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ABSTRACT

Motivation: A common question arises at the beginning of every

experiment where RNA-Seq is used to detect differential gene expres-

sion between two conditions: How many reads should we sequence?

Results: Scotty is an interactive web-based application that assists

biologists to design an experiment with an appropriate sample size

and read depth to satisfy the user-defined experimental objectives.

This design can be based on data available from either pilot samples

or publicly available datasets.

Availability: Scotty can be freely accessed on the web at http://euler.

bc.edu/marthlab/scotty/scotty.php

Contact: gabor.marth@bc.edu

Supplementary information: Supplementary data are is available at

Bioinformatics online.
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1 INTRODUCTION

An experiment’s power to detect differences in expression is

based on its ability to distinguish true biological differences be-

tween conditions from the variability that occurs in repeated

measurements of the same condition. In an RNA-Seq experi-

ment, this variability stems from three sources: biological vari-

ance, technical measurement imprecision and Poisson variance

stemming from the inherent nature of counting experiments

(Supplementary Section S1). These sources of variability lead

to uncertainty about the gene’s true average expression in each

condition, limiting the resolution of the differences that can be

detected as statistically significant.
The uncertainty that is caused by biological and non-Poisson

technical variance can be countered by increasing the number of

biological replicates of each condition. Biological replicates are

used because their measurements are subject to both. In contrast,

Poisson uncertainty is reduced to the same degree if a fixed

number of reads is used to either add more replicates or

sequence the existing replicates more deeply (Supplementary

Section S2, Fig. S1). Given a fixed number of reads, the most

power will be achieved if these reads are used to sequence the

highest number of biological replicates possible. However, bio-

logical material and library construction increase costs each time

an additional replicate is added. Further, measuring a large frac-

tion of the genes with low read counts can produce a dataset that

is biased against identifying differentially expressed genes with

low read counts because these genes will be measured with higher

noise.
We devised a simple web-based tool, Scotty, which allows

users to optimize the replicate number and read depth to maxi-

mize the statistical power achieved, while excluding configur-

ations that require too many replicates, are too expensive, do
not have sufficient power or result in datasets where large subsets

of genes are measured with a high measurement bias. Scotty is

similar in function to existing programs that are available for
microarray experiments (Seo et al., 2006), but is specifically

adapted to RNA-Seq.

2 WORKFLOW AND IMPLEMENTATION

The general workflow for a biologist using Scotty is shown in

Supplementary Figure S2. First, Scotty uses prototype data to

quantify the rate at which new RNAs are measured and the
degree of variability between replicates. Because these attributes

are determined by both biology and experimental noise, they will

be most accurately estimated from pilot data generated using the

same techniques that will be used in the actual experiment, pref-
erably by the same laboratory (Section 4). However, Scotty also

enables users to run power analyses using pre-loaded publicly

available datasets as prototypes. Pilot data will ideally consist
of read count data from two pairs of replicates: one each from

the control and test condition (Supplementary Section S3).
To model power, Scotty fits the observed data to theoretical

distributions, which were selected based on empirical observa-

tions. Scotty first assesses how many reads are required to meas-
ure a specified number of genes or transcripts as described

in Supplementary Section S4. Scotty then estimates how much

variance is present between replicates of the same condition,

which largely determines how many replicates are required
(Supplementary Section S5). Scotty then recommends to the

user the optimal experimental configuration by testing a matrix

of experimental designs. The possible designs are constrained by
user-defined parameters specifying the maximum number of

replicates and reads per replicate. For each replicate count,

10 different read depths are tested for power, cost and a bias
metric. Statistical power is calculated using a t-test (Chow et al.,

2002; Harrison and Brady, 2004) for reasons described in

Supplementary Section S6.
Under default settings, Scotty calculates the percentage of

genes or transcripts with a 2� fold change in the test condition
relative to the control that will be detected at P50.01. A power

difference metric is used to determine how many measurements

will be significantly affected by Poisson noise. It defines a*To whom correspondence should be addressed.
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maximum power for each expression level as the percentage that
would be expected to be detected if there were no Poisson noise.
As read counts increase, power asymptotically approaches this
maximum power. Under the default settings, the power differ-

ence metric is the percentage of measurements that are measured
with550% of maximum power.
To test how well Scotty’s results can be generalized to other

methods, we used simulation experiments to compare the power
of a t-test with the power of the DESeq, a statistical package
whose approach shares information between genes to provide a

better estimate of variance when it is poorly measured owing to
low replicate number (Anders and Huber, 2010). We found that
while DESeq has substantially higher power to detect differen-

tially expressed genes when there are two replicates present the
power of the two methods was similar when there were three or
more replicates (Supplementary Section S6).

3 PERFORMANCE AND OUTPUT

Scotty’s primary output is a matrix showing the power of the
experimental configurations that are permitted under the user
constraints and pinpoints the cheapest and the most powerful

design choices (Fig. 1). Other figures show the cost and meas-
urement bias of each design. Basic quality metrics for pilot data
are also included. To test the accuracy of Scotty’s power esti-

mates, we simulated datasets having a known number of differ-
entially expressed genes sequenced to different depths. We found
that two replicates with 10 million reads each were sufficient to

predict power in configurations of up to 10 replicates and 100
million reads with40.99 correlation with the number of differ-
entially expressed genes that could be identified in the data
(Supplementary Fig. S3).

4 PILOT DATA VERSUS EXISTING DATASETS

We set out to examine if publicly available datasets are sufficient
for designing a new experiment, or whether pilot data are

required.
We analyzed four publicly available human liver RNA-Seq

datasets (Supplementary Section S7, Fig. S4) and asked how

well one such dataset predicts the rate of gene discovery (satur-
ation) in another. We find substantial variability among satur-
ation curves (less between experiments from the same lab, more

across groups) and predictions may over- or under-estimate the
number of genes quantified at a given read depth by up to 55%.
Furthermore, there was less variability between individuals

within the same dataset than across experiments, suggesting
that the primary source of differences is experimental artifact
rather than biological variability. Similarly, we find large differ-
ences in how well biological replicates reproduce within each

experiment (Supplementary Fig. S5). These observations suggest
that pilot data generated by the same laboratory will provide a

more accurate prediction of power than publicly available

experiments.

5 DISCUSSION

While general guidance exists for biologists on designing
RNA-Seq experiments (Fang and Cui, 2011), Scotty is, to our

knowledge, the first interactive tool aiding RNA-Seq experimen-
tal design. As the accuracy of Scotty’s projections is determined

by the degree of similarity between the pilot and the main ex-
periment, pilot data should be collected under conditions closely

resembling the experimental conditions.
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Fig. 1. An example output from the Scotty application. This figure shows

the user which of the tested experimental configurations do (white) and

do not (shaded) conform to the user-defined constraints. Scotty then

indicates the optimal configuration based on cost (filled triangle) and

power (filled circle)
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