels of sequence
coverage, considering both heterozygous and homozy-
gous events, i.e. cases where the MEI event is present in
one or both chromosome copies within the cell. TEA
and VariationHunter do not report sample genotypes,
and therefore were not used in the comparisons.
As Table 1 shows for Alu detection, Tangram’s sensi-

tivity exceeds 97% both for heterozygous and homozy-
gous events in 10X sequence coverage or greater. Even
in low-coverage sequence (5X is the approximate aver-
age sequence coverage in the low-coverage 1000GP
datasets), Tangram maintains >80% sensitivity. Tangram’s
sensitivity substantially exceeds that of the RetroSeq pro-
gram, especially when detecting heterozygous events in
low-coverage (5X) data. Tangram also boasts high
specificity, making no false positive calls in any of the
simulated data. This was also the case for RetroSeq.
We also tabulated genotype-calling accuracy, i.e. the

rate at which a given algorithm provides the correct
Table 1 MEI detection sensitivity for Alu elements

Tangram

Ploidy Read length Coverage Sen (RP) Sen (SR)

Het 76 bp 5× 67.6% 60.0%

10× 83.4% 88.9%

20× 84.2% 97.8%

106 bp 5× 45.1% 67.3%

10× 77.0% 93.0%

20× 83.4% 98.9%

Homo 76 bp 5× 83.4% 88.9%

10× 84.2% 97.8%

20× 84.6% 99.1%

106 bp 5× 77.0% 93.0%

10× 83.4% 98.9%

20× 83.8% 99.3%

Results are shown for the Tangram and RetroSeq programs applied to simulated data
20). Simulated reads were generated under different ploidy values (homozygous or he
Columns “Sen (RP)” and “Sen (SR)” indicate the sensitivity of the RP and SR methods re
sensitivity of the RP and SR signal in isolation respectively. “Sen (Union)” indicates the
best result in each row is indicated in boldface text.
genotype for a given simulated sample (i.e. no MEI, het-
erozygous MEI, homozygous MEI). As Table 2 indicates
for Alu detection, Tangram is able to call sample geno-
types with >90% accuracy for all coverage levels and
event ploidy we considered. Accuracy in our simulated
data is nearly perfect for heterozygous events over 10X
coverage, and for homozygous events over 20X coverage.
These accuracy values compare very favorably with those
obtained for RetroSeq, which appears to heavily favor
homozygous calls in low-coverage data, and heterozy-
gous calls in deeper sequence coverage and has a very
high error rate in the non-favored category. The overall
accuracy of the Tangram genotypes, obtained by a judi-
cious weighting of heterozygous and homozygous
events, is high, over 96%, in every category, again, sub-
stantially higher than what was obtained with RetroSeq.
L1 elements in the human genome are usually found

truncated at the 5′ end [34], which further complicates
detection. To assess the sensitivity of our method to
those truncated L1 elements (L1 Homo sapiens, L1HS),
we generated two simulated datasets using the same
strategy as the Alu simulations with 5′ truncated L1 ele-
ments (See Methods); heterozygous 106 bp at 10X and
20X sequence coverage. The length distribution we used
was derived from the L1 detection results in Stewart
et al. 2011. The results are shown in Table 3. For both
datasets, Tangram achieved over 90% sensitivity and geno-
type accuracy, which is substantially better than the per-
formance of RetroSeq. Moreover, from Figure 1A and 1B
we can see that Tangram can effectively detect those
severely truncated L1 events whereas RetroSeq missed
almost all the short L1 elements (<150 bp). Like the Alu
RetroSeq

Sen (RP\SR) Sen (SR\RP) Sen (Union) Sensitivity

25.4% 17.8% 85.4% 43.7%

8.8% 14.3% 97.7% 93.6%

1.2% 14.8% 99.0% 98.9%

13.9% 36.1% 81.2% 12.0%

4.5% 20.5% 97.5% 68.9%

0.4% 15.9% 99.3% 97.7%

8.8% 14.3% 97.7% 95.2%

1.2% 14.8% 99.0% 98.8%

0.4% 14.9% 99.5% 99.2%

4.5% 20.5% 97.5% 68.9%

0.4% 15.9% 99.3% 97.7%

0.4% 15.9% 99.7% 98.9%

(1,000 AluY insertions introduced at random positions on human chromosome
terozygous), read length (76 bp and 106 bp) and read coverage (5X, 10X, 20X).
spectively. The two columns “Sen (RP\SR)” and “Sen (SR\RP)” indicate the
overall sensitivity of Tangram when calling MEI with both RP and SR modules. The



Table 2 Genotype accuracy results of MEI detection using
Tangram and RetroSeq on simulated data for Alus

Tangram RetroSeq

Read
length

Coverage Het Homo Total Het Homo Total

76 bp 5× 99.3% 90.8% 97.6% 2.3% 92.8% 20.4%

10× 100.0% 94.2% 98.8% 40.6% 63.6% 45.2%

20× 100.0% 98.4% 99.7% 96.5% 8.8% 78.9%

106 bp 5× 96.6% 93.4% 96.0% 0.0% 91.6% 18.3%

10× 99.6% 92.6% 98.2% 38.8% 64.4% 43.9%

20× 100.0% 95.6% 99.1% 95.1% 10.8% 19.6%
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simulation dataset, both detectors do not report any false
positive L1 events.
Determining the exact location of SV event boundaries

is notoriously difficult. In the simulation experiments
performed here, Tangram was able to assign MEI break-
points at or near single nucleotide resolution using the
SR signal. For Alu detection with 106 bp reads at 20X
(homozygous), greater than 65% of the reported break-
points co-locate exactly with, and over 99% are within
15 bp of the true breakpoints (see Figure 2A). For L1
detection with 106 bp reads at 20X (heterozygous), more
than 60% of the reported breakpoints co-locate exactly
with, and over 97% are within 15 bp of the true break-
points (see Figure 2B). The inexactness is caused by the
simulated target site duplication (TSD) sequences (See
Methods). This introduces a localization error mode.
Additional, smaller localization errors are caused by
alignment artifacts where similarity exists between the
TSD and the ME sequences themselves. This perform-
ance is attributable to SR-mapped reads identifying the
breakpoints at a resolution that RP-only methods are
unable to match. See Methods for detailed information
about breakpoint calculation.

Performance comparisons using 1000 genomes project
data
We ran Tangram and two other MEI detection algo-
rithms, RetroSeq and TEA, to analyze deep-coverage
sequencing data from a CEU trio consisting of samples
NA12878 (89X), NA12891 (78X) and NA12892 (78X),
Table 3 MEI detection sensitivity and genotype accuracy
for L1 elements

Tangram Retroseq

Sen Genotype Sen Genotype

Het_106bp_10X 90.9% 92.2% 71.5% 27.0%

Het_106bp_20X 92.4% 97.7% 85.3% 90.6%

Results are shown for the Tangram and RetroSeq programs applied to
simulated data (1,000 L1 insertions randomly truncated at the 5′ end at
random positions in human chromosome 20). “Sen” indicates sensitivity and
“Genotype” indicates the genotype accuracy. The best result in each row is
indicated in boldface text.
obtained from the public 1000GP ftp site (the DNA for
1000GP sequencing analysis is sampled from blood
cells). The data consists of 101 bp paired-end reads gen-
erated by Illumina HiSeq sequencing machines; the in-
sert size was 465 ± 50 bp (median ± standard deviation).
We mapped the reads with MOSAIK 2.0 for Tangram
and BWA for RetroSeq and TEA, according to author
instructions. To assess sensitivity and genotype accuracy,
we compared the MEI loci (Alu and L1) reported by the
three detectors to the events reported and experimen-
tally characterized in a previous large-scale study using
an earlier set of 1000GP data [27] for the same samples
(characteristics of this dataset from the 1000GP Pilot 2
trio data are reported in Table 4). The Stewart et al. call
set consisted of 1,208 Alu and 180 L1 calls, including
486 Alu and 48 L1 insertions that were experimentally
confirmed with a polymerase-chain-reaction-based (PCR-
based) validation techniques. As shown in Table 5,
Tangram recovered >98% of PCR validated events and >93%
of all reported events. RetroSeq provided comparable re-
sults, but TEA was unable to achieve this level of sensitiv-
ity to Alu events. Tangram’s genotype accuracy for Alu
events was >91% for all three samples. Tangram detected
approximately 87% of PCR validated L1 insertion events,
outperforming the two competing algorithms. Tangram’s
sensitivity to L1 events reported in the Stewart et al. data
set drops markedly in comparison to the PCR-validated
events. This is likely the result of the high false discovery
rate (FDR) for L1 events (18.8%) in the Stewart et. al. data
set. Notably, our algorithms called none of the events
reported in the Stewart et al. dataset that failed PCR
validation. It is noteworthy that sample NA12878 had the
highest number of MEI calls using either of the calling
methods. This is likely the result of the substantially
higher read coverage in this sample, as well as longer reads
from 454 sequencing machines, not available for the other
two samples in the analysis of Stewart et al. 2011 (Table 4).
Our experiments here demonstrate that Tangram pro-

vides accurate MEI genotypes across all MEI types (see
Table 6). The TEA program does not provide sample geno-
types, and therefore was not included in this comparison.
RetroSeq appears to suffer from a systematic bias when
applied to deep-coverage data; it called almost all MEI loci
as heterozygous. In comparison, Tangram can effectively
distinguish between homozygous and heterozygous loci.

Running Tangram on population data
We deployed Tangram on 218 samples from the 1000GP
Phase 1 release [35]. Three populations were included in
this dataset: African ancestry in Southwest USA (ASW,
50 individuals), Luhya in Webuye, Kenya (LWK 83 indi-
viduals) and Yoruba in Ibadan, Nigeria (YRI, 85 individ-
uals). On average, each sample had 5X sequence coverage
so the overall coverage of this dataset is ~1,000X. The
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Figure 1 L1 length distributions of missed events. A and B show the length distributions of L1 events that are not detected by Tangram and
RetroSeq, respectively. The red line is the L1 length distribution of the 1,000 L1 elements introduced in the simulated data. The blue line
represents the missed events in 10X data and the green line represents the missed events in 20X data. Tangram (A) detected almost all the
severely truncated events whereas RetroSeq (B) is not sensitive enough to those short L1 elements.
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allele frequency spectrum (AFS) of all MEIs for each of
the three populations (4,085 Alu, 1,548 L1, 88 SVA and 44
HERV-K insertions) and AFS of SNP calls generated by
Sanger Institute with QCall [36] and GATK [37] on the
same sequencing dataset (chromosome 20 only) are
shown in Figure 3. The expectation is that the AFS of
MEIs is similar to the AFS observed for SNP data [27].
This is indeed the case (Figure 3A), except at low allele
frequency, where detection sensitivity drops off in the
low-coverage 1000GP datasets (as there may be too few
RP and/or SR mapped reads supporting an MEI event).
Additionally, we calculated the allele frequency spectrum
for each ME type. Figure 3B shows the AFS of four ME
types, Alu, L1, SVA and HERV-K, across all three popula-
tions. Similarly, we can see from the figure that Tangram
loses some sensitivity on low allele-frequency events.

Experimental validation
To assess the specificity of Tangram, we performed PCR
validation on 23 1000GP Phase 1 [35] samples (Table 7),
A

Figure 2 Breakpoint resolution for A (AluY) and B (L1). The difference
shown for the Tangram and the RetroSeq MEI detection algorithms (homo
AluY simulation and heterozygous events in 106 bp paired end reads, 20X
reported by Tangram exactly match the true breakpoint.
including a CEU trio (NA12878, NA12891 and NA12892)
with deep coverage (~50X) and 20 low-coverage (~5X)
samples from the CHS and LWK populations (the DNA
for the PCR validation experiment was sampled from the
corresponding cell line). Tangram detected 2,874 Alu,
256 L1, 53 SVA and 22 HERV-K insertions in these sam-
ples. Of the 3,205 loci, 357 were novel, i.e. not reported in
previous studies [27,38-44], and absent from the dbRIP
database [45]. Two random subsets, 160 sites in all, were
randomly selected for PCR validation: (1) 80 loci (66
known + 14 novel) were randomly selected from the entire
call set of 3,205 MEIs; and (2) additional 80 loci were ran-
domly selected only from the 357 novel calls. PCR valid-
ation results for Tangram and VariationHunter are shown
in Table 8 and Table 9. Tangram achieved very low FDR
for all three non-LTR MEI types (<6%). Although the
numbers are low, no false positive L1 and SVA calls were
reported. The overall estimated FDR for the first and
second validation sets were 2.53% and 9.21%, respectively.
This result is consistent with expectations that newly
B

between reported and true breakpoint position in simulated data is
zygous events in 106 bp paired-end reads, 20X sequence coverage for
sequence coverage for L1 simulation). The majority of breakpoints



Table 4 Sequence coverage for two sequencing
technologies of CEU trio used in 1000GP Pilot MEI paper

ID 454 Illumina

NA12878 11.0X 15.9X

NA12891 0.0X 14.9X

NA12892 0.0X 9.2X
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detected, previously unknown events have higher FDR. In
Table 9, we compared experimental validation results for
three algorithms: Tangram, RetroSeq, and VariationHun-
ter, for event types detected by each calling algorithm.
Tangram achieves substantially higher specificity than the
two competing algorithms. In fact, this level of accuracy is
close to the FDR of SNP calls from current state-of-the-
art variant callers [35].

Resource requirements and software availability
The primary motivation behind developing Tangram was
to provide highly accurate MEI calls. To be a useful
software tool, however, it must be easy to install, easy to
run, and able to generate results in a timely fashion, using
reasonable computational resources. We characterize re-
source usage and analysis time on our analysis of the 218
1000GP low-coverage samples (the average coverage is
about 5X) [35]. When using other MEI detection software
programs, it is a common requirement that only a single
BAM file can be processed at a time, necessitating all
input BAM files to be merged into a single file (a lengthy
task), or to process each BAM file individually (reducing
sensitivity to low-frequency events). Tangram, in contrast,
can process all input BAM files simultaneously. Most cur-
rently available structural variant callers employ multiple
passes through the entire input file, requiring substantial
memory and computation time. To reduce the memory
footprint and increase the throughput, Tangram was
designed to call MEI events regionally, i.e. within shorter
windows of the sequence alignment. Single-pass analysis is
Table 5 Sensitivity and genotype accuracy in deep coverage

Stewart et al. 2011 Tangram

Sample MEI loci Sensitivity Genotype

Validated Reported Validated Reported

Alu NA12878 408 965 98.8% 93.0% 95.0%

NA12891 309 675 98.1% 96.3% 91.2%

NA12892 312 650 98.1% 96.9% 92.6%

L1 NA12878 38 157 86.8% 52.2% 87.5%

NA12891 26 64 92.3% 75.0% 100.0%

NA12892 34 76 94.1% 76.3% 85.7%

Comparisons are shown for a CEU trio (NA12878, NA12891 and NA12892) processe
measured by comparing the reported events with those in Stewart et al., 2011. The
et al. 2011” column. The two sub columns under each detector, “Validated” and “Re
Stewart et al. 2011, respectively. The TEA program does not provide genotype calls
result in each row is indicated in boldface text.
made possible by annotation tags produced by our
MOSAIK read mapper software, marking reads whose
fragment-end paired mate maps into ME reference
sequence. Additional parallelization was accomplished by
multi-threaded implementation of the software. In this
test, we submitted one Tangram detection job for each
chromosome (chromosome 1 - chromosome X). Each job
used one AMD Opteron 6134 CPU (8 cores at 2.3 GHz).
The detection process finished within 58 hours (wall time)
or 96 hours (CPU time). Tangram is designed to run on
any specified genomic region, e.g. chr1:10,000-20,000, to
facilitate parallelization when a computer cluster is avail-
able for running the analysis. For example, when we re-
peated the detection process in 1Mbp detection windows
running in parallel on our cluster, the total compute only
took 0.24 hours (wall time) or 0.40 hours (CPU time).
As inherent to its algorithmic design, Tangram

requires mappings to ME reference sequences, as well as
BAM alignment file tags that are currently only provided
by our own MOSAIK mapper. As discussed below, we
are developing and testing a program to “retrofit” align-
ments created with other read mapping programs such
as BWA or BOWTIE [46], to provide similar information
as part of an alignment post-processing step, to enable
efficient MEI detection using the primary mappings. But
for now, before we are able to release this post-processor,
we recommend remapping with MOSAIK. MOSAIK is a
fast read mapper, able to map over 80 read pairs (100 bp
Illumina) per second [33].
Tangram is easy to install and run. Users can down-

load it from its main github repository (https://github.
com/jiantao/Tangram). We have also integrated it into
our pipeline and tool launcher system, GKNO, available
at http://gkno.me.

Conclusions
MEI events can have a strong impact on gene function
and therefore accurate detection and genotyping is
sequencing data from the 1000 Genomes Project

RetroSeq TEA

Sensitivity Genotype Sensitivity Genotype

Validated Reported Validated Reported

94.1% 87.7% 76.4% 89.5% 82.2% N/A

98.4% 96.4% 67.9% 96.1% 93.8% N/A

99.0% 97.4% 71.2% 94.2% 92.5% N/A

78.9% 45.8% 83.3% 84.2% 49.7% N/A

76.9% 64.1% 66.7% 84.6% 70.3% N/A

79.4% 65.8% 50.0% 76.5% 64.5% N/A

d with Tangram, RetroSeq and TEA. Sensitivity and genotype accuracy was
total number of validated and reported MEI loci are shown under the “Stewart
ported”, show the sensitivity to PCR validated loci and all reported loci in
, and therefore could not be used for genotype accuracy comparisons. The best
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Table 6 Genotype accuracy

Tangram RetroSeq

Genotype from
validation

Genotype call Genotype call

Het Homo Het Homo

Alu NA12878 Het 120 8 119 0

Homo 1 26 37 1

NA12891 Het 95 13 93 0

Homo 0 40 44 0

NA12892 Het 106 11 104 0

Homo 0 32 42 0

L1 NA12878 Het 5 1 4 0

Homo 0 2 1 1

NA12891 Het 4 0 2 0

Homo 0 2 1 0

NA12892 Het 3 1 3 0

Homo 0 3 3 0

A contingency table is shown for MEI genotypes reported by Tangram and
RetroSeq on deep coverage sequencing data from a CEU trio (NA12878,
NA12891 and NA12892). The “Genotype from validation” column shows the
genotype that was validated in Stewart et al. 2011. The “Genotype call”
column shows the genotype predicted by Tangram and RetroSeq at the same
loci. The “Genotype” column in Table 5 was calculated based on the results in
this table.
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essential within individuals. MEs are, by nature, repeti-
tive sequences and are therefore difficult to detect. To
our knowledge, our Tangram software is the only robust
software tool capable of detecting all classes of MEIs,
providing accurate individual genotype information, and
facilitating near base-perfect breakpoint localization. We
showed that Tangram could achieve higher sensitivity,
specificity, genotyping accuracy, and breakpoint accuracy
than competing MEI detection methods because of the
A 
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Figure 3 Allele frequency spectrum of African populations. The numb
number of loci. A. Allele frequency spectrum for MEI and SNP (provided by
detected in 3 African populations. Results for samples designated as ASW,
Overall, the AFS of MEIs is very similar to that of SNPs except that there is l
sparse or absent supporting reads in low-coverage data. B. Allele frequency
detected with the Tangram toolbox.
global use of SR mapping information into the detection
process. Competing algorithms either only use RP map-
ping information to call events, or perform SR mapping
in regions where RP mappings indicate a possible MEI
event. In contrast, Tangram analyzes both RP and SR
mapped reads from the start, and can therefore detect
events for which only SR mapping evidence exists.
Table 1 illustrates detection sensitivity when RP or SR

signal is used in isolation, or in combination with each
other. At almost all read lengths and coverage values,
the SR method on its own is more sensitive than the RP
method (except for low, 5X coverage in 76 bp reads).
Importantly, RP detection sensitivity does not exceed
85%, even in deep-coverage data. This is because RP-
mapped reads localize the MEI point to a window. If the
reference sequence already contains an ME within this
window, one must filter out the candidate event because
of the high likelihood of spurious detection. SR mapping
localizes the insertion site with much greater resolution,
making it possible to distinguish between MEs in the
reference, and polymorphic insertions not present in the
reference.
Table 1 also illustrates that RP-based methods imple-

menting a secondary SR-mapping step can perform very
well in deep-sequencing data because such high-
coverage datasets likely contain RPs that map across the
breakpoints and additional reads that can be SR-mapped
across the breakpoint for fine localization. In low-coverage
data however, there are many events without RPs mapping
across the breakpoints. When using shorter reads, reliable
SR mapping becomes difficult. In both cases, sensitivity
suffers. Recent technological developments are continu-
ously increasing the length of sequenced reads. Conse-
quently, the same sequence coverage is accomplished with
B 

er of loci for a given allele frequency is normalized with the total
Sanger Institute with QCall and GATK, chromosome 20 only) variants

LWK and YRI are shown, for 4 types of MEIs: Alu, L1, SVA and HERV-K.
imited sensitivity to low frequency events for MEI detection due to
spectrum for four different types of MEs, Alu, L1, SVA and HERV-K



Table 7 Sequencing information of CEU trio and 20
1000GP phase I samples used for PCR validation

Sample Population Platform Coverage Read length

NA19397 LWK ILLUMINA 5.9X 101 bp

NA19398 LWK ILLUMINA 5.6X 101 bp

NA19399 LWK ILLUMINA 5.5X 101 bp

NA19404 LWK ILLUMINA 5.8X 101 bp

NA19428 LWK ILLUMINA 6.2X 101 bp

NA19429 LWK ILLUMINA 6.6X 108 bp

NA19434 LWK ILLUMINA 5.6X 108 bp

NA19435 LWK ILLUMINA 5.9X 108 bp

NA19440 LWK ILLUMINA 16.9X 108 bp

NA19443 LWK ILLUMINA 12.4X 108 bp

HG00662 CHS ILLUMINAHiSEQ 5.2X 91 bp

HG00663 CHS ILLUMINAHiSEQ 5.7X 91 bp

HG00671 CHS ILLUMINAHiSEQ 5.9X 91 bp

HG00672 CHS ILLUMINAHiSEQ 5.6X 91 bp

HG00683 CHS ILLUMINAHiSEQ 5.4X 91 bp

HG00684 CHS ILLUMINAHiSEQ 5.8X 91 bp

HG00689 CHS ILLUMINAHiSEQ 5.4X 91 bp

HG00690 CHS ILLUMINAHiSEQ 5.8X 91 bp

HG00464 CHS ILLUMINAHiSEQ 1.3X 91 bp

HG00614 CHS ILLUMINAHiSEQ 4.6X 91 bp

NA12878 CEU Multiple 65.3X 47 bp ± 15 bp

NA12892 CEU Multiple 47.3X 46 bp ± 10 bp

NA12891 CEU Multiple 43.0X 45 bp ± 12 bp

The sequencing data for CEU trio is a mixture of multiple libraries with
different read length so in the “Read length” column for these three samples
shows mean ± standard deviation.
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fewer, but longer, reads. Moving forward, this trend clearly
favors the SR mapping method, and in particular, methods
that use SR mapping as part of their primary detection ap-
proach. As we demonstrated in this study, such methods
are more sensitive and specific, have higher genotype
accuracy, and are able to localize event boundaries more
accurately. Admittedly, our sensitivity estimates are likely
too high, because our method is not designed to detect
MEIs that are embedded inside other MEs in the genome.
However, these estimates are perfectly valid for comparing
the performance of Tangram to that of competing tools. A
Table 8 PCR validation results for the Tangram MEI detector

ALU L1 S

Random Novel Random Novel R

Analyzed by PCR 68 64 7 3 3

Validated Loci 66 58 7 3 3

Invalidated Loci 2 6 0 0 0

FDR 2.94% 9.38% 0.00% 0.00% 0

Validation results and estimated false discovery rates are shown for MEI calls from 2
clear limitation of our method is that it only detects MEIs
for which a ME reference sequence is provided in the
mapping step. The detection of “novel” insertions is a
much bigger, and as of today a largely unsolved problem.
Our main focus in this study was on Alu insertions,

and the balance of simulated datasets we used to charac-
terized our method reflects this. Biologically, Alus are
the most abundant MEIs in the human genome. Meth-
odologically, the majority of competing approaches also
focus on Alu (and in some cases, ONLY on Alus). How-
ever, Tangram is also able to effectively detect L1 inser-
tions, as demonstrated both with simulations and with
the analysis of real datasets.
As mentioned earlier, currently Tangram can only run

on alignment data generated by the MOSAIK aligner,
but not by other widely used sequencing aligners such as
BWA, because only MOSAIK currently provides the
mapping information vital for MEI detection with our
method. We realize that it would be desirable to run
Tangram on e.g. BWA alignments, and have written a
program, “tangram-bam” currently in testing, that is able
to add to the primary BAM file the appropriate mapping
information, at the cost of very light additional compu-
tation. With this modification Tangram will not only be
compatible with MOSAIK and BWA but also with other
primary read mapping programs.

Methods
The Tangram detector - algorithmic overview
As input, Tangram uses reads aligned to the genome
reference sequence as well as to ME reference sequences
obtained from RepBase [47], available in a customized
BAM format alignment file(s) that contains MEI detec-
tion information within an optional field, the ZA tag, to
indicate that a read’s mate (in the case of fragment-end
read pairs) maps to one of the ME reference sequences.
Currently, these special alignments to ME reference
sequences can be produced by the MOSAIK mapping
software during its primary aligning process (a specific
command line argument has to be given to MOSAIK)
[33] (version 2.0 or above). Tangram’s RP detection mod-
ule first scans the alignment for read pairs where one mate
uniquely aligns to the genome reference, and the other
mate maps to a ME reference sequence. Secondly, read
VA HERV-K Total

andom Novel Random Novel Random Novel

6 1 3 80 78

6 1 2 77 69

0 0 1 2 7

.00% 0.00% 0.00% 33.33% 2.53% 9.21%

3 1000 Genomes Project Phase 1 samples.



Table 9 Comparison of PCR validation results across three MEI detection algorithms

Tangram RetroSeq VariationHunter

Random Novel Combined Random Novel Combined Random Novel Combined

Analyzed by PCR 80 78 158 80 80 159 83 51 134

Validated Loci 77 69 142 73 58 131 69 29 98

Invalidated Loci 2 7 9 7 21 28 14 22 36

FDR 2.53% 9.21% 5.96% 8.75% 26.58% 17.61% 16.87% 43.14% 26.86%

Calls were made in 23 1000 Genomes Project Phase 1 samples by Tangram, RetroSeq and VariationHunter.
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pairs where one mate is aligned to the genome reference
uniquely (i.e. with high read mapping quality value, or
MQ) and the other mate is either soft-clipped or un-
aligned, are collected as the starting material for SR map-
ping. The integrated SR sub-module in Tangram attempts
to align these soft-clipped or unaligned mates both to the
genome reference and to the ME reference sequences
using the split read algorithm (i.e. aligning one section of
the read to the reference genome and another section to
the ME reference). Loci in the genome with either RP or
SR evidence for a candidate MEI event are then extracted.
An illustration of these two methods is shown in Figure 4.
Candidate events are filtered on the number and type of
supporting fragments. A genotyping module produces in-
dividual genotype likelihoods and calls sample genotypes.
A reporting module produces a VCF format variant report
Figure 4 Illustration of RP and SR detection methods. The top panel d
box represents a sample genome with an MEI. Each pair of red arrows repr
those repairs that one mate aligned uniquely to the genome the other ma
mates (green dashed boxes) we can estimate the insertion location. The ty
breakpoint confidence interval is given by the distance between two uniqu
method, the bottom panel, we collect those read pairs that one mate is un
or soft-clipped. The unaligned or soft-clipped read will be split into two se
genome reference and the other segment will be aligned to the ME refere
location of the first segment.
including the location and type of the events, as well as in-
dividual sample genotype information. All three modules,
RP, SR and genotyping are integrated in a single piece of
software so there is no intermediate steps or output for
detection.

Sequence alignment to genome and mobile element
reference sequences
Alignments were created with the MOSAIK program, a
hash-based read mapper that is aware of user-specified
insertion sequences, e.g. MEIs. When the insertion
sequences are provided, the reference hashes are priori-
tized such that alignment to the MEI sequences are
attempted prior to alignment to the genome reference.
Since MEIs are repetitive elements, a read from an MEI
can be mapped to several locations within the genome
emonstrates our RP MEI detection method. The blue line with orange
esent a read pair aligned to this genome. For RP method, we collect
te aligned into the inserted ME. By clustering those uniquely aligned
pe of inserted element is provided by MOSAIK aligner (ZA tags). The
ely aligned mates that are closest to the real breakpoint. For SR
iquely aligned to the genome and the other mate is either unaligned
gments: one of them will be aligned back to the normal human
nce (blue box). The breakpoint can be determined by the alignment
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(potentially hundreds of locations). While MOSAIK align-
ing sequencing reads, an additional field inside the BAM
file, the ZA tag, is then populated with information about
the read mate, including MEI information, location, map-
ping quality and number of mapping locations for the
mate. This information ensures that BAM search opera-
tions (which can be lengthy for large alignment files) can
be avoided.

MEI detection based on read-pair (RP) mapping positions
Tangram first establishes the fragment length distribu-
tion for each library in the input BAM files using ‘nor-
mal’ read pairs (i.e. those read pairs where both mates
are uniquely aligned to the same chromosome with
expected orientation). Tangram then searches the BAM
files for MEI-candidate read pairs that have one mate
uniquely aligned to the reference genome and the other
aligned to a ME reference. Such read pairs must also sat-
isfy one of the following three requirements: 1) they do
not have the expected orientation; 2) they are not aligned
to the same chromosome (not including the MEI refer-
ences), or 3) the fragment length is not consistent with the
fragment length distribution (p-value ≤ 0.005). For each
type of ME (Alu, L1, SVA and HERV-K), Tangram clusters
the uniquely aligned mates of these candidate read pairs
with a customized nearest-neighbor algorithm [48,49] ac-
cording to their fragment center position (aligned position
of the uniquely aligned mate plus one half of the median
of the fragment length distribution). During this process
read pairs cluster with other read pairs within a range de-
termined by the fragment length distribution. This algo-
rithm can handle candidate read pairs from different
libraries and samples effectively, which can significantly
improve the sensitivity for multiple low-coverage samples.
Also, the complexity of this algorithm is linear in the
number of candidate read pairs, making it suitable for
large-scale sequencing data. Read pairs that span into MEs
from the 5′ end will be clustered separately from those
spanning in from the 3′ end. Tangram identifies an MEI
event if a pair of clusters in the MEI neighborhood range
span into the insertion from both the 5′ and 3′ ends. The
true breakpoint should locate somewhere between the
end of the 5′ cluster or the beginning of the 3′ cluster
(Figure 4). Tangram reports the estimated breakpoint fol-
lowing a leftmost convention (smallest genomic coordin-
ate of the two positions).

MEI detection based on split-read (SR) mapping positions
The Scissors (https://github.com/wanpinglee/scissors) split-
read mapping package was integrated into our MEI de-
tector as a library providing an application programming
interface (API) to its functions. When mapping reads that
span ME insertions, SCISSORS uses a sensitive and fast al-
gorithm, single instruction multiple data Smith-Waterman
(SIMD SW or SSW, https://github.com/mengyao/Complete-
Striped-Smith-Waterman-Library), with match, mismatch,
gap opening, and gap extending scores of 1, −3, −5, and −2
respectively, to obtain partial alignments against the ref-
erence genome (see the left partial alignment shown in
the bottom panel of Figure 4). Then, SCISSORS attempts
to map the read to known insertions. SCISSORS hashes
and stores the known insertions in a hash table. For each
read, SCISSORS uses these hashes to generate candidate
alignments and finally applies the SSW to these candi-
dates to obtain the second partial alignment against these
insertion sequences (see the right partial alignment to the
ME reference shown in the bottom panel of Figure 4).
The sequences may be inserted on the reverse strand so
SCISSORS also checks the reverse complement of the
inserted sequences. Since the exact breakpoint in a read
has not been determined before aligning, the entire read
is necessary for aligning against either the local Smith-
Waterman (SW) region or inserted sequences. The entire
unmapped read is taken for mapping to the Smith-
Waterman (SW) region. The read is also taken for map-
ping to inserted sequences. Hence, the tails of each
partial alignment generated by SSW often contain mis-
matches with respect to the reference or inserted se-
quence. This is often seen at the SV breakpoints.
SCISSORS attempts to clean up these regions by solving
a maximum subarray problem (Figure 5). This problem
was first proposed by Ulf Grenander in 1977. First, an
alignment is converted into a one-dimensional array of
numbers using the following scheme. Each base in the
alignment is assigned the value +1 if the base matches the
reference or −5 otherwise (mismatches and gaps). Then,
Kadane’s algorithm [50] is used to determine the subarray
with the largest sum in time complexity O(n). The result-
ant subarray indicates the best portion of the alignment
that maps to the reference or the inserted sequence. This
algorithm permits the use of a more lenient Smith-
Waterman score, since eventually the junk portion of
alignments (with respect to the reference genome or
inserted sequences) will be trimmed off. Using a lenient
Smith-Waterman score and this clean-up approach results
in longer pairwise alignments (including longer gaps).

Candidate MEI event filtering and post-processing
The MEI candidates are first filtered using the number
of supporting fragments. An MEI candidate with at least
two RP supporting fragments from both 5′ and 3′ or at
least two SR supporting fragments were retained. Candi-
dates that were supported by RP signal alone undergo
additional filtering. If the candidate MEI falls within a
predefined distance of a locus of the reference genome
annotated by RepeatMasker [51] downloaded from
UCSC Table Browser [52] they are removed from the
candidate list. The distance used is the approximate

https://github.com/wanpinglee/scissors
https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library
https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library


Figure 5 Algorithm of finding maximum subarray that is used in SCISSORS.
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maximum expected fragment length (p-value ≈ 0.005) in
the clusters of supporting RP fragments. For Alu and
HERV-K events, the candidate call is only filtered out if
the MEI in RepeatMasker is also an Alu or HERV-K event.
L1 and SVA elements are filtered out if they also co-locate
with their corresponding referenced ME or Alu events in
RepeatMasker. For MEI events supported by SR signal, no
further filtering steps are applied. All remaining MEI
candidates are reported in the final VCF file. These
filtering steps can be performed using the PERL program
(tangram_filter.pl) that is included in the toolbox.

Sample genotype calling and genotype likelihood
calculation
Tangram uses a Bayesian framework to predict the
genotype of MEI events [27]. We calculate the posterior
probability of a given sample MEI genotype g (i.e. mono-
morphic: REF/REF; heterozygous MEI: REF/MEI: or
homozygous MEI: MEI/MEI) as follows:

P gjDð Þ ¼ P gð ÞP Djgð ÞX
g 0
P gð ÞP D g 0Þjð

where D is the observed read evidence at the site; and P(g)
is the prior probability of the genotype. By default, Tan-
gram sets a flat prior probability (1/3) for all three possible
genotypes. The data likelihood, P(D|g), is calculated as a
binomial probability with the following parameters:

P Djgð Þ ¼ pbin Nalt;Nalt þ Nref ;pg
� �

where pg is the expected ratio of MEI alleles to the total
number of fragments (0 for homozygous reference, 0.5
for heterozygous MEI and 1 for homozygous MEI); Nref

and Nalt are the numbers of read-pair fragments that
support reference and MEI (alternate) alleles, respect-
ively. Reference and MEI alleles are defined as follows:
any uniquely mapped read pairs spanning the predicted
breakpoint with a consistent insert size and orientation
will be counted as a fragment supporting the reference
allele. Fragments supporting an alternate allele (inser-
tion) are those inconsistent with the conditions for a
reference allele collected during the detection step (both
RP and SR signal). The meaning of the data likelihood is
the binominal probability that Nref +Nalt will fluctuate to
Nalt, given the expected pg.
The genotype reported by Tangram is that with the

highest posterior probability and the output VCF file is
populated with the corresponding data likelihoods.

Simulation data generation
We evaluated the detection and genotyping performance
of Tangram with a series of experiments using simulated
data based on hg19 (human genome reference) chromo-
some 20. One thousand full-length AluY elements with a
15 bp poly-A tail and a 15 bp target-site duplication (TSD)
sequence were randomly introduced into chromosome 20.
No elements were allowed to insert within a 100 bp
window of the reference MEs or other simulated elements.
Simulated Illumina paired-end reads were generated for
both heterozygous and homozygous insertions, with two
different read lengths (76 bp and 106 bp) and three differ-
ent coverages (5X, 10X and 20X) using the MASON read
simulator [53] with the default error model. This led to 12
different sets of simulated data. L1 elements (L1 Homo
sapiens, L1HS) were simulated with a similar strategy but
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only for heterozygous insertions using 106 bp reads at
10X and 20X coverage. One extra step in the L1 simula-
tion was that simulated L1 elements were randomly trun-
cated at 5′. The length distribution used for L1 truncation
is derived from the L1 detection results in Stewart et al.
2011 (Figure 1A and 1B). All of the simulated reads had a
500 bp ± 100 bp (median ± standard deviation) insert size.
MOSAIK 2.0 with default parameters was used to align
these simulated reads against a customized human refer-
ence that combined hg19 and 23 ME sequences (4 Alu,
17 L1, 1 SVA and 1 HERV) downloaded from RepBase
[47]. The output BAM files from MOSAIK were sorted by
genomic coordinates using Bamtools [54]. The final BAM
files served as the input to Tangram for MEI discovery
and genotyping. RetroSeq calls were based on BWA [55]
alignments with default parameters as suggested in the
RetroSeq publication.

Calculation of breakpoints in simulated data
Since the output format of Tangram is VCF, the reported
breakpoints are in a 1-based system. The real breakpoint
is determined as the last nucleotide before the inserted
sequence. For events detected only by the RP signal, the
confidence interval (left and right boundaries) around
each breakpoint is calculated and reported in the final
VCF in addition to the event location. For events with
SR supporting fragments, we only report the breakpoint
locations based on the left most convention because of
the high resolution of the SR method.

Genotype weighting for genotype accuracy estimation in
simulated data for Alu
To estimate the genotype accuracy for each parameter
set (read length and coverage) from the simulated data,
we randomly chose 500 true positive MEI events re-
ported by both Tangram and RetroSeq (Table 1). Of
these, 400 were selected from the heterozygous simula-
tion dataset, and 100 from the homozygous simulation
dataset (the 4:1 ratio was based on experimentally
validated genotypes from our earlier study, Stewart et al.
2011). The genotype accuracy was then calculated for
these loci by comparing the designated genotype with
the predicted genotype from the MEI detectors. The
random selection and genotype accuracy experiment
was then repeated five times (to give a sample of 2,500
MEI loci) and the overall genotype accuracy was deter-
mined by averaging the results of the five experiments
(Table 2). Since for L1 simulation we only generated
heterozygous datasets, there is no weighting step for
genotype accuracy assessment.

Identification of events across MEI callsets
In estimating the sensitivity of the call sets from Tangram,
RetroSeq and TEA from the deep sequencing CEU trio
data, an MEI event is deemed to match the locus in
Stewart et al. 2011, if the two events are within 500 bp of
each other. This criteria is a result of the large breakpoint
uncertainty in Stewart et al. 2011. Also it is the 1000GP
standard for validation experiments. We used the same
window for consistency between comparisons to validation
results and reference results from Stewart et al. 2011.

Command line used for calling MEI with RetroSeq
We used following command lines to call MEIs on
simulation dataset with RetroSeq:

$ retroseq:pl −discover −bam < bam file > −eref
< mei type tab file > −refTEs
< mei coordinate tab file > −output
< output file >

$ retroseq:pl −call −bam < bam file > −input
< discover result file > −ref
< ref fasta file > −hets −region < chr >
−filter < mei coordinate tab file >
−output < output vcf file >

Software availability
The source code and documentation are available at
https://github.com/jiantao/Tangram. Tangram is also avail-
able as part of our pipeline and tool launcher system,
GKNO, which is available at https://github.com/gkno.

PCR validation
Two sets of 80 loci each were selected for PCR valida-
tions from the whole dataset (detected with 23 1000GP
phase 1 samples) of candidate loci containing Alu, L1,
SVA, and LTR elements. The first set contained loci
from the whole dataset while the second set included
only loci identified as novel based on previous studies
[27,38-44] and the dbRIP database [45]. Due to the nature
of paired-end reads and low coverage data, breakpoint
coordinates for MEIs were commonly not available. Thus,
an insertion range was provided for each locus within
which the MEI was predicted. For primer design, 600 bp
of flanking sequence were added upstream and down-
stream of the insertion coordinates. The sequence was
extracted from the human reference genome (hg19) using
Galaxy [56-58].
Alu elements were masked using RepeatMasker [51].

After adding a safety margin of 50 nucleotides up- and
downstream of the insertion coordinates, primers were
selected using BatchPrimer3 v2.0 [59]. The uniqueness
of each primer was determined using BLAT [60]. An in
silico PCR was performed for each locus when at least
one primer had more than one match. If several matches
were identified or the in silico PCR provided evidence
for more than one PCR product primers were manually
redesigned. In these cases the repeat content of the
flanking sequence was determined using RepeatMasker.

https://github.com/jiantao/Tangram
https://github.com/gkno
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Moreover, the flanking sequence was ‘Blatted’ against the
human reference genome (hg19) to determine if the
flanking sequence matched to highly homologous loci.
In cases with high sequence homology, the other ortho-
logous sequences were retrieved using the UCSC gen-
ome browser [52]. Following a multiple alignment of the
candidate locus with the other orthologous loci using
BioEdit [61] primer design was attempted in regions
with sequence divergence between the different loci. All
manually designed primers were tested with Primer3
[62]. For loci with ambiguous PCR results, no amplifica-
tion, or amplification of only the empty insertions site, a
second primer pair was designed using the same primer
design criteria described above.
Due to the size and high GC content of SVA elements,

we used previously designed internal PCR primers [27].
The internal primers were designed within the 3′ end of
the SVA sequence matching the consensus sequences of
the youngest SVA subfamily (SVA_F), which is human-
specific. All PCR primers were ordered from Sigma
Aldrich, Inc. (St. Louis, MO). The PCR primer sequences
used in this validation study are available at https://bio
sci-batzerlab.biology.lsu.edu/supplementary_data/BC_
Tangram_MEI_ValidationPCRprimers.xlsx.
Availability of supporting data
All sequencing data from 1000 Genomes Project are avail-
able at the following ftp sites:
1) EBI FTP: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/.
2) NCBI FTP: ftp://ftp-trace.ncbi.nih.gov/1000genomes/

ftp/.
The PCR primer sequences used in the validation

experiment is available at:
https://biosci-batzerlab.biology.lsu.edu/supplementary_

data/BC_Tangram_MEI_ValidationPCRprimers.xlsx.

Abbreviations
MEI: Mobile element insertion; RP: Read pair; SR: Split read; SV: Structural
variation; SNP: Single nucleotide polymorphism; NGS: Next-generation
sequencing; CNV: Copy number variation; LTR: Long terminal repeat;
L1: Long interspersed element 1; ERV: Endogenous retroviruse; BAM: Binary
alignment map; CPU: Central processing unit; VCF: Variant call format;
TSD: Target site duplication; FDR: False discovery rate; AFS: Allele frequency
spectrum; ASW: African ancestry in Southwest USA; LWK: Luhya in Webuye,
Kenya; YRI: Yoruba in Ibadan, Nigeria; PCR: Polymerase chain reaction;
API: Application Programming Interface; SSW: Single instruction multiple data
Smith-Waterman.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JW designed algorithms, performed analysis and wrote the paper. WPL
designed algorithms, performed analysis, and wrote the paper. AW
performed analysis and wrote the paper. JAW, MKK and MAB designed and
performed the experiments and wrote the paper. GTM designed the
algorithms, wrote the paper and supervised the project. All authors read and
approved the final manuscript.
Acknowledgements
The authors are grateful to Chip Stewart for help with algorithmic
development, and to Thomas Keane for assistance with the RetroSeq call
sets. This work was supported by grants R01HG004719 and U01HG006513
from the National Human Genome Research Institute to GTM and by grant
RO1GM59290 from the National Institutes of Health to MAB.

Author details
1Department of Biology, Boston College, Chestnut Hill, MA, USA.
2Department of Biological Sciences, Louisiana State University, Baton Rouge,
LA, USA. 3Department of Human Genetics and USTAR Center for Genetic
Discovery, University of Utah, Salt Lake City, Utah, USA.

Received: 28 February 2014 Accepted: 3 September 2014
Published: 16 September 2014
References
1. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R,

Bird CP, de Grassi A, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavare S,
Deloukas P, Hurles ME, Dermitzakis ET: Relative impact of nucleotide and
copy number variation on gene expression phenotypes. Science 2007,
315(5813):848–853.

2. Korbel JO, Tirosh-Wagner T, Urban AE, Chen XN, Kasowski M, Dai L, Grubert
F, Erdman C, Gao MC, Lange K, Sobel EM, Barlow GM, Aylsworth AS, Carpenter
NJ, Clark RD, Cohen MY, Doran E, Falik-Zaccai T, Lewin SO, Lott IT, McGillivray
BC, Moeschler JB, Pettenati MJ, Pueschel SM, Rao KW, Shaffer LG, Shohat M,
Van Riper AJ, Warburton D, Weissman S, et al: The genetic architecture of
Down syndrome phenotypes revealed by high-resolution analysis of
human segmental trisomies. Proc Natl Acad Sci U S A 2009,
106(29):12031–12036.

3. Zhang F, Gu W, Hurles ME, Lupski JR: Copy number variation in human
health, disease, and evolution. Annu Rev Genomics Hum Genet 2009,
10:451–481.

4. Campbell PJ, Stephens PJ, Pleasance ED, O’Meara S, Li H, Santarius T,
Stebbings LA, Leroy C, Edkins S, Hardy C, Teague JW, Menzies A, Goodhead
I, Turner DJ, Clee CM, Quail MA, Cox A, Brown C, Durbin R, Hurles ME,
Edwards PA, Bignell GR, Stratton MR, Futreal PA: Identification of
somatically acquired rearrangements in cancer using genome-wide
massively parallel paired-end sequencing. Nat Genet 2008, 40(6):722–729.

5. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z: Pindel: a pattern growth
approach to detect break points of large deletions and medium sized
insertions from paired-end short reads. Bioinformatics 2009,
25(21):2865–2871.

6. Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M, Tsalenko A,
Sampas N, Bruhn L, Shendure J, Genomes P, Eichler EE: Diversity of
human copy number variation and multicopy genes. Science 2010,
330(6004):641–646.

7. Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO: DELLY:
structural variant discovery by integrated paired-end and split-read
analysis. Bioinformatics 2012, 28(18):i333–i339.

8. Wu J, Grzeda KR, Stewart C, Grubert F, Urban AE, Snyder MP, Marth GT:
Copy Number Variation detection from 1000 Genomes project exon
capture sequencing data. BMC Bioinformatics 2012, 13(1):305.

9. Handsaker RE, Korn JM, Nemesh J, McCarroll SA: Discovery and genotyping
of genome structural polymorphism by sequencing on a population
scale. Nat Genet 2011, 43(3):269–276.

10. de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD: Repetitive
elements may comprise over two-thirds of the human genome.
PLoS Genet 2011, 7(12):e1002384.

11. Deininger PL, Batzer MA, Hutchison CA 3rd, Edgell MH: Master genes in
mammalian repetitive DNA amplification. Trends Genet 1992, 8(9):307–311.

12. Cordaux R, Batzer MA: The impact of retrotransposons on human
genome evolution. Nat Rev Genet 2009, 10(10):691–703.

13. Konkel MK, Batzer MA: A mobile threat to genome stability: The impact of
non-LTR retrotransposons upon the human genome. Semin Cancer Biol
2010, 20(4):211–221.

14. Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis
SE: Haemophilia A resulting from de novo insertion of L1 sequences
represents a novel mechanism for mutation in man. Nature 1988,
332(6160):164–166.

https://biosci-batzerlab.biology.lsu.edu/supplementary_data/BC_Tangram_MEI_ValidationPCRprimers.xlsx
https://biosci-batzerlab.biology.lsu.edu/supplementary_data/BC_Tangram_MEI_ValidationPCRprimers.xlsx
https://biosci-batzerlab.biology.lsu.edu/supplementary_data/BC_Tangram_MEI_ValidationPCRprimers.xlsx
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
https://biosci-batzerlab.biology.lsu.edu/supplementary_data/BC_Tangram_MEI_ValidationPCRprimers.xlsx
https://biosci-batzerlab.biology.lsu.edu/supplementary_data/BC_Tangram_MEI_ValidationPCRprimers.xlsx


Wu et al. BMC Genomics 2014, 15:795 Page 14 of 15
http://www.biomedcentral.com/1471-2164/15/795
15. Kazazian HH Jr: Mobile elements: drivers of genome evolution. Science
2004, 303(5664):1626–1632.

16. Pace JK 2nd, Feschotte C: The evolutionary history of human DNA
transposons: evidence for intense activity in the primate lineage.
Genome Res 2007, 17(4):422–432.

17. Xing J, Witherspoon DJ, Ray DA, Batzer MA, Jorde LB: Mobile DNA
elements in primate and human evolution. Am J Phys Anthropol 2007,
134(Suppl 45):2–19.

18. Belancio VP, Hedges DJ, Deininger P: Mammalian non-LTR retrotransposons:
for better or worse, in sickness and in health. Genome Res 2008,
18(3):343–358.

19. Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, Batzer MA: SVA
elements: a hominid-specific retroposon family. J Mol Biol 2005,
354(4):994–1007.

20. Mills RE, Bennett EA, Iskow RC, Luttig CT, Tsui C, Pittard WS, Devine SE:
Recently mobilized transposons in the human and chimpanzee
genomes. Am J Hum Genet 2006, 78(4):671–679.

21. Khan H, Smit A, Boissinot S: Molecular evolution and tempo of
amplification of human LINE-1 retrotransposons since the origin of
primates. Genome Res 2006, 16(1):78–87.

22. Britten RJ: Evidence that most human Alu sequences were inserted in a
process that ceased about 30 million years ago. Proc Natl Acad Sci U S A
1994, 91(13):6148–6150.

23. McCarroll SA, Huett A, Kuballa P, Chilewski SD, Landry A, Goyette P, Zody
MC, Hall JL, Brant SR, Cho JH, Duerr RH, Silverberg MS, Taylor KD, Rioux JD,
Altshuler D, Daly MJ, Xavier RJ: Deletion polymorphism upstream of IRGM
associated with altered IRGM expression and Crohn’s disease. Nat Genet
2008, 40(9):1107–1112.

24. Miki Y, Katagiri T, Kasumi F, Yoshimoto T, Nakamura Y: Mutation analysis in
the BRCA2 gene in primary breast cancers. Nat Genet 1996, 13(2):245–247.

25. Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ 3rd, Lohr JG,
Harris CC, Ding L, Wilson RK, Wheeler DA, Gibbs RA, Kucherlapati R, Lee C,
Kharchenko PV, Park PJ, Cancer Genome Atlas Research N: Landscape of
somatic retrotransposition in human cancers. Science 2012,
337(6097):967–971.

26. Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin
RM, Gibbs RA, Hurles ME, McVean GA: A map of human genome variation
from population-scale sequencing. Nature 2010, 467(7319):1061–1073.

27. Stewart C, Kural D, Stromberg MP, Walker JA, Konkel MK, Stutz AM, Urban
AE, Grubert F, Lam HY, Lee WP, Busby M, Indap AR, Garrison E, Huff C, Xing
J, Snyder MP, Jorde LB, Batzer MA, Korbel JO, Marth GT, Genomes P: A
comprehensive map of mobile element insertion polymorphisms in
humans. PLoS Genet 2011, 7(8):e1002236.

28. Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A,
Yoon SC, Ye K, Cheetham RK, Chinwalla A, Conrad DF, Fu Y, Grubert F,
Hajirasouliha I, Hormozdiari F, Iakoucheva LM, Iqbal Z, Kang S, Kidd JM,
Konkel MK, Korn J, Khurana E, Kural D, Lam HY, Leng J, Li R, Li Y, Lin CY, Luo
R, et al: Mapping copy number variation by population-scale genome
sequencing. Nature 2011, 470(7332):59–65.

29. Keane TM, Wong K, Adams DJ: RetroSeq: Transposable element discovery from
Illumina paired-end sequencing data. Bioinformatics 2012, 29(3):389–390.

30. Hormozdiari F, Hajirasouliha I, Dao P, Hach F, Yorukoglu D, Alkan C, Eichler
EE, Sahinalp SC: Next-generation VariationHunter: combinatorial
algorithms for transposon insertion discovery. Bioinformatics 2010,
26(12):i350–i357.

31. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA,
Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, Genomes
Project Analysis G: The variant call format and VCFtools. Bioinformatics
2011, 27(15):2156–2158.

32. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis
G, Durbin R, Genome Project Data Processing S: The Sequence Alignment/
Map format and SAMtools. Bioinformatics 2009, 25(16):2078–2079.

33. Lee WP, Stromberg MP, Ward A, Stewart C, Garrison EP, Marth GT: MOSAIK:
a hash-based algorithm for accurate next-generation sequencing short-
read mapping. PLoS One 2014, 9(3):e90581.

34. Myers JS, Vincent BJ, Udall H, Watkins WS, Morrish TA, Kilroy GE, Swergold
GD, Henke J, Henke L, Moran JV, Jorde LB, Batzer MA: A comprehensive
analysis of recently integrated human Ta L1 elements. Am J Hum Genet
2002, 71(2):312–326.

35. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin
RM, Handsaker RE, Kang HM, Marth GT, McVean GA: An integrated map of
genetic variation from 1,092 human genomes. Nature 2012,
491(7422):56–65.

36. Le SQ, Durbin R: SNP detection and genotyping from low-coverage
sequencing data on multiple diploid samples. Genome Res 2011,
21(6):952–960.

37. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA: The Genome
Analysis Toolkit: a MapReduce framework for analyzing next-generation
DNA sequencing data. Genome Res 2010, 20(9):1297–1303.

38. Xing J, Zhang Y, Han K, Salem AH, Sen SK, Huff CD, Zhou Q, Kirkness EF, Levy S,
Batzer MA, Jorde LB: Mobile elements create structural variation: analysis of
a complete human genome. Genome Res 2009, 19(9):1516–1526.

39. Huang CR, Schneider AM, Lu Y, Niranjan T, Shen P, Robinson MA, Steranka
JP, Valle D, Civin CI, Wang T, Wheelan SJ, Ji H, Boeke JD, Burns KH: Mobile
interspersed repeats are major structural variants in the human genome.
Cell 2010, 141(7):1171–1182.

40. Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF, Van Meir
EG, Vertino PM, Devine SE: Natural mutagenesis of human genomes by
endogenous retrotransposons. Cell 2010, 141(7):1253–1261.

41. Witherspoon DJ, Xing J, Zhang Y, Watkins WS, Batzer MA, Jorde LB: Mobile
element scanning (ME-Scan) by targeted high-throughput sequencing.
BMC Genomics 2010, 11:410.

42. Beck CR, Garcia-Perez JL, Badge RM, Moran JV: LINE-1 elements in
structural variation and disease. Annu Rev Genomics Hum Genet 2011,
12:187–215.

43. Ewing AD, Kazazian HH Jr: Whole-genome resequencing allows detection
of many rare LINE-1 insertion alleles in humans. Genome Res 2011,
21(6):985–990.

44. Hormozdiari F, Alkan C, Ventura M, Hajirasouliha I, Malig M, Hach F,
Yorukoglu D, Dao P, Bakhshi M, Sahinalp SC, Eichler EE: Alu repeat
discovery and characterization within human genomes. Genome Res
2011, 21(6):840–849.

45. Wang J, Song L, Grover D, Azrak S, Batzer MA, Liang P: dbRIP: a highly
integrated database of retrotransposon insertion polymorphisms in
humans. Hum Mutat 2006, 27(4):323–329.

46. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome.
Genome Biol 2009, 10(3):R25.

47. Kohany O, Gentles AJ, Hankus L, Jurka J: Annotation, submission and
screening of repetitive elements in Repbase: RepbaseSubmitter and
Censor. BMC Bioinformatics 2006, 7:474.

48. Knuth DE: The Art of Computer Programming. Reading, Mass: Addison-
Wesley Pub. Co; 1968.

49. Youssef S: Clustering with local equivalence relations. Comput Phys
Commun 1987, 45(1–3):423–426.

50. Bentley JL: Programming Pearls. 2nd edition. Reading, Mass: Addison-Wesley;
2000.

51. Smit AFA, Hubley R, Green P: RepeatMasker Open-3.0. 1996–2010.
http://www.repeatmasker.org/.

52. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D:
The human genome browser at UCSC. Genome Res 2002, 12(6):996–1006.

53. Holtgrewe M: Mason – a read simulator for second generation
sequencing data. In Technical Report TR-B-10-06; 2010.

54. Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT: BamTools: a
C++ API and toolkit for analyzing and managing BAM files. Bioinformatics
2011, 27(12):1691–1692.

55. Li H, Durbin R: Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 2009, 25(14):1754–1760.

56. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y,
Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A: Galaxy: a
platform for interactive large-scale genome analysis. Genome Res 2005,
15(10):1451–1455.

57. Goecks J, Nekrutenko A, Taylor J, Galaxy T: Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol 2010, 11(8):R86.

58. Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M,
Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for
experimentalists. Curr Protoc Mol Biol 2010, Chapter 19:Unit 19 10 11-21.

59. You FM, Huo N, Gu YQ, Luo MC, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson
OD: BatchPrimer3: a high throughput web application for PCR and
sequencing primer design. BMC Bioinformatics 2008, 9:253.

http://www.repeatmasker.org/


Wu et al. BMC Genomics 2014, 15:795 Page 15 of 15
http://www.biomedcentral.com/1471-2164/15/795
60. Kent WJ: BLAT–the BLAST-like alignment tool. Genome Res 2002,
12(4):656–664.

61. Hall TA: BioEdit: a user-friendly biological sequence alignment editor and
analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999,
41:95–98.

62. Rozen S, Skaletsky H: Primer3 on the WWW for general users and for
biologist programmers. Methods Mol Biol 2000, 132:365–386.

doi:10.1186/1471-2164-15-795
Cite this article as: Wu et al.: Tangram: a comprehensive toolbox for
mobile element insertion detection. BMC Genomics 2014 15:795.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Performance evaluation on simulated datasets
	Performance comparisons using 1000 genomes project data
	Running Tangram on population data
	Experimental validation
	Resource requirements and software availability

	Conclusions
	Methods
	The Tangram detector - algorithmic overview
	Sequence alignment to genome and mobile element reference sequences
	MEI detection based on read-pair (RP) mapping positions
	MEI detection based on split-read (SR) mapping positions
	Candidate MEI event filtering and post-processing
	Sample genotype calling and genotype likelihood calculation
	Simulation data generation
	Calculation of breakpoints in simulated data
	Genotype weighting for genotype accuracy estimation in simulated data for Alu
	Identification of events across MEI callsets
	Command line used for calling MEI with RetroSeq
	Software availability
	PCR validation
	Availability of supporting data
	Abbreviations

	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

