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Abstract

Many tumors are composed of genetically divergent cell subpopulations. We report SubcloneSeeker, a package
capable of exhaustive identification of subclone structures and evolutionary histories with bulk somatic variant allele
frequency measurements from tumor biopsies. We present a statistical framework to elucidate whether specific sets of
mutations are present within the same subclones, and the order in which they occur. We demonstrate how subclone
reconstruction provides crucial information about tumorigenesis and relapse mechanisms; guides functional study by
variant prioritization, and has the potential as a rational basis for informed therapeutic strategies for the patient.
SubcloneSeeker is available at: https://github.com/yiq/SubcloneSeeker.

Background

Identifying the few genetic changes that drive chemo-
resistance or metastasis from hundreds or thousands
of somatic variants found in whole-exome or whole-
genome sequencing [1,2] of matched tumor-normal pa-
tient tissue samples is a daunting task. Current variant
prioritization approaches examine predicted variant im-
pact in candidate genes, or deploy pathway analysis to
narrow down the long list of candidate mutations to a
manageable number [3]. Here we report an alternative
approach to variant prioritization, exploiting the pat-
terns of genetic heterogeneity often observed in diverse
types of cancers.

The presence of such genetically divergent subpopu-
lations of cells within a single tumor mass has been re-
ported in various tumor types [4-23]. In contrast to normal
tissue, in which the same germline mutation is present in
every cell, a somatic mutation may be present in some,
but not all, cancer cells within a tumor biopsy as a result
of rapid mitotic growth and continuous selection. With
multiple groups of somatic mutations present at different
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cellular frequencies, the tumor mass consists of distinct
populations of cells, or tumor subclones, with each sub-
clone harboring a specific subset of the mutations. The
ability to delineate each such clonal subpopulation, deter-
mine its frequency within the tumor mass, and to infer
the evolutionary relationships among subclones allows
one to determine the order in which the mutation events
occurred, and permits the identification of those muta-
tions that are most likely to play a part in tumorigenesis,
drug response, relapse, and metastasis.

Earlier studies have attempted to reconstruct subclonal
structure with many different methods typically tailored
to their specific study designs. These methods fall into
distinct classes including: (1) cell genotype profiling using
in situ hybridization [4,5]; (2) identifying distinct allele fre-
quency (AF) modals by clustering, followed by subclone
structure reconstruction via visual inspection of the data
and manual reasoning [6-13]; (3) phylogenic reconstruc-
tion based on single-cell PCR or sequencing-based profil-
ing [14-20]; and (4) phylogenetic reconstruction using
biopsies gathered from multiple metastases [21-23]. While
each method adequately addressed the dataset in which it
was applied, neither provided a sufficiently general frame-
work for subclone reconstruction from somatic variation
data. The work we are presenting is focused on automat-
ing the ‘reasoning’ step that starts with somatic variants
from matched tumor/normal tissues of a single cancer
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patient, as well as additional tissues (for example, relapse,
metastasis) if available, and ends in the enumeration of
possibly multiple subclone structures consistent with the
input data, and additional derived information that may
be useful for variant prioritization or guiding treatment.
The main difficulty of subclone reconstruction is the fact
that the AFs measured in a large population of tumor
cells, as is the case in ‘bulk tissue’ tumor sequencing or
microarray genotyping experiments, do not retain the
underlying linkage information that exists between indi-
vidual somatic events, that is, whether or not two or
more mutation events are present within the same cell.
Unfortunately, given n mutation events, there are in
total n! possible subclone structures, and often a large
number of these can account for the AF measurements
equally well. This makes it very difficult or impossible
to unambiguously reconstruct subclone evolution from
per-locus AF observations. To address these challenges,
computational methods have been recently developed
for tumor tissue purity estimation (that is, partitioning
tumor cell populations into a mixture of normal and
tumor subpopulations), using microarray [24-26] or se-
quencing data [27-29]. Even more recently, multiple algo-
rithms to reconstruct clonal structures were developed.
These algorithms either exploit specific biological assump-
tions [30] to choose between many mathematically
equivalent structures; or by using statistical sampling pro-
cedures [31] to explore the solution space of all possible
subclone structures. Both of these methods require high-
precision AF measurements of one specific variant type:
somatic single nucleotide variants or SNVs, and (presum-
ably because of the computational complexity involved)
only produce results for up to a few input sites (see Sup-
plemental Result 1 in Additional file 1, and the datasets
used in Additional files 2 and 3). Other approaches utilize
maximum likelihood mixture decomposition on CNV
data input [32]; jointly estimate subclone genotypes with
only SNV [33] or with both CNV and SNV data [34], but
without requiring that the subclones they infer fit within a
consistent phylogeny; or model the possibly multi-
furcating tumor phylogeny with a bifurcating tree, without
the ability to consider multiple tumors from a single pa-
tient (such as primary / relapse pairs) [35]. There have also
been several methods developed in the context of tran-
scriptome data, which are summarized in a recent review
article [36].

Here we present a more general approach based on a
strategy that is able to accept many types of somatic
variation data (for example, SNVs, or copy number varia-
tions from sequencing or microarray datasets, Figure S2
and S3 in Additional file 1. Refer to Additional file 4 for
sample datasets and scripts) as input. Out method enu-
merates all possible subclone structures that are consistent
with the bulk AF measurements from the input data. It is
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capable of reducing this solution space significantly,
often to a single, unique solution when data from mul-
tiple tumor biopsies such as primary and relapse from
the same patient are available. In the event that more
than a single alternative subclone structure still remains
after such trimming, it is often possible to derive high-
confidence linkage information between subsets of loci
based on the consensus of all remaining structures. In
such cases, we focus not on efforts to disambiguate math-
ematically equivalent solutions, but rather on using the
complete set after our pruning procedure in a statistical
framework to determine, for example, the probability that
two given mutations are present within the same subclone
(mutation co-localization), or that a given mutation pre-
dates another one (mutation order). Such co-localization
information may reveal, for example, that two distinct mu-
tations that each sensitizes the cancer cells to specific
drugs are, in fact, present on a single subclone. Given the
high incidence and therapeutic challenges posed by che-
moresistant tumors, knowledge of mutation co-localization
may allow for more accurate and potentially more effica-
cious targeted therapeutics aimed at countering or prevent-
ing chemoresistance. Moreover, if such a novel mutation
in a chemo-resistant tumor is present in every cell of the
relapse sample, it may be a top candidate in the search for
a mutation driving chemo-resistance.

Results and discussion

Our computational procedure for subclone structure
analysis

Here we briefly describe the main characteristics of the
algorithm to investigate the relationships among somatic
events from unlinked, bulk allele frequency measurements
at somatic mutation sites (Figure 1, section ‘Method’).

A unified framework for subclone structure reconstruction
that incorporates all types of genomic variants

We define a subclone as a collection of cells in the tumor
sample that harbor the same set of genomic variants, in-
cluding SNVs, structural variations (SV), copy number
variations (CNV), loss of heterozygosity (LOH), and so
on. The only requirement for a data type to be included
in the analysis is the ability to derive the fraction of the
cells within the tumor sample in which this mutation is
present, a quantity that has also been referred to as ‘cell
prevalence’ (CP) [37]. In a simplified example, a hetero-
zygous SNV in a copy number neutral region with an
AF of 30% would correspond to a CP of 60% (Figure 1A).
The estimation of CP is no trivial task, especially for
SNVs falling into regions of CNV, because the same
measured allele frequency results in different CP value
depending on the absolute copy number state in the re-
gion. A number of tools have been developed to facilitate
CP calculation, including ASCAT [25] and ABSOLUTE
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Figure 1 SubcloneSeeker method overview. (A) Data preparation: genomic variation data (SNVs, CNVs, and so on) are converted into the
corresponding cell prevalence (CP) values, and clustered into distinct groups. (B) Structure enumeration: based on the identified CP clusters, all
possible subclone structures, represented as branching tree structures where one subclone is derived from its ‘predecessor’ by the addition of a
mutation (or cluster of mutations), are visited. During the visit, each subclone on the tree structure is assigned a subclone frequency (SF) value so
that the implied total CP values for mutations are in agreement with the input CP values. Those structures with negative SF values are removed
from the solution set. (C) Solution trimming: the aim of this procedure is to merge the subclone structures from the relapse tumor (orange
circles) those from the primary tumor (blue circles) from the same patient. Left panel: example showing a compatible pair of relapse/primary
structures. Right panel: example showing a pair of incompatible relapse / primary subclone structures. A subclone in the relapse, R,, cannot be
positioned anywhere within the primary subclone structure because it contains mutations found in separate primary subclones (P; and Ps.), and
therefore cannot be derived from either one or the other.

J

[26], which estimates the absolute copy number states of  to consider each such variant type, or any combination of
CNV regions, and PyClone [37], which estimates CP from  variant types from a given sample. We note that, as a pre-
SNV allele frequency while taking into account copy num-  processing step, our method clusters together variants
ber. Our method requires as input CP measurements, re-  with the same (or similar) CP values to minimize meas-
gardless whether these measurements represent SNVs, urement uncertainties, and assumes a priori that all vari-
CNVs, or some other type of genetic variation, allowing it  ants in each such cluster are co-localized in the same
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cells. The input to our downstream methods is an ordered
list of CP values, corresponding to those clusters.

Subclone structure reconstruction

Given z somatic events (clusters), each with an associated,
distinct CP value, we enumerate all possible ‘evolutionary
trees’ where mutation events occurring along the tree
branches give rise to new subclones in a successive fashion
(Figure 1B). For n mutations (clusters), this procedure
results in ! distinct subclone structures assuming that:
(1) cells in a tumor mass are derived from normal tissue
cells or existing tumor cells through mitosis, in which
recombination is unlikely to occur; and (2) the same mu-
tation event does not spontaneously occur in two different
subclones, nor does a mutation get lost from a subclone.
Each subclone structure contains exactly # distinct sub-
clones with associated subclone frequencies (SF), plus a
‘null’ subclone without any mutation, representing the
normal tissue component within the tumor sample (and
its SF the ‘normal tissue contamination’). SF is assigned
to each subclone so that all subclones within a given
structure, when put together, give rise to the same mu-
tation (clusters) CP list as the input. In order to satisfy
this condition, our procedure may need to assign nega-
tive SF values to one or more subclones; such subclone
structures are not biologically plausible, and are re-
moved from further consideration. As demonstrated
later (Figure 2), only a small fraction of the structures
are biologically plausible (we term these ‘viable subclone
structures’).
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Trimming the space of viable subclone structures

Often there are more than one viable subclone structures
in the resulting solution set, corresponding to multiple
alternative subclone evolutions. However, if additional
‘linkage’ data are available, further trimming is usually
possible. Such linkage information may be either dir-
ectly observed, such as in the case of spectral karyotype
images [38-40], single cell colony assays, or single cell
sequencing; or indirectly inferred from, for example, pri-
mary and relapse tumor from the same patient. Because
typically, the relapse tumor is derived from the primary
tumor, they share mutations originating from common
ancestor subclones, and through such shared evolutionary
history the primary and relapse subclones can be merged
into one unified subclone structure (or multiple alterna-
tive unified subclone structures). Figure 1C shows exam-
ples of two compatible primary/relapse structures (left) as
well as two incompatible ones (right). In the latter ex-
ample, the relapse subclone R, contains two mutations
that are found in different branches on the primary tree
(P; and P3), violating the assumptions above. Any struc-
ture in the primary that has no compatible structure in
the relapse, or vice versa, is discarded from consideration,
reducing the solution space.

Mutation localization prediction

Useful knowledge can be derived even in cases where
there are multiple alternative subclone structures. Al-
though one cannot determine the precise subclone evo-
lution with certainty in such cases, the collection of all
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Figure 2 Normal cell content estimated by subclone reconstruction in a controlled mixing experiment. Dataset is generated by mixing
sequencing reads from a SNUC cell-line and matched normal tissue. Data points corresponding to the subclone structure representing linear
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possible solutions can be used to predict whether or not
two mutations are present in the same cell, that is, whether
or not they are co-localized within the same subclone. This
prediction is based on the fraction of all viable subclone
structures in which two mutations (or more generally, a
given set of mutations) are present in at least one subclone.
Such information could potentially be important in, for ex-
ample, designing personalized chemotherapy treatment
plans. Given n clusters, there are in total nC2 (n choose 2)
unique, unordered cluster pairs, each of which is assigned
a status of either ‘co-localized; ‘not co-localized, or ‘am-
biguous’ (Figure 3, ‘Methods’). Furthermore, for two mu-
tation events that are localized in the same subclone,
the timing of the mutations can be easily determined:
the event with the higher CP value appeared earlier, and
the event with the lower CP value emerged later.

The SubcloneSeeker software

SubcloneSeeker is implemented in C++, and its source
code available under MIT license. The package provides a
complete set of APIs and data structures to represent sub-
clone and genomic mutation data types, along with well
documented source code and examples, so that anyone
can easily extend on the core functions we provided to in-
corporate domain-specific knowledge, such as placing dif-
ferent prior probabilities over tree structures.

Our subclone structure reconstruction method always includes
the correct structure among the solution set it reports

We generated simulated tumor samples (Supplemental
Method 1 in Additional file 1) comprising 3, 4, ..., 8 mutation
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events with distinct CP values. For each of these ‘tumor
samples; we produced a random subclone structure serv-
ing as a ‘true’ structure. We repeated this procedure 1,000
times. In every case, SubcloneSeeker was able to repro-
duce the ‘true’ subclone structure as one of the solutions
in the complete solution set of viable subclone structures.
This ‘sanity check’ was necessary to ensure that our soft-
ware worked appropriately for simulated datasets.

The number of biologically plausible subclone structures
is low

We also found that the number of viable subclone struc-
tures is very low compared to the number of all possible
structures. As Figure 4 illustrates, the expected number
of viable subclone structures is far less than the theoret-
ical upper-limit (n! for n distinct CP values).

Our normal cell component estimation procedure is
accurate

As described above, our subclone structure reconstruction
method provides, for each structure, each subclone present
together with a subclone fraction, that is, the fraction of
that subclone within the tumor biopsy. The structure
includes a subclone without any of the mutations: this is
the normal cell component of the tumor biopsy, and its
fraction is the normal cell fraction. We investigated the
accuracy with which our method estimates the normal
cell fraction in experimental data. We applied our method
to a dataset created by mixing 10%, 20%, ..., 90%, 95%,
and 100% sequencing reads from a SNUC (Sinonasal Un-
differentiated Carcinoma) cell line sample [41], with reads
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Figure 3 Predicting mutation co-localization. In cases where there are multiple viable subclone structures, we count the fraction of all
structures within which two mutation events are co-localized. This fraction is the probability that the two events are present in the same subclone.
One can also make a ‘co-localization call’ by declaring that two events are co-localized, if this probability is above a pre-defined threshold.
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Figure 4 Number of biologically meaningful structures histogram based on simulation. Each plot is based on a set of 1,000 randomly
generated subclone structures. The maximum value on the x axis of each plot represent the theoretical upper limit on the number of solutions,
n!, given n CP values. The distributions are heavily compressed towards the left, suggesting that the actual number of biologically meaningful
structures is usually small.

sequenced from paired normal tissue (Figure 2). In this
dataset, the non-branching, stepwise mutation accumula-
tion model (red-cross), a parsimonious solution that always
exists (section ‘Method’), produced very accurate estimate
for normal cell content among all alternative structures
(R? = 0.9705395 to the line y = x).

Our algorithmic procedure for subclone structure
comparison improves on interpretation in previously
published data

In a recent study, Ding et al. [7] investigated clonal evolu-
tion in eight acute myeloid leukemia (AML) patients. To
ensure easy comparison with the published results, we
started with the somatic mutation clusters and AF values
provided in the study (Table S5c and Table S10 in Ding
et al. Additional file 1), rather than re-computing them
ourselves. With two exceptions, SubcloneSeeker produced
the same subclone structures, and with one exception,
came to the same biological conclusions (Table S1 in
Additional file 1).

In the case of patient UPN933124, the primary sample
contained two low frequency clusters, which resulted in
a total of six different viable subclonal structures, includ-
ing the one reported in the original study. However, only
one of these was compatible with the sole viable subclone
structure in the relapse, and the resulting single primary/
relapse subclone structure was in agreement with the

model presented in the original paper (Figure 5A). In the
case of patient UPN758168, the relapse sample yielded
two possible structures, both of which were compatible
with the primary structure. However, the tumor expansion
model suggested by either of these structures disagrees
with the expansion model described in the original paper
as ‘a minor clone carrying the vast majority of the primary
tumor mutations survived and expanded at relapse’. Our
subclone structures (Figure 5B) suggest, in contrast, that
both primary subclones survived in the relapse. The differ-
ence between the two relapse models is which primary
subclone expanded with extra mutations.

Analysis of TCGA primary-relapse ovarian tumor samples
reveals two distinct patterns for tumor recursion in the
dataset

We applied SubcloneSeeker to a dataset of 17 ovarian
cancer primary / relapse patients included in the TCGA
ovarian serious carcinoma cohort [42]. We observed two
distinct relapse patterns in this dataset (manuscript in
preparation). The first pattern, exemplified by TCGA-
13-0913 (Figure 6A) and observed in five of the 17 patients,
is one where multiple subclones found in the relapse are
already present in the primary tumor, suggesting that
chemotherapy against the primary tumor was inadequate.
The second pattern, exemplified by patient TCGA-13-1817
(Figure 6B) and observed in eight of the 17 patients, is one
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Figure 5 Our re-analysis of published primary/relapse AML dataset in Ding et al. Primary, relapse, and merged subclone structures for two
patients, reconstructed with SubcloneSeeker. (A) SubcloneSeeker analysis found six alternative primary subclone structures for patient UPN933124.
Only one is compatible with the relapse subclone structure, and the pair is in agreement with the original study. (B) Each of the two viable
merged primary/relapse subclone structures for patient UPN75816 suggests that the two primary subclones made it to the relapse tumor, and
further expanded.

where relapse tumor subclones descended from a single,
rare, and therefore unobserved primary subclone, and ac-
quired new mutations that might now confer resistance to
the chemotherapy used against the primary tumor.

Analysis of whole-exome sequencing data from chemo-
resistant versus primary ovarian tumors demonstrates that
our subclone structure analysis can be used to prioritize
somatic mutations for further follow-up

We are investigating how high-grade serous ovarian can-
cers become chemoresistant by applying SubcloneSeeker
to whole exome sequencing datasets on normal, primary
tumor and chemoresistant relapse tumor tissue samples
from the same patient. Figure 7 shows our analysis work-
flow for prioritizing mutations observed in patients ‘S15’
and ‘S17’. Somatic mutations were first clustered in the
‘Primary AF — Relapse AF space to identify discrete
modals, corresponding to distinct subclones (Figure 7A,
B, D, E). The allele frequencies of these clusters were then

converted to cell prevalence values, and subjected to sub-
clone structure reconstruction. Certain ‘abnormal’ SNVs
with AF values between 0.5 and 1 are likely to be in CNV
regions. Due to the nature of exome sequencing, we do
not have reliable CNV estimations to perform accurate
correction. Out of necessity, we ignore the variants with
greater than 50% AFs. In the case of ‘S15; both the pri-
mary and the relapse sample yielded a unique structure;
these are compatible with each other (Figure 7C). The
mutations in mutation cluster ‘C4’ are early events in the
primary, present in every cell of the relapse, and likely
contain the driver mutation responsible for initial tumor
expansion. On the other hand, in the relapse sample, the
vast majority (93%) of tumor cells contain the mutations
that make up cluster ‘C3. This makes it likely that the
mutation(s) conferring the chemoresistance phenotype
are part of this cluster.

In the case of sample ‘S17; the primary sample yielded
two viable subclone structures, both compatible with the
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Figure 6 Two relapse patterns in a TCGA primary-relapse ovarian tumor dataset. (A) TCGA-13-0913 exemplifies a recursion pattern in which
the relapse subclones are originated from multiple subclones in the primary, suggesting inadequate primary treatment. (B) TCGA-13-1817 signifies
a different pattern in which one subclone in the primary acquired new mutations, became resistant to primary chemotherapy, and gave rise to
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identified, compatible S15 primary and relapse subclone evolution tree. (D) Clustering of S17 somatic mutations in patient S17. (E) Mutation
clusters and CP values in S17 primary and relapse. (F) Two viable structures for S17 primary, and a sole structure for S17 relapse.

sole structure in the relapse (Figure 7F). Similarly to
sample ‘S15; mutation cluster ‘C4’ is likely to contain the
initial driver mutation(s), and mutation cluster ‘C3,
which is present in all relapse subclones, is likely to con-
tain the mutation leading to chemoresistance. In both
samples, the use of subclone analysis resulted in informa-
tion that one can use for variant prioritization, in order to
narrow down the set of somatic events in the search for
the causative mutation, both for initial tumor expansion,
and for chemoresistance.

Simulation studies demonstrate that our statistical
framework is able to accurately predict whether two
somatic mutations (or mutation clusters) are localized in

a subclone together

To understand the behavior of our methods predicting
co-localization of mutations within subclones, we simulated
tumors with five, six, and seven subclones (in each case,
1,000 replicates), performed our subclone reconstruction

procedure, and carried out mutation co-localization ana-
lysis (section ‘Method’). We used threshold values of 0.7
and 0.5 to call whether two mutations are co-localized,
not co-localized, or that the results are ambiguous (see
Figure 8 for six subclones, and Supplemental Figure S4 in
Additional file 1 for the complete set). Importantly, at a
call threshold of 0.7, our method calls co-localized and
not co-localized pairs with approximately 70% sensitivity
and nearly 100% positive predictive value (PPV, the frac-
tion of correct calls in all the calls made). At a threshold
of 0.5, sensitivity goes up to nearly 100%, while PPV drops
to approximately 80%.

Re-analysis of bulk versus single cell colony assay data
demonstrates that we are able to accurately identify
mutations that are present in the same subclone

In a recent study by Jan et al. [15], hematopoietic stem
cells (HSC) from several AML patients were sequenced
to >20,000 depth to measure somatic mutation allele
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simulated data. (A) Co-localization prediction statistics on simulated
dataset with six subclones in each tumor sample, and a threshold of
0.7. Sl - Combined Sensitivity; PPV - Combined positive predictive
value; (B) Co-localization prediction statistics on simulated dataset
with six subclones in each tumor sample, and a CLF threshold at 0.5.

frequencies at several targeted loci. In addition, col-
onies grown from single cells separated from the sam-
ple were subjected to allele-specific SNV TaqMan
assay at the same SNV sites, resulting in direct obser-
vations of subclones within the tissue. We used the
bulk AF values obtained from the sequencing data as
input to our subclone reconstruction method, followed
by our mutation co-localization prediction procedure.
We then compared our co-localization predictions to
the colony assay results. Among four patient samples
for which colony assay data were available, SU030 and
SU008 did not yield conclusive results because the al-
lele frequencies at the tested sites were so low (well
below 1%) that they were indistinguishable from measure-
ment noise (see Table S2 in Additional file 1). SU070
yielded a unique subclone structure that is in agreement
with the structure identified by colony assay (Figure S5
in Additional file 1). SU048 (Figure 9) produced a result
set of 48 viable subclone structures. Every structure
supports that TET2-E1375STOP is the earliest event,
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followed by SMC1A and ACSM1 (Figure 9A, Table S3
in Additional file 1). With a co-localization calling
threshold of 0.5, TET2-D1384V, OLFM2, and ZMYM3
co-localize with TET2-E1375STOP and SMC1A, which
is in agreement with the conclusion in the original analysis
by Jan et al. that AML precursor HSC cells contain double
mutations (presumably forming a compound heterozy-
gote) in the TET2 gene. According to our analysis, TET2-
E1375STOP and SMC1A are the two early events, and the
two TET2 mutations are already present in the same, early
subclone. This is biologically sensible given that TET2 is
involved in DNA demethylation [43] and SMCI1A in
chromosome structure maintenance [44]. In addition, the
depletion of TET2 in mouse model leads to HSC expan-
sion [45,46], and the lack of SMC1A protein predicts poor
survival in AML [47]. On the other hand, the relatively
low co-localization probabilities among ACSM1, TET2-
D1384V, OLFM2, and ZMYM3 suggest a branching struc-
ture for these mutations (Figure 9A), rather than linear
mutation accumulation consistent with the colony assay
for this patient (the colony assay found one cell in which
all these mutations are present). This points out the
relatively weak power of our method to resolve co-
localization among mutations with very low allele frequen-
cies, as such low frequency mutations can be placed with
relative freedom on multiple branches of the evolutionary
tree.

Conclusion

In this paper we present a novel algorithm to elucidate
tumor subclonal structure using as input cell prevalence
values of individual, unlinked somatic mutations. In con-
trast to other methods that require SNV allele frequen-
cies, our method is able to analyze many different types
of genomic variant data, as long as allele frequency measure-
ments can be converted into cell prevalence values. Because
bulk mutation frequency measurements from fragmentary
sequence data or per-site microarray measurements do

A Model based on
Co-localization

TET2-E1357STOP

SMC1A

ACSM1

=100% certainty

‘otFm2  TET2- zpmyms
: D1384V

>=50% certainty

Evolution Model in Jan et. al.

§
/_.-
TET2-E1357STOP
&
-, sMc1Aandall
<=/ others

Figure 9 Analysis results on patient SU048 HSC sample in Jan et al. (A) Our model of subclone evolution constructed based on co-localization
probabilities. Left: Consensus structure supported by all subclone structures. Right: Consensus structure supported by at least 50% of subclone
structures. (B) Model of subclone evolution reported in Jan et al. constructed based on colony assay results.
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not retain ‘linkage’ across such somatic variant sites, often
there are many alternative subclone structures that can
account for the input measurements. Our method ex-
haustively enumerates all such viable subclone structures.
We were able to show that the number of solutions is usu-
ally much smaller than the theoretical upper limit. Often
tumor tissues from multiple phases of tumor development
(for example, primary and relapse biopsies) are available.
In such cases, the number of subclone structures that
are not only consistent with the respective input fre-
quency data but also across, for example, the primary
and the relapse is lower, further trimming the ‘solution
space, often to a single, unique structure. Using both
simulations and experimental data, we have extensively
characterized and validated our methods. We have illus-
trated with a number of datasets that this approach is
often able to identify key patterns underlying tumor
progression and relapse, including information to guide
mutation prioritization.

In the case that the solution space cannot be further
trimmed, we provide methods to derive useful knowledge,
in terms of mutation cluster co-localization and timing.
Our subclone structure enumeration procedure is ex-
haustive, and is free from the biases introduced by the
choice of parameters or prior distributions often required
for statistical sampling of the subclone structure solution
space. We demonstrated that the co-localization and timing
of mutations predicted from the HSC bulk targeted sequen-
cing (Jan et al.) correlate well with their function, and can
be used in a similar fashion to prioritize functional study.

Our analysis of previously published datasets and our
own datasets suggests that SubcloneSeeker will be ap-
plicable for a number of clinical/biological problems.
Using serous ovarian cancer as an illustrative example,
we have demonstrated that chemoresistance and relapse
in this disease is a clonally driven process, and that such
clones can be either present in the primary tumor or
‘arise” during progression or relapse. The patterns of tem-
poral mutational order and cellular co-localization provide
clinically relevant insight into the genomic basis for
chemoresistance. In ovarian cancer, 80% of tumors are
classified as chemosensitive while 20% of cancers pro-
gress during or recur shortly after platinum-based adju-
vant chemotherapy. Unfortunately, there are no known
genetic markers at present that can reliably predict in-
herent or acquired chemoresistance. This is likely the
result of the complex and multifactorial biological basis
for this phenotype. However, whereas one or a small
number of them may not be informative, analysis of
many resistant clones and identification of the corre-
sponding mutational order and cellular co-localization
may lead to a better understanding of chemoresistance,
and form a rational basis for targeting the chemoresis-
tant clones.
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We envision similar utility for this type of analysis in
advancing the current understanding of genomic alterations
involved in the pre-malignant phases of cancer. Once again
using ovarian cancer as a prototypical case, it has been
established that TP53 mutations are ubiquitous and early
events in serous ovarian carcinogenesis [42]. However, the
prevalence of other recurrent somatic mutations is about
10% or less [42] suggesting that the additional requirements
for transformation may be met through a combination of
more diverse co-localized or temporally related somatic
mutations (plus possible contributions from epigenetics
and other molecular alterations,and so on). Thus genomic
investigation of putative precursor lesion for serous carcin-
oma using approaches presented here is likely to identify
subclonal hierarchies whose constituent mutations define
cooperative classes on oncogenic event whose sum total re-
sults in malignant transformation.

Method
The complete workflow of our method consists of the
following steps (with details concerning each step below):

1. Depending on the type of input data, mutation
events and their associated allele frequencies are
called by detection methods

2. The allele frequencies of events are converted into
cell prevalence, and then subjected to clustering. If
more than one sample is available, the clustering will
be done in a multidimensional space, in which the
number of dimensions is equal to the number of
samples.

3. The resulting somatic event groups (by CP) serves
as the input to the SubcloneSeeker core algorithm.
This will result in a set of solutions that are
biologically meaningful, and mathematically
consistent with the input.

4. Further trimming can be performed on the solution
set, such as trying to merge multiple samples into a
unified evolutionary tree.

5. Mutation (cluster) co-localization can be inferred
from the solution set.

Data preparation

Various types of raw data are processed, in data-type
specific ways, into somatic events. Whole genome copy
number measurement: this is done either by whole
genome sequencing (WGS) or array comparative gen-
omic hybridization (aCGH) measurement on paired
tumor-normal samples from a cancer patient. In the
case of WGS, read depth is measured within large genomic
window (for example, 10 kb). For aCGH, hybridization
probe intensities are measured, and often averaged across
multiple probes. Relative copy number (RCN) measure-
ment is obtained by normalizing tumor read depth or
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hybridization intensity first to the total amount of DNA
per sample (for example, the total number of reads),
followed by normalizing to the corresponding measure-
ments in the normal sample. This normalization step
eliminates germline events shared by the tumor and the
normal tissue, and keeps somatic events. Whole genome
LOH measurement: the whole genome B-allele frequency
(BAF) measurement of the tumor sample is filtered to ex-
clude those SN'Vs that are identified as homozygous in the
paired-normal sample to generate somatic LOH event
profile, and from it a mirrored BAF (mBAF) [48] profile is
calculated by the following rule:

BAF, if BAF>0.5

mBAF = { 1-BAF, otherwise

Segmentation: the RCN derived from CNV or mBAF
measurement is then subjected to segmentation algo-
rithms, such as DNAcopy [49,50] or HMMSeg [51], to
identify continuous regions with the same copy number
of LOH state, and to delineate event boundaries of the
corresponding events. SNV AF estimation: deep sequen-
cing SNV data do not need to be segmented, however
their allele frequencies needs to be accurately estimated,
for example, using PyClone [37], which also performs
CP estimation.

Cell prevalence calculation

CP is defined as in what percent of all the cells being ex-
amined does one specific event exist. Different data types
require different techniques to perform this calculation.
Whole genome CNV events: for whole genome CNV
events derived from either WGS RD or aCGH probe in-
tensity data, it is important to have a good estimation
or, better yet, direct measurement, on the ploidy (p) and
purity (q). Various software packages already exist to es-
timate p and q, such as ASCAT [25], CNAnorm [52],
and ABSOLUTE [26]. Moreover, an absolute copy num-
ber state (ACN) needs to be called for every CNV event
from relative copy number state (RCN) that is usually in
the form of log2(Tumor / Normal ratio). For examples
shown in this paper, ACN is called with a Maximum
Likelihood method (described below). In the case of
whole genome sequencing, read depth were calculated
by counting the number of reads falling in each of a 10
kbp non-overlapping window. Afterward, the read depth
log2 ratio is obtained by:

RD,

Log2Ratio = | —
0g2Ratio = log, <RD,,)
where RD; and RD,, are the read depth of tumor and
paired normal sample corrected for total DNA quantity,
for any given window. Agilent aCGH microarray: same
procedure was applied, only that read depth was substituted
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with probe intensity of each probe the array reported.
However since the data file is already in log2 ratio form
(with the samples comparing to a reference sample), the
actual formula is slightly different:

Log2Ratio = Log2PI, — Log2PI,

where Log2PI, and Log2PI, are the log2 ratio of the
probe intensity. This is because the probe intensity log2
ratio can be expressed in the form of:

PI,
Log2PI; = log2< >

Pl
Log2PI, = lo ﬂ
gally = L0g, Pl
thus
PI; PI,
Log2Ratio = | — |-
0g2Ratio 0g, (Plr‘#) og, <Plref>

P,
lOg2 ﬁ

The ACN of each segment is assigned using maximum
likelihood estimation, assuming equal probability for all
possible subclone fractions. In the case of a diploid gen-
ome after correcting for purity, a deletion region with a
segmental log2 ratio between 0 and -1 will be called as
heterozygous deletion (unless significant high LOH is
observed, in which case homozygous deletion is called),
and a log2 ratio less than -1 will be called as homozy-
gous deletion. Once ACN is estimated, CP can be calcu-
lated as

‘*ACN+CP+2¢(1-CP) =  RCN
cp . ReN-2
ACN-2

in which RCN is the relative, non-discrete copy num-
ber and ACN is the called, absolute copy number that
only takes discrete integer value. LOH events: After seg-
mentation of the mBAF data mentioned above, CP of
each segment is calculated by the following equation

cp— 2u-1
n(1-u) + (2u-1)

in which u is the segmental mean and # is the ACN of
the segment (which can be estimated by applying the
CNV data processing technique described above to the
LRR track of SNP6 microarray). SN'Vs: with accurate al-
lele frequency estimation made available by ultra-deep
sequencing and software advancements [37], CP can also
be derived from SNVs along with allele specific copy
number quantifications. For example, in diploid regions,
CP = 2 - AF for heterozygous SNVs, and CP = AF for
homozygous SN'Vs.
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Clustering

Because the measurement of AF, and consequently CP, is
potentially noisy, we attempt to mitigate its effect
through clustering on CP to identify its modals. Exam-
ples shown in this paper are clustered with the kernel
density function in R, with its bandwidth calculated by
the Pilot Estimation of Derivatives [53]. Users can
choose to substitute with more advanced techniques,
such as MCLUST [54]. When multiple samples are avail-
able, it is important to perform clustering on multidimen-
sional space, in which the dimension equals the number
of samples, to identify separately inherited clusters.

Subclone structure reconstruction

Let E={e;}, i=1..m be the vector that contains all m
observed somatic event clusters, CP = {cp;} be the vec-
tor contains the cell prevalence of each event cluster e;
B={b,, .., bm}j,j =1..n be a row vector that the value

bé indicates whether a specific subclone j has the som-
atic event belongs to event cluster e; f/ € (0, 1) be the
fraction, out of the entire tumor, a specific subclone j
takes up. A subclone structure with # subclones can be
modeled as:

C={EB .f}j=1.n

Thus the problem of subclone structure reconstruc-
tion can be stated as, for any given observation data in
the form of {E, CP}, find n and C so that it would satisfy:

Bl
1 2 n BZ _
FLf2 "] x .| =cP

Bn

Subclone evolution tree enumeration
Due to the unique biology of tumorigenesis, we make
the following assumptions:

e Cells in a tumor mass are derived from germline
cells or parental, existing tumor cells through
mitosis, in which recombination is unlikely to occur.

e The same event (with respect to the boundary
resolution) would not spontaneously occur in two
subclones without a descendent relationship, nor
would pre-existing events revert back to the normal
state in a descendent subclone.

This means that if a late subclone C’ derived from an
earlier subclone Ck, Vi that bik =1, we have b{ =1.
Since no subclone can plausibly have a negative CP, this
relationship means that the subclone in which a particular
event with a higher CP cannot be the children of subclones
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containing events with a lower CP. Notice that there al-
ways exist one solution, in which the mutations with the
highest CP appeared first, and subclones emerge in a lin-
ear mutation accumulation fashion, that is, subclone j
contains all the mutations found in subclone (j-1), plus
the j-th highest CP mutation (or mutation cluster). More
generally, this property enables us to devise the follow-
ing iterative algorithm to enumerate all possible
structures.

Initialize a tree T with a root that contains no event
sort E descending by cell prevalence

treeEnum(T, E)

function treeEnum(T, E)
e = first_element(E)
for n in pre-order-traverse(T)
create a new node n’
n’.unique_events = {e}
add n’ to T as a child of n

if E.size ==1

Evaluate(T)
else

treeEnum(T, E-{e})
end-if

remove n’ from T
end-for

end-function

function Evaluate(T)
for n in post-order-traverse(T)
n.SF = n.unique_events.CP
if n is not leaf
n.SF -= sum(n.children.SF)
end-if
if n.SF < @ then abort end-if
end-for
output T

end-function

The function ‘Evaluate(T)” will, through a post-order
tree traverse, try to assign a subclone frequency (f, or SF)
value to each of the tree nodes so that at the end the
subclone structure will result in the observed data (E). If
the function visits a leaf node, it will assign the CP of
the event clusters uniquely contained in the node; if the
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function visits an internal node, it will assign the CP of
the event clusters uniquely contained in the node,
minus the sum of the SF of all its descendent nodes. If it
can do so without assigning any node a less-than-zero
SF, that specific tree structure is recorded as a feasible
solution.

This method will result in a tree-set, which contains
all the possible ways to partition the observed event
clusters into subclones, and the phylogeny between the
subclones. One can choose to further trim the set by ex-
ternal or internal linkage information, or perform co-
existence prediction.

Cross-sample merging

As mentioned earlier, enumerating through the entire solu-
tion space usually results in ambiguous answers. Yet a very
common clinical study scenario would contain data acqui-
sition from primary/relapse/normal sample trios. Since the
relapse tumor essentially represents a continuation of the
evolution process from the primary, attempts can be made
to further trim the solution space by trying to merge the
nodes on the relapse tree onto the primary tree, while sat-
isfying the following two conditions:

1. After merging, for any given non-leaf node, its
children node must have all the mutations presented
in the node itself (extra mutations are allowed).

2. No two branches shall have the same mutation
simultaneously without sharing a common parent
node who has that mutation.

These two conditions assure the fundamental assump-
tions concerning tumorigenesis aforementioned are met.
Through this process, if a specific primary (or relapse)
tree cannot be merged with any relapse (or primary)
tree, that specific tree is then an invalid solution, and
can be discarded.

Co-localization prediction

When a solution set contains more than one solution,
for any given pairs of somatic event clusters, a co-
localization frequency matrix (CLF) can be calculated as:

of solutions

Z PS;+ CL

i=1

CLF =

in which PS; is the probability that solution i is the
correct solution, which in case no prior knowledge is
available, can be calculated as

1

PS;=——
" of solutions

CL is a binary variable that describes whether the given
pair co-localize in solution i, which can either be 1, if in at
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least one subclone the event clusters co-localize, or 0, if in
none of the subclones the event clusters co-localize. This
framework allows us to estimate co-localization giving all
structures equal possibility to be true, or weight towards,
or against specific structures. (For example, one can rea-
sonably argue that it is generally unlikely for a patient to
develop two, separate tumor subclones without related by
an common ancestor, thus placing a lower prior on those
structures in which multiple subclones are derived directly
from the normal tissue).

Additional files

Additional file 1: Supplemental Materials.

Additional file 2: The dataset of SNVs of TCGA-13-0913 primary
and relapse samples.

Additional file 3: The dataset of CNVs of TCGA-13-0913 primary
and relapse samples.

Additional file 4: Sample datasets and scripts for running
SubcloneSeeker.
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