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We have optimized and extended the widely used annotation engine MAKER in order to better support plant genome
annotation efforts. New features include better parallelization for large repeat-rich plant genomes, noncoding RNA annotation
capabilities, and support for pseudogene identification. We have benchmarked the resulting software tool kit, MAKER-P, using
the Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) genomes. Here, we demonstrate the ability of the MAKER-P tool kit
to automatically update, extend, and revise the Arabidopsis annotations in light of newly available data and to annotate
pseudogenes and noncoding RNAs absent from The Arabidopsis Informatics Resource 10 build. Our results demonstrate that
MAKER-P can be used to manage and improve the annotations of even Arabidopsis, perhaps the best-annotated plant genome.
We have also installed and benchmarked MAKER-P on the Texas Advanced Computing Center. We show that this public
resource can de novo annotate the entire Arabidopsis and maize genomes in less than 3 h and produce annotations of
comparable quality to those of the current The Arabidopsis Information Resource 10 and maize V2 annotation builds.

Because high-throughput genome sequencing tech-
nology has become widely available, many genome
projects are now carried out by small groups with little
prior experience in genome annotation. A major chal-
lenge for these researchers is the generation and dis-
semination of high-quality gene structure annotations
for downstream applications. This is especially true for
plant genomics researchers, given that plant genomes
can be difficult targets for annotation: they are unusually
rich in transposable elements (Feschotte et al., 2002;
Schnable et al., 2009; Kejnovsky et al., 2012), have high

rates of pseudogenization (Thibaud-Nissen et al., 2009;
Zou et al., 2009; Hua et al., 2011), and contain many
novel protein-coding and noncoding RNA (ncRNA)
genes as revealed through RNA-Seq and proteomics
studies (Campbell et al., 2007; Hanada et al., 2007; Jiang
et al., 2009; Yang et al., 2009; Li et al., 2010; Lin et al.,
2010; Donoghue et al., 2011; Garg et al., 2011; Boerner
and McGinnis, 2012; Moghe et al., 2013). Plant genomes
are also relatively large compared with other eukary-
otes, representing some of the largest genomes in exis-
tence (Pellicer et al., 2010; Birol et al., 2013; Nystedt et al.,
2013), meaning that the time required to annotate a large
plant genome can be measured in months rather than
hours. Moreover, different plant genomes, and in some
cases even the same plant genome, have been annotated
using very different procedures and to very different
levels of accuracy. The plant genomics community is
thus in need of an annotation engine that will scale to
extremely large data sets; can produce accurate anno-
tations in a repeat- and ncRNA-rich genomic landscape;
integrate computational predictions and transcriptome
data; and compare, evaluate, merge, and update legacy
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annotations. Most importantly, this software must be
easy to use, as many of today’s plant genome sequenc-
ing groups have only limited bioinformatics expertise
and computational resources.

To achieve these goals, we have optimized and ex-
tended an established genome annotation engine,
MAKER (Holt and Yandell, 2011), for the plant genome
research community. Not only is MAKER portable and
easy to use, it is already in wide use by the animal and
fungal research communities (Kumar et al., 2012;
Amemiya et al., 2013; Eckalbar et al., 2013; Schardl
et al., 2013; Smith et al., 2013). MAKER, unlike existing
pipelines, can produce accurate annotations even in the
absence of training data (Holt and Yandell, 2011). Im-
portantly, MAKER generates a set of quality-control
measures to compare, evaluate, merge, and update
legacy annotations (Cantarel et al., 2008; Eilbeck et al.,
2009; Holt and Yandell, 2011).

We have extendedMAKER for better performance on
plant genomes, developing means for the annotation of
pseudogenes and ncRNAs, and optimized its paralleli-
zation for maximal performance on large, repeat-rich
plant genomes. The resulting software is available for
download, and a MAKER-P module is installed at the
Texas Advanced Computing Center (TACC) using the
iPlant Cyberinfrastructure (Goff et al., 2011).

Here, we benchmark MAKER-P’s accuracy and
speed using two previously annotated plant genomes:
Arabidopsis (Arabidopsis thaliana) and maize (Zea mays).
Our Arabidopsis results demonstrate that MAKER-P
can be used to manage and improve the annotations
of what is arguably the best-annotated plant genome.
Using a massively parallel version of MAKER-P on the
TACC, we also show that MAKER-P can de novo an-
notate the Arabidopsis and maize genomes in less than
3 h and that the resulting annotations are of comparable
quality to the current The Arabidopsis Information
Resource 10 (TAIR10) and maize V2 annotation builds.
Collectively, these results demonstrate that MAKER-P
provides the plant genomics community with a very
rapid and effective means for both de novo annotation
of new plant genomes and the management of existing
plant genome annotations.

RESULTS AND DISCUSSION

Choice of Target Species

We chose to benchmark MAKER-P using Arabidopsis
because it has a well-assembled reference genome and
its genome annotations have been subject to extensive
computational and manual curation (Lamesch et al.,
2012). In addition, there is a large pool of experimental
evidence available to aid the annotation of the Arabi-
dopsis genome, including traditional ESTs, full-length
complementary DNAs (cDNAs), and vast amounts of
RNA-Seq data (Rounsley et al., 1996; Paz-Ares, 2002;
Seki et al., 2002; Yamada et al., 2003). Moreover, The
Arabidopsis Information Resource (TAIR; Lamesch

et al., 2012) has put great effort into assigning evidence-
based quality values to each annotation via its five-star
rating system (The Arabidopsis Information Resource,
2009) in the current release of the Arabidopsis annota-
tion set (TAIR10; Lamesch et al., 2012). Thus, the Arab-
idopsis genome provides a perfect opportunity to
benchmark the performance of MAKER-P.

Gene-Level Accuracies

We first used the TAIR10 annotations as a gold stan-
dard with which to determine gene-level accuracies of
the ab initio gene finders Semi Hidden Markov model
[HMM]-Based Nucleic Acid Parser (SNAP; Korf, 2004)
and Augustus (Stanke and Waack, 2003; Stanke et al.,
2008). To do so, we ran SNAP and Augustus trained for
Arabidopsis both with and without MAKER-P. When
run within, MAKER-P can pass SNAP and Augustus
additional information regarding protein, EST, and
RNA-Seq evidence, allowing these programs to modify
their predictions based on the evidence (Holt and
Yandell, 2011). The results of this analysis are reported in
Table I. As can be seen, all three approaches achieve
similar gene-level accuracies. These results demonstrate
an established fact of gene finding: given sufficient
training data, good gene-level accuracies are relatively
easy to obtain (Guigó et al., 2006; Yandell and Ence,
2012). However, often no training data are available for
novel genomes. In such cases, ab initio gene finders
perform poorly, requiring an evidence-driven means of
genome annotation (Yandell and Ence, 2012). This phe-
nomenon is illustrated by the penultimate column in
Table I, wherein we have run SNAP using the maize
HMM as a surrogate for a poorly trained gene finder. In
this case, the gene-level accuracy is much poorer: 70%
compared with 82% using the Arabidopsis HMM. This
demonstrates that attempts to leverage training data
from other plants, maize in this example, are fraught
with difficulty, a fact that is well established (Korf, 2004;
Holt and Yandell, 2011; Yandell and Ence, 2012). The last
column of Table I reports the impact of running the same
version of SNAP trained for maize within the MAKER
software harness along with the RNA-Seq, EST/cDNA,
and protein evidence data sets, as described in “Mate-
rials and Methods.” This column of Table I demonstrates
that MAKER-P’s evidence-driven functions allow it to
achieve high gene-level accuracies even using poorly
trained ab initio gene finders, an observation consistent
with previous work using animal genomes (Holt and
Yandell, 2011) and one that demonstrates the utility of
MAKER-P as a means to annotate novel plant genomes.

Using Annotation Edit Distance to Measure
Exon-Level Accuracy

Gene-level accuracy is only the first step toward
producing a well-annotated genome. Gene annotations
must do more than simply overlap genes, as down-
stream applications require that their intron-exon
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structures and predicted protein sequences also be
correct. The accuracy of intron-exon structures is
usually assessed by means of exon-level or nucleotide-
level accuracy calculations using gold standard anno-
tations (for review, see Yandell and Ence, 2012). One
question that naturally arises in such analyses is how
to assess the accuracy of the gold standard annotations
themselves. MAKER-P, like its parent application
MAKER (Holt and Yandell, 2011), provides an auto-
mated means for addressing both these questions.
MAKER-P uses Annotation Edit Distance (AED; Cantarel
et al., 2008; Eilbeck et al., 2009; Holt and Yandell, 2011)
to measure the goodness of fit of an annotation to the
evidence supporting it. AED is a number between 0
and 1, with an AED of 0 denoting perfect concordance
with the available evidence and a value of 1 indicating
a complete absence of support for the annotated gene
model (Eilbeck et al., 2009). AED can be calculated
relative to any specific sort of evidence: EST and pro-
tein alignments, ab initio gene predictions, or RNA-Seq
data. In each case, the AED score provides a measure
of each annotation’s congruency with a particular type
or types of evidence. By plotting the cumulative dis-
tribution function (CDF) of AED across all annotations
(Holt and Yandell, 2011), a genome-wide perspective
of how well the annotations and/or ab initio gene
predictions reflect the EST, protein, and RNA-Seq
evidence can be obtained. Importantly, this can be

done even in the absence of a gold standard set of
reference annotations for that genome (for an example
comparing gene models produced by the ab initio gene
finder Augustus run with and without MAKER
supervision, see Supplemental Fig. S1). Similarly, the
same procedure can be used to evaluate the goodness
of fit between a gold standard annotation data set and
the evidence used to produce it. For additional in-
formation on AED, see Eilbeck et al. (2009), Holt and
Yandell (2011), and Yandell and Ence (2012).

Cross-Genome Validation

AED also makes possible cross-genome assessments
of annotation data sets in the context of each genome’s
own supporting evidence (Eilbeck et al., 2009; Holt
and Yandell, 2011). An example is shown in Figure 1,
which provides a genome-wide overview of the
goodness of fit of the TAIR10 annotations to the evi-
dence data sets used for our benchmarking analyses
(for evidence data set details, see “Materials and
Methods”). As can be seen, Arabidopsis is a very well-
annotated genome; overall, the congruency of the
TAIR10 annotations with this evidence is roughly
equivalent to that of the human RefSeq annotations, in
that greater than 85% of annotations have an AED
score less than 0.5 when compared with a previously
published analysis of human RefSeq annotations

Table I. Effects of MAKER-P’s supervision of gene finders on genome-level sensitivity and specificity

MAKER default, standard, and max refer to different MAKER gene-build options (see “Materials and Methods” and Supplemental Fig. S5).

Parameter
MAKER

Default

MAKER

Standard

MAKER

Max

Augustus Trained for

Arabidopsis Run outside

of MAKER

SNAP Trained for

Arabidopsis Run outside

of MAKER

SNAP Trained for

Maize Run outside

of MAKER

SNAP Trained for

Maize Run inside

of MAKER

Sensitivity 0.88 0.91 0.93 0.91 0.84 0.47 0.67
Specificity 0.93 0.91 0.81 0.93 0.81 0.92 0.94
Accuracy 0.90 0.91 0.87 0.92 0.82 0.70 0.80

Figure 1. AED CDF for TAIR10 annotations com-
pared with human RefSeq annotations. AED can
be used to assess how well an annotation set
agrees with its associated evidence. When plotted
as a cumulative AED distribution, multiple an-
notation sets can be visualized on the same plot.
Here, we have included the AED CDF for the
TAIR10 (orange line) annotation of Arabidopsis
and the human RefSeq (purple line) annotations
of human for purposes of comparison.
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(Lander et al., 2001; Venter et al., 2001; for details of the
data set, see “Materials and Methods”). Figure 1 also
demonstrates that our evidence set provides support
for 90% of the annotated genes in the TAIR10 data set.

Comparison of AED and TAIR’s Five-Star System

One advantage of using the TAIR10 annotations to
benchmark MAKER-P is that each TAIR10 annotation
has already been assigned a quality score via TAIR’s
five-star ranking system (The Arabidopsis Information
Resource, 2009), whereby the best-supported genes are
afforded five stars or four stars, with less well-supported
annotations assigned three-, two-, and one-star status.
Annotations with no external support are classified as
“no star.” Table II provides a breakdown of TAIR10
annotations by their star rating in the context of their
supporting evidence using the evidence data sets used
for our benchmarking analyses. Also shown in Table II
is the cumulative support for the TAIR10 annotations in
total and for the MAKER standard annotation build
produced using the same evidence (for details, see
“Materials and Methods”). Importantly, these results
demonstrate that (1) MAKER-P can automatically pro-
duce a de novo genome annotation data set of very
similar quality to the highly curated TAIR10 annotations
and (2) there is good concordance between the TAIR10
star rating and the degree of evidence support.

Next, we sought to determine the ability of MAKER-P
to revise and improve upon the preexisting TAIR10 an-
notations when fed new evidence. We first used MAKER-
P’s update functionality (Holt and Yandell, 2011) to
automatically update each of the TAIR10 annotations,
bringing each gene model into better agreement with the
available evidence, by means of extending and modifying
the exon coordinates of each existing TAIR10 gene an-
notation in light of RNA-Seq-based transcript assembly
data, EST, cDNA, and protein evidence (for details, see
“Materials and Methods”). Then we ran MAKER-P as we
would to annotate a novel genome using the same evi-
dence data set, allowing MAKER-P to create a new or
de novo set of gene annotations based upon the same
evidence that we used to update the TAIR10 annotations.

Figure 2 displays the cumulative AED distributions for
the MAKER de novo, the MAKER-updated TAIR10 an-
notations, and the original TAIR10 Arabidopsis annota-
tions as a reference. As can be seen, both the updated and
the de novo MAKER-P data sets are in better agreement
with supporting evidence than the original TAIR10 an-
notations. Much of the improvement, especially in the
case of the MAKER-P de novo annotations, is due to
the absence of poorly supported TAIR10 genes in the
MAKER-P de novo gene build. The MAKER-P de novo
gene build, for example, contains 1,250 fewer genes than
the TAIR10 data set. In total, there are 2,368 genes present
in TAIR10 that are absent from theMAKER de novo gene
build. Sixty percent of the absent models are single-exon
genes; 53% are one- or no-star gene-models; but 96% of
all TAIR five-, four-, three-, and two-star transcripts are
present. We also evaluated MAKER-P’s performance
using a subset of genes with a one-to-one relationship
between the TAIR10 and MAKER-P de novo annotations
shown in Figure 2 and allowed MAKER-P to update
the TAIR10 annotations. These results are shown in
Supplemental Figure S2 and demonstrate that MAKER-P’s
improvements to the TAIR10 gene models are not solely
due to having culled the unsupported TAIR10 gene
models; rather, the improvements are made across the
entire TAIR10 data set. Figure 3 demonstrates this fact
quite clearly. There is excellent agreement between the
TAIR10 manually curated evidence classifications and
MAKER’s automatic AED-based quality-control scheme,
cross validating bothMAKER-P’s AED and TAIR10’s star
rating approaches to assigning confidence levels to indi-
vidual annotations. For five-star TAIR10 genes, 94% have
AED scores of less than 0.5, whereas only 33% of one-star
genes have an AED less than 0.5. Note that the four- and
five-star genes’ AED curves are very similar. This is be-
cause under the TAIR system, genes supported entirely
by a single piece of evidence (usually a single full-length
cDNA) are afforded five-star status, whereas an annota-
tion completely supported by tiled evidence is afforded
four-star status. MAKER-P’s AED calculation makes no
such distinction; hence, the two curves are quite similar.

Figure 3 also demonstrates another important point:
the greatest improvements are made to the highest

Table II. Breakdown of evidence types supporting TAIR10 and MAKER-P annotations

The percentage of MAKER standard and TAIR10 annotations are broken down by star rating with Pfam domains, homology to eukaryotes in RefSeq,
or various combinations of RNA-Seq/EST/cDNA evidence.

Star Rating

Fraction of

Annotations

with Pfam Domains

Fraction of Annotations

with Eukaryotic RefSeq

Protein Homology

Fraction of

Annotations with Spliced

RNA-Seq Support

Fraction of

Annotations with

RNA-Seq Support

Fraction of Annotations

with Any RNA Support

(mRNA-Seq, EST, cDNA)

Five stars (n = 7,880) 0.76 0.81 0.42 0.79 0.96
Four stars (n = 12,654) 0.87 0.84 0.94 0.95 0.99
Three stars (n = 2,087) 0.80 0.80 0.53 0.71 0.85
Two stars (n = 2,188) 0.81 0.79 0.64 0.69 0.80
One star (n = 1,788) 0.54 0.61 0.06 0.22 0.40
No star (n = 604) 0.14 0.22 0.02 0.04 0.07
TAIR10 representative

transcripts (n = 27,206)
0.79 0.79 0.65 0.80 0.90

MAKER standard (n = 25,956) 0.79 0.72 0.66 0.82 0.93

516 Plant Physiol. Vol. 164, 2014

Campbell et al.

http://www.plantphysiol.org/cgi/content/full/pp.113.230144/DC1


confidence TAIR10 gene models. The dotted lines de-
note the AED curves for the MAKER-updated TAIR10
annotations. Note that the greatest MAKER-P-mediated
improvements to the TAIR10 gene models are seen for
two-star through five-star genes. While this may seem a
paradoxical result, it is wholly expected. Single-star and
no-star genes by definition have little supporting evi-
dence; hence, there is little raw material available to
MAKER-P with which to effect revisions. In contrast,
the better supported genes (two-star through five-star
annotations) have correspondingly more evidence, some
supporting, some contradicting, the TAIR10 models. It
is thus to the best-supported gene models under the
TAIR10 classification system that MAKER-P is able to
make the most positive changes. This is an important
point, and it demonstrates a key strength of MAKER-P.
Highly supported, highly expressed genes often have

some data that strongly support a given transcript
model. A single full-length cDNA, for example, may
confirm the entire exon-intron structure of the anno-
tated transcript, affording that model five-star status.
Contradictory evidence is not considered under the
TAIR scheme; however, it is considered by MAKER-P.
This means that the resulting MAKER-P transcript
structure is not necessarily a perfect match to any given
piece of evidence but rather reflects the best-possible
gestalt of all of the evidence for that gene. Conse-
quently, no matter how well supported a gene model, it
will have an AED greater than 0 if other evidence
contradicts that model. The ability of AED to take into
account both confirming and contradictory evidence is
a key strength of the MAKER-P approach. The fact that
MAKER-P is able to effect positive revisions to what
would appear to be the best-annotated genes in the

Figure 2. MAKER-P de novo annotation and up-
date of TAIR10 annotations. AED CDF curves are
shown for MAKER-P run as a de novo plant an-
notation engine (green curve) and when used to
update the existing TAIR10 gene annotation data
set (blue curve), bringing it into better agree-
ment with the evidence. Both MAKER-P data sets
improve upon the existing TAIR10 annotations
(orange curve).

Figure 3. MAKER-P improvements in AED are
distributed across the entire TAIR10 data set. The
cumulative AED distributions for the TAIR10
representative transcripts are broken down by the
TAIR star rating system. Note the excellent
agreement between the TAIR10 manually curated
evidence classifications and MAKER’s automatic
AED-based quality-control scheme. The dotted
lines denote the AED curves for the MAKER-P-
updated TAIR10 annotations.
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TAIR10 data sets (five- and four-star genes) demon-
strates the strength of the AED approach to quality
control. Further insight into the nature of these revisions
is provided in Table III, which focuses on gene models
with alternatively spliced transcripts

Alternative Splicing

MAKER-P annotates only the most certain of alter-
natively spliced transcripts, those with clear support for
differential internal exon (cassette splicing); hence, the
number of alternatively spliced transcripts is very lim-
ited compared with TAIR10. MAKER-P’s update func-
tionality, on the other hand, provides a means to update
individual alternatively spliced transcripts. MAKER-P
deleted or merged 184 alternatively spliced transcripts
and added an average of 19 59 untranslated region
(UTR) nucleotides and 32 39 UTR nucleotides per
transcript genome wide. The cumulative effects of the
revisions are shown in the last column of Table III; prior
to revision, 79% of TAIR10 transcripts had an AED less
than 0.2. After revision, the proportion of gene models
with AED less than 0.2 has climbed to 82%. MAKER-P
thus provides a rapid and automated means to improve
even intensively manually curated alternatively spliced
gene models.

Repeats

Plant genomes can be difficult targets for annotation
because they can be unusually rich in transposable ele-
ments (Bennetzen, 2005; Schnable et al., 2009), have high
rates of pseudogenization (Zou et al., 2009; Hua et al.,
2011), and contain many novel ncRNA genes as
revealed through RNA-Seq (Fahlgren et al., 2007; Sunkar
et al., 2008). We have attempted to address these points
with the MAKER-P project. Although MAKER-P
employs RepeatMasker (A.F. Smit, R. Hubley, and P.
Green, unpublished data) as well as its own internal
repeat-finding method (Cantarel et al., 2008), novel ge-
nomes, especially plant genomes, often contain new
classes of repeats absent from both RepBase (Jurka et al.,

2005) and fromMAKER’s internal repeat library (Cantarel
et al., 2008). Failure to identify, annotate, and mask re-
peats during the gene-finding stages of annotation can
result in spurious gene calls and lead to the creation of
gene models containing portions of transposons and
retrotransposons in the form of exons derived from
transposon sequences fused to legitimate protein-coding
genes. Although there exist several packages to identify
repeats and to construct repeat libraries for new ge-
nomes (for discussion, see Lerat, 2010), many MAKER
users report that these tools are difficult to use. More-
over, the resulting output of existing packages often
contains nontransposon genes or gene fragments, which
may lead to the masking of bona fide genes. To address
this point, the MAKER-P tool kit now contains two
guided tutorials, walking users through a series of steps
necessary to create their own custom repeat library. The
basic tutorial describes the process of generating a
species-specific repeat library suitable for repeat mask-
ing prior to protein-coding gene annotation with
MAKER or MAKER-P. The advanced tutorial explains
how to classify repeats identified using the basic tutorial
into families. For the Web addresses for both tutorials,
see Table IV. We used the approach outlined in the basic
tutorial to construct a novel Arabidopsis repeat library
and then assayed the impact of using it for de novo
annotation of Arabidopsis, using AED to evaluate the
results. These data are shown in Supplemental Figure
S3. In this case, we found little difference in MAKER-P’s
performance. However, Arabidopsis is not an ideal ge-
nome to demonstrate the effect of repeats on gene an-
notation, because the Arabidopsis genome contains the
fewest repeats among all the sequenced plant genomes
with the exception of the carnivorous bladderwort plant
Utricularia gibba (Arabidopsis Genome Initiative, 2000;
Slotkin et al., 2012; Ibarra-Laclette et al., 2013).

Pseudogenes

With MAKER-P, we have also extended MAKER
to include means for the annotation of pseudogenes
and ncRNAs. These tools are included in the
MAKER-P tool kit (see “Materials and Methods”). We

Table III. Features of alternatively spliced genes in the MAKER-P de novo annotation of Arabidopsis, TAIR10, and a MAKER-P update of TAIR10

Comparison is shown for structural features between alternatively spliced genes generated by MAKER run de novo, TAIR10, and MAKER updating
TAIR10.

Feature MAKER-P TAIR10 MAKER-P Update of TAIR10

No. of alternatively spliced genes 3,024 5,804 5,726
No. of alternatively spliced transcripts 7,190 13,774 13,590
Average exons per transcript 10.18 7.79 7.82
Total transcripts with 59 UTR 5,708 12,714 12,352
Total transcripts with 39 UTR 6,195 13,148 13,198
Average nucleotides per transcript 2,029.87 1,737.20 1,788.76
Average nucleotides per coding sequence 1,617.68 1,333.73 1,333.26
Average 59 UTR length 169.18 160.13 179.41
Average 39 UTR length 243 243.34 275.22
Fraction of transcripts with AED less than 0.2 0.81 0.79 0.82
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benchmarked them on the Arabidopsis genome. The
MAKER-P pseudogene tools define pseudogenes as
unannotated genomic regions with significant resem-
blance to annotated protein sequences from the ge-
nome in question (e.g. Arabidopsis; see “Materials and
Methods”). In total, we identified 4,204 pseudogenes.
Among these presumed pseudogenes, 2,277 have at least
one premature stop and/or frame shift (referred to as
disabling substitutions). Although the rest are without
disabling substitutions, the median pseudogene length is
175 bp (Supplemental Fig. S4), significantly shorter than
those of TAIR10 genes and annotated pseudogenes.
Thus, they are severely truncated genes that likely have
no function. Because our method relied on the use of
annotated protein-coding genes, all pseudogene anno-
tations have significant similarities to known Arabi-
dopsis proteins. Nonetheless, 18% have RNA-Seq
coverage. If the analysis pipeline is applied to the whole
genome, 2.5% and 0.6% of currently annotated protein-
coding genes are identified as pseudogenes due to the
presence of misidentified stops and frame shifts, re-
spectively, indicating that the false-positive rate of our
pipeline is 3.1%. Assuming that the pseudogene and its
most closely related functional gene are paralogous, we
found that the most commonly occurring domains in
progenitors that gave rise to pseudogenes are F-box and
related domains, RNase H, and protein kinase. Although
the size of a domain family with annotated genes gen-
erally correlates with the number of pseudogenes, fam-
ilies differ significantly in their pseudogene:gene ratio.
For example, the pseudogene:gene ratios differ signifi-
cantly between F-box (152:567) and protein kinases
(54:1,021; P , 2.2 3 e-16), demonstrating that these
families differ greatly in their loss rates.

ncRNAs

Using nine small RNA-Seq data sets of Arabidopsis
(Supplemental Tables S1 and S2), the MAKER-P
ncRNA tools identified 807 ncRNAs in total. The in-
tersections of our predictions and TAIR10 annotations

are summarized in Table V for tRNA, ribosomal RNA,
small nucleolar RNA (snoRNA), microRNA (miRNA),
and other types of ncRNA genes. It is worth noting that
the number of identified ncRNAs, especially miRNAs,
heavily depends on the RNA-Seq data. Some previ-
ously annotated ncRNAs are not transcribed or have
extremely low transcription levels (e.g. one mapped
read) in the RNA-Seq data we used for our analyses.

Community Availability

Web addresses, download sites, and passwords
(where applicable) for all tools, data sets, and online
documentation described in this report are listed in
Table IV. MAKER-P, like its parent package MAKER,
is a multithreaded, fully message passing interface-
compliant annotation engine (Holt and Yandell, 2011).
MAKER-P was specifically optimized for improved
functionality on the iPlant infrastructure relative to
MAKER and is packaged with the necessary launch
scripts to ensure optimal performance. MAKER-P also
includes integrated means for tRNA and snoRNAs.
MAKER-P is available to iPlant users as a supported
module on the TACC Lonestar cluster (for usage instruc-
tions [specifically “iPlant MAKER-P documentation”], see
Table IV). The MAKER-P tool kit is freely available for
academic use; for download information, see Table IV.

Speed Benchmarks

We first used the Arabidopsis genome to benchmark
MAKER-P’s performance on the TACC, which hosts
the iPlant compute infrastructure. Using 600 central
processing units (CPUs), we were able to complete the
entire de novo annotation of the Arabidopsis assembly
(approximately 120 Mb) in 2 h and 44 min. Even faster
compute times can be achieved using additional CPUs
and/or by launching multiple instances of MAKER-P
(e.g. chromosome by chromosome). By doing so, we
were able to perform the same annotation in 1 h and

Table IV. Locations of all software and data sets

Software, User Tutorials, or Data Sets Download Location and Password if Applicable

MAKER-P (version 2.29) download http://www.yandell-lab.org/software/maker-p.html
WebApollo download https://code.google.com/p/apollo-web/downloads/list
TAIR10, maize, and MAKER-P annotation GFF3 files http://weatherby.genetics.utah.edu/A_thaliana/ (username, MAKER-P;

password, marksentme)
iPlant MAKER-P documentation https://pods.iplantcollaborative.org/wiki/display/sciplant/

MAKER-P+Documentation
Basic MAKER tutorial http://weatherby.genetics.utah.edu/MAKER/wiki/index.php/MAKER_Tutorial
Pseudogene pipeline download and tutorial http://shiulab.plantbiology.msu.edu/wiki/index.php/Protocol:Pseudogene
miR-PREFeR https://github.com/hangelwen/miR-PREFeR
tRNAscan-SE http://selab.janelia.org/software.html
snoscan http://lowelab.ucsc.edu/snoscan/
Basic repeat library construction tutorial http://weatherby.genetics.utah.edu/MAKER/wiki/index.php/

Repeat_Library_Construction-Basic
Advanced repeat library construction tutorial http://weatherby.genetics.utah.edu/MAKER/wiki/index.php/

Repeat_Library_Construction-Advanced
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27 min on 1,500 CPUs. An additional benchmarking
analysis using the maize assembly (approximately 2 Gb)
and 2,172 CPUs finished in 2 h and 53 min (Fig. 4).
Run times are both a function of the evidence data set
presented for alignment as well as the gene density of
a genome, but the observed throughput of greater than
500 Mb h21 demonstrates that even the largest of plant
genomes could be annotated in a reasonable time frame
by leveraging MAKER-P’s scalability. Supplemental
Figure S5 compares the resulting MAKER-P maize an-
notations with those of the current chromosome 10 V2
annotations available at MaizeGDB. As can be seen, the
MAKER-P results compare favorably with the V2 an-
notations, with MAKER-P generating 3,059 gene an-
notations on this chromosome, an additional 365 gene
annotations compared with the current V2 build. All
of the 365 additional MAKER-P annotations are sup-
ported by RNA-Seq, EST, protein, or Pfam domain ev-
idence and have overall better AED scores (Supplemental
Fig. S6). Moreover, MAKER-P’s annotation of alterna-
tively spliced transcripts (Supplemental Table S3) mirrors
its performance on the Arabidopsis genome (Table III),
further demonstrating that MAKER-P can produce
highly accurate maize annotations and that it can system-
atically improve upon the quality of the existing V2 an-
notation build. Collectively, these results demonstrate

that, using MAKER-P, a single investigator can carry
out the de novo annotation of a grass genome and/or
update its existing genome annotations with new
RNA-Seq data in a few hours.

Redistribution of Annotations

Dissemination of genome annotations, especially
those of novel genomes, to the wider biological com-
munity is often a bottleneck for genome annotation
projects. To remedy this problem, we have worked
with the WebApollo project (Lee et al., 2013) to pro-
vide MAKER and MAKER-P users with easy means
to distribute their annotation data sets to the wider
community. MAKER-P’s outputs are fully WebApollo
ready; thus, a WebApollo database can be constructed
and placed online within hours of finishing an anno-
tation run using ether the downloadable version of
MAKER-P run locally on a user’s machine or using the
community iPlant version installed on the TACC. As
proof of principle, we constructed a WebApollo data-
base containing the TAIR10, MAKER-P de novo,
and MAKER-P updated annotations, the pseudogene
and ncRNA annotations, and their associated protein
and RNA-Seq evidence described in this report. This
database is available online at http://weatherby.
genetics.utah.edu:8080/WebApollo_A_thaliana (user-
name, MAKER-P; password, marksentme). For ex-
ample, click the edit button on the first page, then
drag and drop any data set shown on the left-hand
panel into the JBrowse central frame. For additional
details and data set download locations, see Table IV.
WebApollo has many features that will benefit the plant
genomes community. For example, WebApollo pro-
vides functionality for remote editing of the annotations
and supports concurrent users, meaning that it can be
easily deployed in the classroom for purposes of
hands-on instruction and rapidly deployed in support

Table V. ncRNA annotations

The numbers of ncRNA annotations broken down by type in the
TAIR10 and MAKER-P annotation sets are shown. The last column
shows the number of each type of ncRNA annotated in both sets.

RNA TAIR10 MAKER-P
Annotated by TAIR10

and MAKER-P

tRNA 631 633 628
Ribosomal RNA 4 18 4
snoRNA 71 70 64
miRNA 180 348 131
Others 480 38 19

Figure 4. MAKER-P run times on the entire maize
V2 genome assembly versus the number of pro-
cessors used. Increasing the number of processors
given to MAKER-P decreases the run time. Run
time is less than 4 h using fewer than 500 CPUs,
decreasing to less than 3 h with 1,092 CPUs.
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of distributed genome jamborees that aim to rapidly
curate all or a specific subset of the gene annotations.
Figure 5 shows a screen shot for the TAIR10 AT5G03540
gene from the database. Note that this TAIR10 gene has
three annotated transcripts, two four-star and one two-
star transcripts; as expected, the MAKER-P default
model summarizes these with a single consensus tran-
script (minus the fourth exon of AT5G03540.3, for which
there is no RNA-Seq, EST, or cDNA evidence). The
MAKER-P update of the TAIR10 gene model main-
tained all three transcripts, each containing additional
59 and 39 UTR sequences, as suggested by the RNA-Seq
data, improving the overall AED of this gene model to
0.04 compared with the AED of 0.06 of the original
TAIR10 gene model.

CONCLUSION

Today, the evidence for genome annotations evolves
more rapidly than the annotations. In many cases, an-
notations fall out of synchronization with the available
evidence almost as soon as they are created. MAKER-P
provides a solution to this problem, providing a means

to rapidly update a genome’s annotations, bringing
them into synchronization with the latest data sets. As
we have demonstrated, the greatest revisions are ac-
complished for those genes with the most evidence. In
such cases, the quantity and complexity of RNA-Seq
data supporting and contradicting even the most
established gene models can confound attempts by
human annotators to produce consistent, coherent gene
models. MAKER-P, in contrast, guarantees a constant,
complete analysis of these data, resulting in demon-
strable improvements to the annotations of even the
well-annotated Arabidopsis genome. Moreover, our
time trials using the maize genome demonstrate that
even large, complex plant genomes can be annotated in
only a few hours using the version of MAKER-P in-
stalled on the iPlant resources at TACC. The availability
of MAKER-P within the iPlant Cyberinfrastructure will
grant independent plant genome researchers the ability
to rapidly annotate new plant genomes, to revise and
manage existing ones, and to create online databases
for the distribution of their results. MAKER-P thus
provides the plant genome research community with a
basic resource that democratizes genome annotation.

Figure 5. MAKER-P annotations can be easily visualized using WebApollo. This view from WebApollo shows the original
TAIR10 AT5G03540 gene transcripts (orange), the MAKER-P de novo gene annotation at that locus (blue), and the MAKER-P-
updated AT5G03540 gene transcripts (green). A subset of the mRNA-Seq and EST/cDNA data are shown in beige.
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MATERIALS AND METHODS

Evidence Sources and Assembly

Sequence evidence used for annotation byMAKER-P consisted of SwissProt
protein data, EST and cDNA sequences from Arabidopsis (Arabidopsis thali-
ana), and transcript assemblies derived from publicly available RNA-Seq
data sets. A SwissProt data file containing only protein sequences from
plants was obtained from UniProt (release 2011_12). All Arabidopsis proteins
were removed from this file, and only the non-Arabidopsis plant proteins
were used when running MAKER-P. A file of Arabidopsis EST sequences
(ATH_EST_sequences_20101108.fas) was obtained from TAIR (Lamesch et al.,
2012). Full-length Arabidopsis cDNA sequences were downloaded from the
National Center for Biotechnology Information (NCBI) Nucleotide database
(Benson et al., 2013). Forty-seven RNA-Seq data sets derived from different
Arabidopsis tissues and/or grown under different conditions were collected
from the NCBI Short Read Archive (Supplemental Table S4; Wheeler et al.,
2008). The reads from each file were cleaned using programs from the FASTX
tool kit (version 0.0.13; http://hannonlab.cshl.edu/fastx_toolkit/). Fastx_clipper
removed Illumina adapter sequences, and fastx_artifacts_filter removed any
aberrant reads. Finally, fastx_quality_trimmer removed nucleotides with Phred
scores less than 30 and discarded reads less than 20 bases long. The Trinity
transcript assembly package (r2011-11-26) was used to generate transcript as-
semblies with lengths of 150 nucleotides or longer (Grabherr et al., 2011). The 47
RNA-Seq data sets were from 17 Short Read Archive studies and were thus
assembled into 17 different transcript assemblies (Supplemental Table S4). All
RNA-Seq data were treated as single-end reads in order to avoid aligning
transcripts with stretches of Ns. The same procedures were used for the maize
(Zea mays) data sets detailed in Supplemental Table S5.

Human annotations for release 37.2 were downloaded from the NCBI. AED
metrics were computed using all mouse proteins from release 37.1, all
UniProt/SwissProt proteins minus human proteins, and all human ESTs in
dbEST.

Repeat Library

In this study, we established two protocols to satisfy the demands of
different users. For the basic protocol (for the Web address of the tutorial,
see Table IV), RepeatModeler (http://www.repeatmasker.org/RepeatModeler.
html) was used to process the genomic sequences with all Arabidopsis repeats
excluded from the RepeatMasker repeat library so that the Arabidopsis ge-
nome would act as a “novel” genome. Among the repetitive sequences gen-
erated by RepeatModeler, some are classified, and they are considered as
transposable elements. Sequences with unknown identity from Repeat-
Modeler were searched against a transposase database (without Arabi-
dopsis transposase), and sequences matching transposases were considered
as transposons belonging to the relevant superfamily. Many transposable ele-
ments carry genes or gene fragments. To exclude gene fragments, all repeats
were searched against a plant protein database with transposon proteins ex-
cluded. Sequences matching plant proteins as well as 50 bp of flanking sequence
were excluded. After the exclusion, if the remaining portion of the sequence was
shorter than 50 bp, the entire sequence was excluded.

For the advanced protocol (for theWeb address of the advanced tutorial, see
Table IV), we used a combination of structure-based and homology-based
approaches to maximize the opportunity for repeat collection. Briefly, se-
quences of miniature inverted repeat transposable elements were collected
using MITE-Hunter (Han andWessler, 2010) with all default parameters. Long
terminal repeat retrotransposons were collected using LTR-harvest and LTR-
digest (Ellinghaus et al., 2008; Steinbiss et al., 2009), followed by a filtering to
exclude false positives. To reduce redundancy, representative sequences (ex-
emplars) were chosen as described previously (Schnable et al., 2009). To collect
other repetitive sequences, the genomic sequence was then masked using
the long terminal repeat and miniature inverted repeat transposable element
sequences. The unmasked sequence was extracted and processed by
RepeatModeler. The gene fragments contained in all repetitive sequences
were excluded as described above. More details can be found in the advanced
repeat library construction tutorial; its Web location is given in Table IV. The
libraries made through different protocols masked different percentages of the
genome (Supplemental Table S2); however, the use of the basic protocol versus
the advanced protocol did not significantly affect the overall AED distribution or
gene-level accuracy. The resulting annotation with the basic transposable ele-
ment library is a possible exception, generating a slightly lower accuracy and
slightly higher overall AED scores (Supplemental Fig. S3).

MAKER-P de Novo Annotation of Arabidopsis

MAKER-P 2.27 r1020 was run on Arabidopsis (TAIR10 assembly) using the
assembled Arabidopsis mRNA-Seq data, a set of traditional ESTs and full-
length cDNAs, and a set of plant proteins from UniProt/SwissProt as evi-
dence. Repetitive regions were masked using a custom repeat library. The
details surrounding evidence and repeat library generation were described
above. Additional areas of low complexity were soft masked (Korf et al., 2003)
using RepeatMasker to prevent seeding of evidence alignments in those re-
gions but still allowing the extension of evidence alignments through them
(Korf et al., 2003; Cantarel et al., 2008). Genes were predicted using SNAP
(Korf, 2004) and Augustus (Stanke and Waack, 2003; Stanke et al., 2008)
trained for Arabidopsis or maize using MAKER-P in an iterative fashion as
described for MAKER by Cantarel et al. (2008).

Generating MAKER-P Default, Standard, and Max Builds

When using MAKER-P to generate de novo annotations for a genome, users
can choose from three different options to produce their final annotation data
set: default, standard, and max. The MAKER-P default build consists only of
those gene models that are supported by the evidence (i.e. AED less than 1.0).
The default build is thus very conservative. The MAKER-P standard build
(which was used in Fig. 2 and Tables I and II) includes every gene model in the
default build, plus every ab initio gene prediction that (1) encodes a Pfam
domain as detected by InterProScan (Quevillon et al., 2005) and (2) does not
overlap an annotation in the MAKER default set. The MAKER-P max build
includes every gene model in the default build plus every ab initio gene
prediction that does not overlap an annotation in the MAKER default set,
regardless of whether it encodes a Pfam domain. When using TAIR10 as a
gold standard, the MAKER-P default build had the highest specificity, the
MAKER-P max build had the highest sensitivity, and the MAKER-P standard
build balances sensitivity and specificity to give the highest overall accuracy,
which is why we used it for the comparisons in this paper (Supplemental
Fig. S5). MAKER-P annotation of alternative transcripts was not evoked
unless specified in the text.

Generating AED Scores for TAIR10 and Gene
Finders Only

AED scores for the TAIR10 annotation set were generated using MAKER-P
2.27 r1020. The TAIR10 annotations were passed to MAKER-P as gene models
in a GFF file and evaluated against the same evidence and repeat library used
for the MAKER-P de novo annotation. This allowed MAKER-P to calculate
AED scores for each of the TAIR10 annotations without allowing MAKER-P to
modify the annotation in any way. This same procedure was used to generate
AED scores for the ab initio gene predictions generated without MAKER-P
supervision.

MAKER-P Update of TAIR10

The TAIR10 gene models were passed to MAKER-P as gene predictions
with the same evidence and repeat library used for the MAKER-P de novo
annotation. This allows MAKER-P to update the TAIR10 annotations to better
match the evidence.

Pseudogene Identification

We adapted a previously published pseudogene pipeline for use with
MAKER-P (Zou et al., 2009). To identify genomic regions likely to be pseu-
dogenes, we first searched the Arabidopsis genome using all Arabidopsis
annotated protein sequences as queries. The output was filtered based on the
following thresholds: E value , 1e-5, identity greater than 40%, match length
greater than 30 amino acids, and coverage greater than 5% of the query se-
quence. The filtered matches provide pseudoexon definitions. These pseu-
doexons that are less than 457 bp (95th percentile of the intron length
distribution) from each other and having matches to the same protein are
concatenated together to form putative pseudogenes. Pseudogenes over-
lapping with annotated protein-coding regions were removed from the data
set. Finally, pseudogenes with significant similarity to known Viridiplantae
repeats (cutoff = 300, divergence = 30; RepeatMasker 3.3.0) were discarded.
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This MAKER-P pseudogene identification pipeline is available for download
at the location given in Table IV.

tRNA and snoRNA Annotation

MAKER-P features integrated means for the annotation of tRNAs and
snoRNAs. tRNAs are identified using tRNAScan-SE (Lowe and Eddy, 1997)
and snoRNAs with snoscan (Lowe and Eddy, 1999). Both tools are now
supported and integrated within the MAKER-P software harness, and their
outputs are included in MAKER-P’s GFF outputs, where they are described
using the sequence ontology terms tRNA and snoRNA, respectively.

miRNA Annotation

Our ncRNA annotation pipeline uses multiple ncRNA homology search
tools (described below) and small RNA RNA-Seq data to identify tran-
scribed ncRNAs. There are three major components in the pipeline. First, we
employ Infernal (Nawrocki et al., 2009), a stochastic context-free grammar-
based general ncRNA search tool to identify ncRNA homologs to annotated
ncRNA families in Rfam (Gardner et al., 2009). The output of this step
provides candidate ncRNA genes. However, it is known that genome-scale
stochastic context-free grammar searches can incur high false-positive rates.
In order to discard false predictions, we evaluate the expression levels of
the candidate ncRNAs in the second step. As the expression of many types
of ncRNAs is condition and tissue specific, we quantified the expression
levels of these putative ncRNAs in multiple small RNA-Seq data sets
(Supplemental Tables S1, S2, and S7), which were sequenced from different
tissues and conditions. All ncRNAs that were expressed in at least one RNA-
Seq data set were validated using family-specific properties. tRNAScan-SE
(Lowe and Eddy, 1997) and snoscan (Lowe and Eddy, 1999) were applied to
candidate tRNAs and snoRNAs, respectively. For miRNAs, we used our
own miRNA identification tool, miR-PREFeR. miR-PREFeR and its docu-
mentation are available for download at https://github.com/hangelwen/
miR-PREFeR. When running this tool on Arabidopsis, we used the prop-
erties that are associated with the biogenesis of miRNA maturation as fea-
tures and trained an Alternating-Decision-tree-based classification model to
distinguish true from false stem loops. The features we examined include
the expression pattern of the mature miRNA and miRNA* (for the RNA
strand that does not go on to become the active miRNA), 39 overhang,
secondary structure, minimum free energy, existence of the regulation target
(miRNA target finding), number of samples in which the miRNA is
expressed, and expression-level change across multiple RNA-Seq samples.
All ncRNAs that pass the three-step pipeline are reported in Table V. The
total run time for miR-PREFeR on Arabidopsis was 12 h and 21 min using
four processing cores and nine RNA-Seq samples.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Performance of an ab initio gene finder improves
when supervised by MAKER.

Supplemental Figure S2. MAKER-P’s improvements to the TAIR-10 gene
models are not limited to culling of poorly supported gene models or
merging gene models.

Supplemental Figure S3. Basic versus advanced repeat library generation
has little effect on overall AED in Arabidopsis.

Supplemental Figure S4. Length distributions of genic and pseudogene
features.

Supplemental Figure S5. Benchmarks of MAKER-P using the TAIR10 an-
notation dataset.

Supplemental Figure S6. Maize chromosome 10 analysis of V2 gene
models.

Supplemental Table S1. RNA-Seq data sources used for miRNA identifi-
cation from the NCBI’s Sequence Read Archive.

Supplemental Table S2. RNA-Seq data sources used for miRNA identifi-
cation from Massively Parallel Signature Sequencing Database.

Supplemental Table S3. Features of alternatively spliced genes in the
MAKER-P de novo annotation of maize chromosome 10.

Supplemental Table S4. RNA-Seq data sources used for Arabidopsis
benchmarks.

Supplemental Table S5. RNA-Seq data sources used for maize
benchmarks.

Supplemental Table S6. Percentage of genomic sequences masked by dif-
ferent repeat libraries.

Supplemental Table S7. RNA-Seq data sources used for small RNA iden-
tification from the NCBI’s Gene Expression Omnibus.
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