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Abstract

Modern DNA sequencing technologies enable geneticists to rapidly identify genetic variation among many human
genomes. However, isolating the minority of variants underlying disease remains an important, yet formidable challenge for
medical genetics. We have developed GEMINI (GEnome MINIng), a flexible software package for exploring all forms of
human genetic variation. Unlike existing tools, GEMINI integrates genetic variation with a diverse and adaptable set of
genome annotations (e.g., dbSNP, ENCODE, UCSC, ClinVar, KEGG) into a unified database to facilitate interpretation and
data exploration. Whereas other methods provide an inflexible set of variant filters or prioritization methods, GEMINI allows
researchers to compose complex queries based on sample genotypes, inheritance patterns, and both pre-installed and
custom genome annotations. GEMINI also provides methods for ad hoc queries and data exploration, a simple
programming interface for custom analyses that leverage the underlying database, and both command line and graphical
tools for common analyses. We demonstrate GEMINI’s utility for exploring variation in personal genomes and family based
genetic studies, and illustrate its ability to scale to studies involving thousands of human samples. GEMINI is designed for
reproducibility and flexibility and our goal is to provide researchers with a standard framework for medical genomics.
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Introduction

Unraveling the genetic components of human disease pheno-

types demands not only accurate methods for discovering genetic

variation, but also reliable strategies for interpreting the relevance

of the identified variants. Owing to evermore accurate DNA

sequencing technologies, human geneticists now have a potent tool

for interrogating nearly every base pair in a human genome.

Similarly, great algorithmic strides have been made [1,2] for

identifying single-nucleotide and insertion-deletion polymorphisms

from the billions of sequenced DNA fragments. However, given

the scale and complexity of these variation catalogs and the

formats that describe them [3], it remains a substantial challenge

to manage and interpret genome-scale variation in the context of a

disease phenotype. While itself limited, we best understand the

consequences of genetic variation affecting protein-coding genes.

Yet as recent studies of loss-of-function variation have shown,

ostensibly damaging variants are frequently artifacts of data,

annotation, or analysis [4,5]. As such, care must be taken in

prioritizing potentially causal variants, even in this seemingly

‘‘simple’’ case. Interpretation is far more challenging in the case of

non-coding variation, as we have only a preliminary grasp of the

functional consequences of non-coding variation on gene regula-

tion and fitness [6,7,8]. Integrating functional genomics annota-

tions from ambitious projects such as ENCODE [9] will thus be

crucial to assessing the impact of non-coding variation.

Given these analytical challenges, systematic efforts to identify

genetic variation underlying disease phenotypes through exome

and genome sequencing clearly depend upon the ability to assess

variants in the context of the incredible wealth of both genomic

and epigenomic annotations that have been curated since the

completion of the human genome. The reality, however, is that

this goal poses both technical and methodological challenges:

genome annotation datasets are often quite large and are

described in myriad file formats. Moreover, they come with

varying documentation, they are frequently modified or updated,

and they are housed in both centralized repositories [10,11] and

on individual laboratory websites. Substantial technical ability is

consequently required for even the most basic exploratory analysis

integrating diverse genome annotations; greater analytic sophisti-

cation requires intricate, lab-specific pipelines that are laborious to

produce and next to impossible to reproduce. We argue that the

human genomics community needs flexible, reproducible, and

scalable software for mining genome variation in the context of

crucial genome annotations.

We have therefore developed GEMINI (GEnome MINIng), a

novel software package that integrates genetic variation in the

VCF format [3] with both automatically installed and researcher-

defined genome annotations into a unified database framework.

By integrating all forms of genetic variation (i.e., SNPs, INDELs,

and structural variants) with diverse genome annotations,

GEMINI allows both biologists and programmers to devise

custom prioritization schemes for both coding and non-coding

variants that meet their research criteria. The GEMINI database
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system provides a powerful variant analysis framework that

eliminates the need to develop complex, and often erroneous,

analysis pipelines.

GEMINI provides distinct functionality that is not available

with existing software. Tools such as VEP [12] and snpEff [13]

exclusively predict the consequence of variation on gene

transcripts. Others such as ANNOVAR [14] and our own

BEDTools [15] enable one to filter variants in a VCF file based

on overlaps with individual annotation files (e.g., a BED file of

CpG islands). Integrating the many annotations necessary for

genome-scale analyses in this manner inevitably requires custom

scripts and is therefore laborious and error-prone. Other

researchers have recognized this limitation and developed software

that attempts to automate variant analysis and centralize genome

annotations with genetic variants. However, most extant software

packages are either focused primarily on applying disease

association tests to variants identified among a study cohort (e.g.,

PLINK/SEQ, unpublished), provide a limited set of annotations,

or are more difficult to use because annotations are not directly

integrated with genetic variation [16]. Moreover, few existing tools

allow researchers to explore genetic variation with Structured

Query Language (SQL), a powerful and expressive system for data

analysis. Other web-based tools such as Annotate-it [17] provide a

convenient graphical interface for comparing variants to an

integrated set of genome annotations. Whereas Annotate-it excels

at organizing genome analysis experiments and data visualization,

it has limited functionality for non-coding variation and supports

neither INDELs nor structural variants.

In contrast, as described in the following sections, GEMINI

extends and generalizes these basic data exploration concepts to

allow researchers to: query variants and genome annotations in a

common database framework using SQL, augment the database

with custom annotations, prioritize variants based on sample

genotypes and inheritance patterns, and develop intricate, yet

reproducible analyses, using a standard database framework and

programming interface. As such, GEMINI serves both as a stand-

alone genome analysis toolkit and as a framework upon which to

build sophisticated graphical analysis and visualization tools.

Design and Implementation

Design overview
As outlined in Fig. 1, GEMINI imports genetic variants and all

sample genotypes from a VCF file into a SQLite (http://www.

sqlite.org/) database (Fig. 1A). We prefer the use of a relational

database to alternative, ‘‘NoSQL’’ approaches (e.g., Redis,

MongoDB) because of the expressive power that SQL provides

for constructing data exploration queries, its intuitive syntax, and

its familiarity to many researchers. SQLite was chosen because of

its speed, broad availability, and, in contrast to other database

frameworks, its portability: a given GEMINI database can easily

be shared as a single file among laboratory members and

collaborators without a dedicated database server or additional

configuration. Moreover, this portability allows researchers to

‘‘version’’ their research as samples and/or variant calling

algorithms change by storing GEMINI databases along with the

underlying VCF and sequence alignment files.

Each variant in an input VCF file is extensively annotated

through automatic (via Tabix [18] and pysam [19]) comparisons

to a comprehensive and growing set of genomic annotation files

including: dbSNP [20], ENCODE [6], ClinVar, 1000 Genomes

[21], the Exome Sequencing Project [22], KEGG [23], GERP

scores [24], and HPRD [25] (Fig. 1B; Methods). Annotated

variants are loaded as rows in the variants database table. In

the interest of reproducibility, the database also tracks (via the

resources table) which version of the built-in annotations were

used to create the database. Moreover, researchers may also

augment the built-in annotations with custom annotation files

relevant to their research (Fig. 1C, Fig. 2A). As we discuss in

more detail below, storing extensively annotated variants in a

relational database facilitates sophisticated data exploration via

SQL queries and pre-defined GEMINI ‘‘tools’’ (a complete list

of database tables and annotations are available in Table S1).

By using a database framework, we are able to not only index

variants by their genomic coordinates, but also by their

associated annotations. This expedites more sophisticated

queries such as, ‘‘what are all of the novel variants that overlap CpG

islands and have an alternate allele frequency greater than 5% in my

cohort?’’ Such functionality distinguishes GEMINI from tools such

as Tabix [18] and VCFtools [3] which can either index variants

solely by genomic position, or isolate specific variants by scanning

the entire VCF file (which are often tens or hundreds of gigabytes in

size) for desired values in the VCF format’s INFO field.

Efficient storage of sample genotype information
Studies of human disease require the ability to compare the

genotypes of individual samples (e.g., cases versus controls) for

each observed variant. A straightforward, yet impractical strategy

for representing sample genotype information is to store the

sample genotypes for each variant as distinct rows in a separate

genotypes database table. In this model, accessing all observed

genotypes for a given variant would thus require joining a

variants table to a genotypes table, a strategy that scales very

poorly when representing variation in VCF files with millions of

variants and hundreds to thousands of samples. For example,

merely one million variants for 1000 samples would yield 1 billion

genotype rows and result in extremely poor query performance

and scalability. Recognizing this limitation, we instead represent

genotype information (genotype, phase, depth, etc.) for each

sample as a compressed array that is stored as single column for

each variant row (Fig. 1D). This inherently constrains the number

of rows in the database to the number of variants observed. More-

over, since the proportion of rare variants will increase as a func-

tion of the number of samples, the majority of genotypes for rare

variants will be identical (i.e., homozygous for the major allele) and

thus highly compressible. Therefore this strategy enables both

query performance and scalability while still providing necessary

access to individual sample genotype information.

Parallelization
When VCF files contain genotypes from many samples, simply

reading and parsing the VCF file is time consuming. The

additional cost of variant annotation causes the loading of a

VCF file into GEMINI to be very computationally intensive.

Therefore, in an effort to allow the loading to scale to the size of

current and future VCF files including thousands of samples, the

loading step can be parallelized on single machines with multiple

CPUs. In addition, through use of the IPython.parallel library

(http://ipython.org/ipython-doc/dev/parallel/), loading can be

parallelized with computing clusters supporting LSF, Sun Grid

Engine, or Torque load management systems.

Variant annotations
Discerning the functional relationship between experimentally

identified genetic variants and a phenotype demands placing

variants in the context of the extensive genome annotations that

have been curated since the completion of the human genome.

Exploring Genetic Variation with GEMINI
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GEMINI integrates several commonly used genome annotations

directly into the SQLite database including chromosomal cyto-

bands, CpG islands, regions under evolutionary constraint,

RepeatMasker [26] annotations, segmental duplications, known

assembly gaps, ‘‘mappability’’ scores [27], and regional recombi-

nation rates (Fig. 1B).

In addition, several informative variant statistics and population

metrics are calculated for each variant. The rationale behind this is

that the VCF format is designed to store low-level sample genotype

information such as the called genotype, its likelihood, and the

sequencing depth that was observed for the sample. Consequently,

it is often difficult to query VCF files based on summary genotype

metrics such as the count of each genotype ‘‘type’’ (e.g., how many

heterozygotes were observed for this variant?), or the count of samples

lacking a called genotype. In an effort to facilitate downstream

variant analysis, GEMINI derives and stores these and other

metrics such as deviation from Hardy-Weinberg equilibrium,

inbreeding coefficients, and nucleotide diversity estimates.

Annotating coding variation
There are now several software packages [12,13,14] for

predicting the impact of genetic variation on protein coding

transcripts. Rather than reinvent the techniques already present in

these tools, GEMINI currently integrates and standardizes

predictions made by either snpEff or VEP. GEMINI augments

these annotations with the Pfam-A [28] protein domain that the

variant affects. Each variant’s clinical significance is also cataloged

by comparisons to ClinVar (http://www.ncbi.nlm.nih.gov/

clinvar/). Lastly, GEMINI annotates functional pathway and

protein-protein interactions through built-in KEGG and HPRD

catalogs, thereby permitting researchers to explore the mutational

burden in pathways and interacting proteins.

Figure 1. Overview of GEMINI database and annotations. (A) Genetic variants in the VCF format are loaded into the GEMINI database
framework using the load sub-command. A PED file describing the sex, phenotype(s), and relatedness of the samples in the VCF may be provided to
facilitate downstream analyses such as searches for de novo mutations or variants meeting specific inheritance patterns. (B) Each variant in the VCF
file is annotated with information from several genome annotation sources that facilitate variant exploration and prioritization. The variants and
associated annotations are stored in the variants and variant_impacts tables. (C) Researchers may also integrate their own annotations to
facilitate custom analyses using annotations that are not pre-installed with the GEMINI software. (D) Genotype information for all samples is stored as
compressed arrays to enable database scalability and users may access genotype information for individual samples through an enhanced SQL
interface. (*) KEGG and HPRD annotations are not stored directly in the variants table, but are rather used in the context of specific GEMINI analysis
tools.
doi:10.1371/journal.pcbi.1003153.g001

Figure 2. Variant mining and tool development with the GEMINI database framework. (A) Storing variants and annotations in the same
database framework enables ad hoc SQL data exploration through both the query module and a Python programming interface. Analysis queries
can filter variants based on pre-installed annotations (e.g., in_dbsnp=0) and custom annotations (e.g., my_disease_regions=1). Users may
also select and filter variants based upon the genotypes of specific individuals (e.g., gt_types.mom= =HET), thus allowing one to identify variants
meeting specific inheritance patters, as shown here. (B) The GEMINI database framework also enables the development of tools that facilitate
automated analyses for routine analysis tasks. (C) Moreover, it serves as a standard interface for developers to develop new tools and algorithms and
to implement improved statistical tests for population and medical genetics.
doi:10.1371/journal.pcbi.1003153.g002

Exploring Genetic Variation with GEMINI
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Annotating non-coding variation
Assessing the consequence of non-coding variation remains

challenging, yet new insights are being made by large-scale

endeavors to map human regulatory elements among hundreds of

cell types [6,8]. Nonetheless, attempting to understand non-coding

variation in the context of disease requires the integration of many

diverse genome annotations and exceedingly few tools exist to

facilitate such research. As such, we have integrated three primary

chromatin annotations from the ENCODE project: observed

transcription factor binding sites [29], DNase1 hypersensitivity sites

among 125 cell types [8], and Segway/ChromHMM consensus

chromatin segmentation predictions among for 6 Tier 1 ENCODE

cell types [9]. We anticipate continually extending and improving

these annotations as dataset are made available from forthcoming

efforts such as The Roadmap Epigenomics Project [30].

Annotation file management, provenance, and
reproducibility

New genome annotation files can be quickly integrated into the

GEMINI framework, and since the loading step is easily

parallelized, the inclusion of new or updated annotation files in

the interest of empowering downstream analyses will not

substantially impact the time required to load GEMINI databases.

We maintain an internal record of the annotation files used by a

given GEMINI version and annotation files are stored on a public

server in the interest of transparency. In addition, in support of

research reproducibility, we document the provenance of each

annotation file as well as any post-processing that was required to

modify the files for use within GEMINI: https://github.com/

arq5x/gemini/tree/master/gemini/annotation_provenance.

The GEMINI database as a framework for data
exploration and tool development

Our primary motivation for directly integrating genetic variants

with genome annotations is to provide a flexible framework from

which to explore genetic variation for disease and population

genetic studies. Integrating these data in a single database provides

a standardized and consistent interface for disease genetics, data

querying and exploration, and new method development.

Moreover, our design allows us to adapt to evolving research

needs by quickly integrating new or improved genome annotations

in order to facilitate analysis and future method development.

To demonstrate the analytic utility of the database framework,

we provide several built-in tools for specific analyses (Fig. 2A,B).

The query tool is arguably the most powerful as it allows the

researcher to compose queries against the GEMINI database that

satisfy their exact research question using both pre-installed and

custom annotations. For example, Fig. 2A demonstrates a query

identifying novel, rare (,1% allele frequency), loss of function variants

that meet an autosomal recessive inheritance model and overlap

custom regions that are relevant to the researcher’s disease of interest.

As illustrated in Fig. 1D, sample genotype information (e.g., the

genotype, its ‘‘type’’ (heterozygote, homozygote, etc.), its phase,

and the observed sequencing depth) is stored as database columns

of compressed arrays, where each element in an array represents

the relevant genotype information for a single sample. While this

approach allows our database framework to easily scale to

thousands of samples without generating billions of database

rows, relational database systems do not inherently support queries

that directly access individual genotypes. Since interrogating

individual genotypes is crucial to studies of human disease, we

extended the SQL syntax in GEMINI to permit queries that place

conditions on individual genotypes (e.g., ‘‘SELECT gts.proband,

gts.mom, gts.dad’’) and filters (e.g., ‘‘gt_types.proband= =-

HOM_ALT’’) with a COLUMN.SAMPLE notation.

In addition, we provide other tools that address more intricate

research questions without requiring the researcher to write any

analysis code (Fig. 2B). These include tools for identifying de novo

mutations, as well as variants meeting both autosomal recessive

and autosomal dominant inheritance patterns in family-based

studies. In order to screen for these inheritance patterns, familial

relationships must be defined in an optional PED file (Fig. 1A),

which is subsequently stored in the samples table. We further

provide methods for prioritizing loss-of-function variants and

identifying putative compound heterozygous variants. By integrat-

ing pathway information from KEGG and protein interaction

data from HPRD, we provide tools for exploring the functional

pathways that variants affect, as well as networks of interacting

proteins with multiple functional variants in a given sample.

Importantly, we enable researchers to augment the GEMINI

database for their specific research needs. First, one may extend

the database with genome annotations that are relevant to their

own research. Secondly, researchers may create and integrate new

analysis tools that leverage the GEMINI framework via Python

scripts (Methods S1). This flexibility will allow developers to

extend GEMINI as new annotations and statistical methods (e.g.,

gene or region based burden tests) are developed (Fig. 2C).

Moreover, recognizing that many researchers are uncomfortable

with command-line data analysis tools, we have developed an inter-

face for accessing the above tools and their results via a web

browser. The browser interface integrates documentation of the

database schema and the available tools, and connects directly with

the IGV genome browser [31] allowing researchers to inspect the

primary DNA sequence data underlying individual variants (Fig. 3).

Results

Database loading performance
Given the size and complexity of VCF files representing

variation among many samples, as well as the scale of genome

annotation files, the time and resources required to import a VCF

file and associated annotations into the GEMINI database were a

fundamental concern in the design of the system we have

developed. As such, loading a database can leverage multiple

processors in order to enable reasonable database loading times.

We support parallel processing on a single, multi-CPU machine

and on common computing cluster frameworks (e.g., Sun Grid

Engine, LSF, Torque): this inherent scalability will allow the

framework to keep pace with future genetic studies involving

thousands of samples. Parallel loading will enable the addition of

new annotations without fearing dramatic reductions in perfor-

mance. For example, using 4 processors, GEMINI required

84 minutes to load a VCF file representing 6.4 million variants

detected among a CEU trio (pedigree 1463; NA12877, NA12878,

NA12882) from the Illumina Platinum Genomes Project. Loading

a VCF file including the genotypes of all 1092 individuals from the

1000 Genomes Project (39.7 million variants; 1092 genotypes per

variant) required 28 hours using 30 processors.

Storage requirements
Since sample genotype information is stored as compressed

binary arrays in the variants table and many annotations are

stored more efficiently in a SQLite database than in a text-based

VCF format, the resulting GEMINI databases require substan-

tially less storage space than the original VCF files. For example, a

compressed version of the above 1000 Genomes VCF file requires

144 gigabytes after annotation with snpEff. In contrast, the corres-

Exploring Genetic Variation with GEMINI
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ponding GEMINI database, complete with annotations, requires

just over half the space (78 gigabytes). Moreover, the compression

ratio improves as the number of sample genotypes in the VCF file

increases.

Query performance
In principle, integrating genetic variation with genome anno-

tation facilitates complex analyses, yet this goal is only satisfied

through efficient database queries. Both GEMINI’s built-in

analysis tools and its ad hoc query interface are driven by a

common query interface to the underlying SQLite database.

Therefore, to assess the analytical performance of the underlying

database, we have measured the time required to conduct

representative ad hoc queries on GEMINI databases resulting

from the trio (‘‘GEMINI-trio’’) and 1092 sample (‘‘GEMINI-

1092’’) datasets above. As illustrated in Table 1, typical queries

complete in seconds or a few minutes, regardless of whether the

queries filter rows via a SQL ‘‘where’’ clause or via more

expensive genotype filters which require decompression of the

compressed sample genotype arrays. More importantly, query

runtimes scale sub-linearly with respect to both the number of

variants and the number of samples in the database, suggesting

that our framework is well suited to typical studies of human

disease. It is also important to emphasize that analytic perfor-

mance can be substantially improved by conducting several

queries concurrently on the same database.

Availability and Future Directions

We have developed a flexible new analysis framework that

scales to the demands of both family-based disease studies and

large-scale investigations involving thousands of individuals. By

Figure 3. The GEMINI browser interface. In an effort to enable collaborative research and to support users who are less comfortable working on
a UNIX command line, we also provide a web browser interface to GEMINI databases. This figure depicts the browser interface to the GEMINI query
module; and, as illustrated in the navigation bar, interfaces also exist to other built-in analysis tools (e.g., for finding de novo mutations) and to the
GEMINI documentation. (A) The browser interface to the query module allows users to run custom analysis queries in order to identify variants of
interest. (B) Users may also enforce ‘‘genotype filters’’ that restrict the returned variants to those that meet specific genotype conditions or
inheritance patterns. (C) Additional options are provided allowing the user to 1) add column headers describing the name of each column selected,
2) to create automatic links to the Integrative Genomics Viewer (IGV) from the reported variants, thus facilitating data exploration and validation, and
3) to report results to either the web browser or to a text file for downstream analysis.
doi:10.1371/journal.pcbi.1003153.g003

Exploring Genetic Variation with GEMINI
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integrating genetic variation in the standard VCF format with a

diverse and continually expanding set of genome annotations,

GEMINI provides a uniquely powerful resource for exploring and

interpreting both coding and non-coding genetic variation.

Elucidating the genetic variants that underlie both unsolved single

gene disorders and complex disease phenotypes requires the

integration of a broad range of genome and disease annotations.

Indeed a recent review of the challenges facing the interpretation

of cancer genomes argues that a more detailed understanding of

cancer etiology will require the integration of diverse information

including pathway annotations, chromatin modifications, DNA

methylation, and expression data [32]. GEMINI enables the

integration of many large and heterogeneous genome annotations

and as such, it provides a powerful tool to address the analytical

demands of complex disease research. Therefore, we anticipate

that the GEMINI framework will facilitate discovery in a broad

range of research into the genetic basis of human diseases,

including studies of individual genomes, unsolved Mendelian

disorders, explorations of rare variants in large pedigrees, and

genome-wide case-control studies. Moreover, we expect that

GEMINI’s portability and inherent reproducibility will allow other

developers to extend the framework to create new data exploration

and visualizing tools and develop novel approaches to prioritizing

genetic variation in diverse contexts.

Given the clear necessity of such tools for advancing medicine

in the genomic age, it is not surprising that several new

commercial software packages have been developed in the last

two years. Our goal is to provide a scalable, open-source

medical genomics tool enabling other researchers to easily

integrate new methods and genome annotations for the benefit

of the human genomics research community. In future work we

will continue to increase the performance of the software,

expand the set of integrated genome annotations, and enhance

the Python programming interface in order to facilitate tool and

new method development. In addition, while we anticipate that

the existing SQLite-based framework will be capable of handling

tens of thousands of individuals, we will explore the alternate use

of more scalable and/or distributed database systems for larger

studies.

GEMINI is a freely available, open-source software package.

The source code is maintained and available at: https://github.

com/arq5x/gemini. Extensive documentation is available at

http://gemini.readthedocs.org/ and as Text S1. The software

is primarily implemented in Python while aspects crucial to

performance are implemented in C and C++. Instructions and

data files for recreating the GEMINI databases representing the

Platinum Trio and the 1092 individuals from the 1000 Genomes

project are available at: http://quinlanlab.cs.virginia.edu/.

Supporting Information

Methods S1 The GEMINI Python programming inter-
face.
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unit test files.
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Table S1 The GEMINI database schema.

(XLSX)

Text S1 GEMINI user documentation.

(PDF)
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doi:10.1371/journal.pcbi.1003153.t001
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