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High-throughput sequencing technology enables population-level
surveys of human genomic variation. Here, we examine the joint
allele frequency distributions across continental human popula-
tions and present an approach for combining complementary
aspects of whole-genome, low-coverage data and targeted high-
coverage data. We apply this approach to data generated by the
pilot phase of the Thousand Genomes Project, including whole-
genome 2–4× coverage data for 179 samples from HapMap Euro-
pean, Asian, and African panels as well as high-coverage target
sequencing of the exons of 800 genes from 697 individuals in seven
populations.Weuse the site frequency spectra obtained from these
data to infer demographic parameters for an Out-of-Africa model
for populations of African, European, and Asian descent and to
predict, by a jackknife-based approach, the amount of genetic di-
versity that will be discovered as sample sizes are increased. We
predict that the number of discovered nonsynonymous coding var-
iants will reach 100,000 in each population after ∼1,000 sequenced
chromosomes per population, whereas ∼2,500 chromosomes will
be needed for the same number of synonymous variants. Beyond
this point, the number of segregating sites in the European and
Asianpanel populations is expected to overcome that of theAfrican
panel because of faster recent population growth. Overall, we find
that the majority of human genomic variable sites are rare and
exhibit little sharing among diverged populations. Our results em-
phasize that replication of disease association for specific rare ge-
netic variants across diverged populations must overcome both
reduced statistical power because of rarity and higher population
divergence.

demographic inference | genetic drift | population genetics |
human evolution

The Thousand Genomes Project (1000G) is the most extensive
study to date of human genomic diversity (1). The pilot phase

of the project consisted of whole-genome, low-coverage sequenc-
ing of 179 samples from four HapMap populations at 2–4× cov-
erage, an exon pilot experiment that targeted exons from over 800
genes in 697 samples across sevenHapMap populations with∼50×
coverage, and a trio pilot focusing on two mother–father–child
trios (1). In this article, we present an approach for combining the
low-coverage and the exon pilot data, and use it to estimate the
joint allele frequency spectrum for individuals of European origin
in Utah (CEU), Han Chinese individuals in Beijing (CHB), Jap-
anese individuals in Tokyo (JPT), and Yoruba individuals in Iba-
dan, Nigeria (YRI). Our motivation for this analysis is that two
pilot projects provide complementary information: the low-cov-
erage pilot captures most of the common variation in the pop-
ulations sequenced across the accessible human genome at the cost
of missing some of the rarer variants, whereas the target capture
data provide a more complete picture of rare variants on an in-
teresting subset of the data. In this article, we are interested in
leveraging the strengths of the exon and low-coverage pilots to
obtain accurate estimates of population genetic parameters. We
will focus in particular on theP-population site frequency spectrum

Φ, a P-dimensional histogram that records the joint distribution
of diallelic SNPs as displayed in Fig. 1.
More specifically, the value Φ(f1, f2, . . ., fP) of bin (f1, f2, . . ., fP)

is the number of SNPs that occurs in f1 chromosomes from
population 1, f2 chromosomes from population 2, etc. Because
the allele frequency in diploid population i ranges from 0 to 2ni,
where ni is the number of individuals sequenced in this pop-
ulation, Φ is a (2n1 + 1) × (2n2 + 1) × . . . × (2nP + 1) array.
Because the number of individuals who are successfully se-
quenced at any given site may vary, ni is, in practice, chosen to
be somewhat smaller than the total number of individual se-
quenced, and each site with n > ni sequenced individuals con-
tributes to bin f in proportion to the probability that one finds
f derived alleles in a random selection of ni of the n samples.
The one-population site frequency spectrum (SFS) is a staple of

population genetics and is commonly used to reveal broad patterns
of selection (2, 3) and demography (3–5). Themultiple-population
SFS has received increased attention recently (6–10), because it
provides additional information about between-population struc-
ture. Many standard population genetic statistics, such as FST and
Tajima’s D, are summaries of the multiple-population SFS.
In this article, we study SFSs derived from the 1000G pilot

project data.We developmethods to precisely estimate SFSs from
high-throughput sequencing data and use this information to es-
timate demographic parameters for a detailed Out-of-Africa de-
mographic model by using ∂a∂i (6), a software package that uses
diffusion approximation to calculate expected SFSs across mul-
tiple populations (6, 10). We use these parameters to predict the
number of variants to be discovered as the number of sequenced
samples in the 1000G is increased. We also present a jackknife-
based approach to the prediction of the number of undiscovered
variants and compare the predictions of the two approaches.

Theory
Linear Error Model for SFSs from Low-Coverage Data. Data of the
kind collected by the 1000G low-coverage pilot (1) (2–4× cover-
age across 179 individuals) provide a large volume of data from
which precise demographic inference can be drawn. However, the
low coverage leads to biases that must be addressed to ensure
accuracy of the inference (11, 12). We use an empirical approach
to tune an error model for low-coverage sequencing based on
a direct comparison of the SFSs generated by whole genome and
capture experiments on the part of the genome sequenced by
both experiments.
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The usefulness of this approach relies on two observations.
First, demographic inference does not require the knowledge of
the particular sites that are variable, but rather requires statis-
tical averages over all sites. Although it is impossible to infer
which variable sites were missed, the average number of missed
sites can be estimated directly. Second, the most significant bias
caused by low coverage in the 1000G data is an elevated false-
negative rate for rare variant genotype calls (1). Because the
majority of genetic variants are rare, it is possible to infer error
rates for such variants based on high-quality sequence data from
a relatively small subset of the genome.
Because the SFS does not keep track of linkage information,

we use an error model that acts independently on each genomic
site. We suppose that the underlying true SFS S0i and the ob-
served SFS Si for population p are related by a linear error
model: Si ¼

P
i′ A

p
ii′S

0
i′ with

P
iA

p
ii′ ¼ 1. In this model, Ap

ii′ repre-
sents the proportion of sites with true frequency i′ that are
assigned to frequency i. In the three-population case, which we
will consider below, this model generalizes to

Sijk ¼
P
i′j′k′

Aijk;i′ j′ k′S0i′j′k′;
P
ijk

Aijk;i′ j′ k′ ¼ 1: [1]

If we have Nc frequency bins per population, the number of
parameters in this model is N6

c −N3
c . We therefore need to in-

troduce additional simplifying assumptions (justifications are
provided below):

i) The errors occur independently in each population:
Aijk;i′ j′ k′ ¼ A1

ii′ A
2
jj′ A

3
kk′.

ii) The probability εpi′ of missing a site decays exponentially
with the number of variants present in the population:

εpi′ ¼
0 if i′ ¼ 0

αpe− i′β p
otherwise:

�
iii) If a site is found to be variable in one popu-

lation, its frequency is estimated accurately:

Ap
ii′ ¼

� 1− ε p
i′ if i ¼ i′

ε p
i′ if i ¼ 0; i′≠0
0 otherwise:

The resulting model has six parameters (amplitudes α p and
error decay rates β p) and captures the bulk of the discrepancy
between the high- and low-coverage data. It is motivated by the
following observations:

i) The low-coverage SNP calls were made population by pop-
ulation. We assume, first, that the leading source of error is
an insufficient number of variant reads to confidently call
a variant and, second, that in a low-coverage experiment,

the uncorrelated sampling fluctuations in read numbers play
the largest role in the variation in read numbers.

ii) Variant calls in 1000G require multiple independent obser-
vations of a variant across a population to rule out read
errors and call a variant genotype. This stringency strongly
reduces the rate of false-positive calls, but it results in miss-
ing actual variants at a rate that depends on the expected
number of nonreference reads observed at a given position
across a population (1). The decay in the probability of
detecting less than a fixed, small number c of reads for a
variant present in i of N chromosome sequenced at depth
d is dominated by ð1− i=NÞdN=2≅ e− di=2. We therefore fit
a heuristic exponential error model αe−βi, where the effec-
tive read depth 2β accounts for fluctuations in read depth
and read quality across the genome (Table 1).

iii) After enough variant reads are found in a 1000G population
to justify a variant call, a single variant read is sufficient to
make a genotype variant call, hence a reduced false-negative
rate and low systematic bias in estimated frequencies when
a variant has been identified.

Estimating the Parameters of the Error Model. Because errors are
assumed to occur independently in each population, the error
rates can be inferred directly from error rates in single-population
SFSs. We compute the single-population SFSs at sites that are
found to be variable in the exon pilot data and with at least 80
genotype calls in all three populations. The exon pilot and low-
coverage pilot are then compared, and the optimal parameters α p

and βp are obtained through a linear fit using the first three
frequency bins of the compared spectra.
Note that this error model can be inverted to give a correction

model for the SFS, which does not require the knowledge of the
number of fixed variants (SI Appendix). However, the correction
model may involve the subtraction of large numbers and has non-
Poisson uncertainties. When inferring demographic parame-
ters by maximum likelihood of a Poisson Random Field (6), we
therefore incorporate the error model in our demographic model
rather than attempt to correct the SFS.

Prediction of the Rate of Variant Discovery. One practical use of
inferring a demographic model is the ability to predict the num-
ber of variants that will be discovered in subsequent experiments.
To study the impact of model choice on such predictions, we
propose an alternate predictor of discovery rate based on sam-
pling theory and inspired by an analogy with capture–recapture
approaches to estimating animal population sizes (13–15) (let us
consider rabbits for definiteness). In this analogy, a rabbit is akin
to a SNP, a field trip is akin to an individual sequenced, and
a rabbit capture is akin to the identification of a variant in a se-
quenced individual. In the absence of measurement errors, the
probability of identifying a variant in a randomly chosen se-
quenced individual is proportional to the frequency of the variant
in the population. This distribution of probabilities is akin to the
variability in rabbit capture probability; a common SNP is akin to
a trap-happy rabbit, and a rare SNP is akin to a trap-shy rabbit.
We propose a population genetics analog of the Burnham–

Overton jackknife (16, 17) to estimate the total number V(N) of
segregating sites in a sample of N chromosomes based on
a subsample of n-sequenced chromosomes. This jackknife esti-
mator uses the assumption that

dVðNÞ ¼ V ðnÞ þ
Xp
i¼1

ap
i Δ

iðN; nÞ; [2]

where ΔðN; nÞ ¼ PN − 1
j¼n 1=j for a fixed jackknife order p. Explicit

expressions for the a p
i as well as performance benchmarking

Fig. 1. The two-population joint SFS from panels of Chinese individuals
from Beijing (CHB) and Yoruba individuals from Ibadan, Nigeria (YRI) for
variants occurring in less than 15 of 100 sequenced chromosomes in both
panels. Of the 3,366 variants in the overlap of the two panels, all but 194
sites are private to a single population.

11984 | www.pnas.org/cgi/doi/10.1073/pnas.1019276108 Gravel et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1019276108/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1019276108


and additional discussion of this estimator are provided in
SI Appendix.

Results
After filtering away the exon pilot calls based on less than 15×
coverage and individuals with substantial discrepancy with
HapMap (SI Appendix), we compared the joint SFSs with the
expected spectra obtained if each individual had been assigned
to a population randomly in the independent sites model. That
is, given an N × N spectrum ϕ(i, j), we have an expected spec-
trum of

ϕ�ði; jÞ ¼

�
N
i

��
N
j

�
�

2N
iþ j

� X
i′þ j′¼n

ϕði′; j′Þ: [3]

Figs. 2 and 3 indicate that, even for pairs of closely related pop-
ulations, we find a substantial reduction in allele sharing for rare
variants compared with a single randomly mixing population. In
particular, Fig. 2, Right shows the Anscombe residuals between
expectation and data. Blue strips along the axis correspond to
a significant excess of variants private to one panel in the data, and
they are accompanied by a reduction in shared variants (red). The
residuals are larger (darker colors) for rare variants not only be-
cause of a larger number of sites but also because of reduced
sharing. Indeed, we see in Fig. 3 that the amount of sharing,
expressed as a proportion of the expectation in a panmictic pop-
ulation, is only a few percent between continental populations for
variants present at 2% minor allele frequency (MAF) and about
60% for variants at 20% MAF. More closely related populations,
such as CHB and JPT, still exhibit a 50% reduction in sharing at
2% MAF but barely any reduction for variants at 20% MAF. In-
terestingly, even closely related populations, such as CHB and
CHD, exhibit a 20% reduction in sharing for 2% MAF. This
finding is consistent with recent population structure, but although
this analysis used only genotype calls with high-coverage data, such
a reduction in sharing could also be partly explained by differences
in the sequencing platform between the two populations.
To increase the number of sites available for estimating joint

SFS, we turned to the low-coverage pilot data. Direct compari-
son of low-coverage and exon capture genotype calls at sites
called in the exon capture pilot shows a significant discrepancy
for rare variants (SI Appendix, Figs. S1–S3) because of elevated
rates of false-negative variant calls in low-coverage data. This
finding results in biased estimates of the distribution of al-
lele frequencies.
The bulk of the systematic discrepancy between high- and low-

coverage SNP calls could be described using the simple false-
negative model described above (Table 1 and SI Appendix, Figs.
S1–S4). The most substantial discrepancy between this model and
the data is in the CHB+ JPT, possibly because this group was the
metapopulation with the lowest coverage. In this case, the high-
coverage singleton counts are 634% higher than the uncorrected
low-coverage counts. After error correction, a discrepancy of 19%
remains, with the corrected low-coverage site predicting more
counts (SI Appendix, Fig. S3). Despite the high false-negative rate

for singleton calls in the low-coverage data, its sheer volume pro-
vides an advantage in estimation precision over the much smaller
exon pilot dataset. Similarly, the false-negative model for multiple-
population SFSs (Eq. 1) was found to account for the bulk of the
discrepancy between the multiple-population SFS derived from
low- and high-coverage SNP calls (SI Appendix, Fig. S4).
We modeled the joint SFS for synonymous sites in African

(YRI), Asian (CHB and JPT), and European (CEU) data se-
quenced in the low-coverage pilot using the 13-parameter de-
mographic model used in ref. 6 (Fig. 4 and Table 2), taking into
account the expected error model. The SFS was calculated using
n = 40 samples per panel (80 chromosomes). We obtained
maximum composite likelihood estimates for the 13 parameters
using ∂a∂i, a diffusion-approximation-based package for estimat-
ing expected SFSs resulting from various demographic models (6)
(Table 2). Our maximum likelihood parameters are broadly con-
sistent with previously reported values using National Institute on
Environmental Health Sciences (NIEHS) data (6). However, the
resulting confidence intervals, determined by conventional boot-
strap (likelihood profiles are provided in SI Appendix), are sub-
stantially narrower than those intervals resulting from NIEHS or
high-coverage data alone. As an example, using a 25 y generation
time, we find a time of split between African and Eurasian pop-
ulations of TB = 51 thousand years ago (kya; 95% confidence

Table 1. Parameter values in the error model (Eq. 1)

p αp βp Mean mapped depth

CEU 1.466 0.737 4.62×
CHB + JPT 1.855 0.754 2.65×
YRI 1.220 0.551 3.42×

Note that the parameter values differ substantially between populations
and that error rates decrease with increased coverage.

Fig. 2. Joint allele SFSs (all sites) for selected pairs of populations from the
exome sequencing panel (Left) compared with expected spectra under site
by site population label permutation (Center). Shown are sites occurring in,
at most, 15 of 100 chromosomes. All population pairs, including two dif-
ferent panels of Chinese individuals sampled in Beijing, China and Denver,
Colorado (CHB and CHD), as well as two groups of European origin (CEU and
Tuscans from Italy, or TSI), show substantial residuals for rare variants (Right),
consistent with reduced sharing. White bins contain less than one count.
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interval = 45–69 kya). By contrast, the NIEHS data (6) resulted in
a maximum likelihood estimate of TB = 140 kya (95% confidence
interval = 40–270 kya). The inference based on the exon pilot
alone yields TB= 98 kya (95% confidence interval = 43–210 kya).
In general, the gain in precision was strongest for the parameters
involved in more ancient events. Inference based on uncorrected
low-coverage data yielded an unrealistic TB = 14 kya split.
Beyond their fundamental interest as descriptors of human

history, these parameters allow for a number of experimental
predictions; given a demographic model, we can predict, for ex-
ample, the number of synonymous variants to be discovered in
samples of larger size that are currently in the process of being
sequenced. We predicted the number of variants to be discovered
in each of the three population considered (CEU, CHB + JPT,
and YRI) as the sample size is increased using both the inferred
demographic model and the jackknife estimator of the number of
undiscovered variants presented inMethods (Fig. 5). Because the
jackknife does not rely on assumptions about demography and
selection, we also used it to predict the number of non-
synonymous sites to be discovered. The jackknife approach pre-
dicts that, as sample size is increased, the total number of
segregating sites in CEU and CHB + JPT panels should overtake
the number of segregating sites in the YRI population.

Discussion
Our results illustrate that the vast majority of human variable sites
are rare and that themajority of rare variants exhibit, at most, very
little sharing among continental populations. We also find re-
duced sharing for rare variants compared with common variants
amongmore closely related populations, such as CHB-JPT, CEU-
TSI, and CHB-CHD. This lack of sharing can be explained by
population divergence, and we expect that the fraction of newly
discovered variable sites that are population-specific will keep in-
creasing with sample size. This finding poses a formidable chal-
lenge for the reproduction of genome-wide association studies for
rare functional variants across diverse populations, because the
statistical difficulties caused by variant rarity within a population
combine with increased between-population divergence.

We also show how sequencing a large number of individuals at
low coverage is an efficient strategy not only for discovering the
maximum number of variable sites but also for estimating de-
mographic parameters, at least when error rates can be estimated.
Different statistical methods have been proposed that include
read depth information and models of sequencing errors to re-
duce biases in allele frequency estimation (11, 12). Because of the
availability of high-coverage data for a subset of the genome in the
populations studied here, we used direct comparison with high-
coverage data to estimate and correct biases caused by low cov-
erage. A significant advantage of the direct comparison approach
is simplicity and computational efficiency; it can use existing cu-
rated genotype calls rather than require a full analysis of an error
model at the individual read level. This advantage is particularly
useful for data generated by 1000G, because multiple sequencing
platforms and calling pipelines with different error modes have
been used jointly. In general, the two approaches are not mutually
exclusive, andwhen practical, a statistically corrected low-coverage
SFS could be further corrected by comparison with targeted high-
coverage data. Here, we used, as a reference, an exon capture
dataset with >50× coverage and validation rates of 96.8% overall
and 93.8% for singletons.We also restricted our analysis to a high-
quality subset of the data (by selecting individuals with good
coverage and HapMap concordance and selecting sites with suf-
ficient coverage). The false-negative rate in the exon capture data
was estimated to be below 5% for variants of at least 1% in fre-
quency and 26% for variants below 1% in frequency. To avoid
resulting biases in the frequency-dependent false-negative esti-
mates for the low-coverage data, we restricted the comparison
with sites where a high-coverage variant call had been made.
We found that the bulk of the discrepancy between high- and

low-coverage data could be described by a simple model that uses
only two parameters per population, and in which error rates
decay exponentially with MAF, frequencies of detected variant
sites are accurately determined, and errors occur independently
in each population. The latter assumption is perhaps the most
debatable: we expect at least some correlations in the coverage at
a given site for different populations. An error model taking into
account such correlations would, therefore, be desirable. How-

Fig. 3. The probability that two individuals carrying an allele of given minor
frequency come from different populations, normalized by the expected
frequency in a panmictic population, using the seven panels of the exome
capture dataset. Sharing decreases dramatically as frequency approaches
zero. The reduction in sharing at 50% frequency in some population pairs is
caused by low overall numbers in that bin, and a single site (rs6662929) that
exhibits inconsistent calls between different calling platforms and most
likely has an incorrect homozygous reference call in some populations. Sites
were binned by frequency: dots indicate the center of each bin, and solid
lines are to guide the eye. Note that singletons are not shown, because there
can be no sharing for such sites.
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Fig. 4. An illustration of the inferred demographic model, with line width
corresponding to population size and time flowing from left to right. The
width of the red arrows is proportional to the migration intensity. Model
details are provided in Table 2 and ref. 6.
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ever, given the limited data available to infer the parameters of
the error model, the independence assumption is a reasonable
tradeoff that allows for the capture of the bulk of the error pat-
terns. Finally, the error rates likely differ between different ge-
nomic regions (such as coding vs. noncoding DNA), motivating
our focus on exonic regions where high-coverage data were
available. This finding emphasizes the importance of obtaining
high-quality genotype data through sequencing or chip genotyp-
ing for representative noncoding regions.
The demographic model discussed in this paper was introduced

in Gutenkunst et al. (6), where it was used to analyze the NIEHS
intergenic data. Despite differences in putatively neutral sites
(selected intergenics vs. synonymous), sequencing technology
(Sanger vs. high throughput), and panel choice (CHB only vs.
CHB + JPT), the inferred parameters are in broad agreement

(Table 2). Inference based only on capture data provides over-
lapping 95% confidence intervals, with the single exception of
Europe–Asia migration rate (1.8− 3.9 × 10−5 vs. 4.1− 8.2 × 10−5).
The main difference between these three sets of parameter esti-
mates is the width of the confidence intervals. The inference
based on exon capture data provides reduced uncertainty com-
pared with the NIEHS data, despite a comparable number of
variable sites in the SFS; the additional number of samples per
site results in more accurate frequency estimates that further
constrain the demographic model. A much greater reduction in
the confidence intervals is obtained by considering the low-cov-
erage and exon capture data jointly (a 90% reduction of the
confidence interval for the Out-of-Africa split time compared
with a 27% reduction with the exon data only). Our estimate of
theOut-of-Africa split time using the low-coverage data, 51 kya, is
also in better agreement with both prior genetic and archaeo-
logical estimates of the modern human expansion out of Africa
(18). It should be emphasized that, because we use a single
Western African population as our African panel, the divergence
described by our model might have occurred earlier than the
actual Out-of-Africa event.
The narrow confidence intervals on some of the parameters

should not obscure the fact that the parameter estimates are
model-dependent. As a simple example, a model that does not
allow for migration would require more recent split times to
produce similar levels of population divergence. The demographic
history of the four populations considered is much more eventful
than what is accounted for by our model. Additional geograph-
ically intermediate populations from the Near East and Central
Asia that were not included in our analysis might contribute sig-
nificantly to the allele frequency distribution as ghost populations
(19). Incorporating an appropriate number of source populations
for estimates of migration has been a general limitation of two-
and three-population models under isolation migration coa-
lescent, approximate Bayesian computation, and diffusion-based
approaches. This limitation might explain why our estimate of the
divergence between East Asians and Europeans is more recent
than estimates based on archaeological evidence (18), but is
comparable with estimates of 23 kya (20) under an approximate
Bayesian computation approach and 25 kya under an isolation
migration approach with mtDNA X and Y sequence data (21).
Similarly, the current population sizes inferred from our

model (15,500, 35,900, and 49,000 for YRI, CEU, and CHB,

Table 2. Parameter estimates obtained using the NIEHS data (6), 1000G exon and low-coverage data, and 1000G
exon pilot data only (this work)

NIEHS Low-coverage + exons Exons

Parameter Estimate 95% CI Estimate 95% CI Estimate 95% CI

NA 7,300 4,400–10,100 7,310 6,984–7,739 7,310 3,647–9,208
NAF 12,300 11,500–13,900 14,474 13,419–16,184 15,388 14,240–17,542
NB 2,100 1,400–2,900 1,861 1,453–2,494 2,758 896–3,450
NEUO 1,000 500–1,900 1,032 677–1,290 1,620 991–2,759
rEU (%) 0.40 0.15–0.66 0.38 0.28–0.59 0.27 0.17–0.39
NAS0 510 310–910 554 376–813 821 616–1,226
rAS (%) 0.55 0.23–0.88 0.48 0.30–0.75 0.31 0.18–0.42
mAF − B (×10−5) 25 15–34 15 12–19 20 5.5–29.6
mAF − EU (×10−5) 3.0 2.0–6.0 2.5 2.1–3.1 1.7 1.0–2.8
mAF − AS (×10

−5) 1.9 0.3–10.4 0.78 0.4–1.2 0.58 0.23–1.24
mEU − AS (×10

−5) 9.6 2.3–17.4 3.11 1.8–3.9 5.9 4.1–8.2
TAF (kya) 220 100–510 148 114–183 316 155–545
TB (kya) 140 40–270 51 45–69 98 43–210
TEU − AS (kya) 21.2 17.2–26.5 23 21–27 28 23–38

The 95% confidence intervals (CIs) in this work are obtained by bootstrap over coding regions. The equality of the maximum
likelihood values for NA in the corrected low-coverage + exons data is a consequence of a normalization of the effective sequenced
length (details in Methods). The resulting demographic model is illustrated in Fig. 4.

Fig. 5. Observed and projected numbers of synonymous and non-
synonymous variants in CEU, CHB + JPT, and YRI as a function of the sample
size (two times the number of individuals sequenced). Long and short dashes
correspond to jackknife and model-based projections for synonymous sites,
respectively. The dotted lines are jackknife projections for nonsynonymous
sites. Discrepancies between projections are accounted for by the difference
between themodel prediction andobservednumber of singletons in the data.
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respectively) are still significantly lower than census sizes. Be-
cause our model accounts for some population size changes,
these are expected to be in closer relationship to census sizes
compared with the classical effective population size, but addi-
tional model refinement [such as structure within populations,
generation overlap, and a recent increase in growth rate, which
was observed in the work by Coventry et al. (22), in a sample of
10,422 European-Americans] will be needed to close the gap.
Predictions based on the demographic model and the jackknife

approach differ as to the number of new variants to be discovered,
particularly for CHB + JPT (Fig. 5). This difference is easily
understood by considering the differences in the two approaches.
The demographic model attempts to fit the complete SFS at the
cost of model assumptions that might bias the results. By contrast,
the jackknife approach focuses on the rare variants, and the
model assumptions are weaker. The difference can be traced to
the fact that the maximum likelihood demographic model pre-
dicts a number of singletons somewhat lower than the observed
number (SI Appendix, Fig. S5). If this discrepancy is due to limi-
tations in the model that fail to account for an excess of rare
variants, we expect the jackknife estimator to be more accurate.
By contrast, if the difference is because of inaccurate singleton
frequency estimation (from sequencing errors leading to 6.2%
of false-positive variants in the high-coverage data) or limitations
of our correction model (SI Appendix, Figs. S1–S3), the de-
mographic model is expected to provide more robust estimates.
Nonetheless, both methods predict at least 50,000 synonymous

variants in the human genome when sequencing 1,000 individuals
for the CEU and CHB populations, substantially more than
would be predicted from population genetic models of constant
size. The jackknife approach applied directly to the seven target
capture populations shows similar patterns, with some variation
within continents, in JPT samples showing less rare variants than
the Chinese populations, and in TSI samples showing more rare
variants than CEU (SI Appendix, Fig. S7). These results highlight
the importance, for the planning of medical sequencing experi-
ments, of accurate demographic models of human populations
and the dramatic impact that recent human population growth
has had on the structure of genetic variation. Specifically, our
prediction that most genetic variants are rare and highly diverged

suggests that genome-wide association studies aiming to correlate
common disease susceptibility with rare variants may need ex-
traordinarily large sample sizes and precise definitions of pop-
ulation samples to accurately compare frequencies in cases and
controls. Eventually, a clear tradeoff will ensue between cata-
loging variants and genotyping vs. completely sequencing hu-
man genomes and comparing them among populations of cases
and controls.

Methods
Numerics. The unprecedented size of the 1,000 genomes data created chal-
lenges for the numerical solution of the diffusion equation. Namely, the
number of grid points required to accurately estimate the three population
SFS grows rapidly with the number of samples in each population. We opti-
mized ∂a∂i and released version 1.5.0, in which the number of grid points
necessary to achieve a given accuracy is reduced. As in ref. 6, we obtained SFSs
with three different grid sizes (60, 70, and 80) and extrapolated to infinite
grid size. Each likelihood evaluation took between 1 and 2min on a 2.26-GHz
processor. Optimization required hundreds to thousands of likelihood eval-
uations. Likelihoods were computed using the folded SFS to avoid biases
caused by ancestral misidentification. Convergence of the maximum likeli-
hood optimization process was ensured by restarting the search with modi-
fied initial conditions. The maximal likelihood parameters were chosen, but
differences in parameter estimates from the different restarts were, on av-
erage, much smaller than the reported confidence intervals.

Conversion from Genetic to Physical Units. The different parameters involved
in the diffusion equation solved by ∂a∂i are normalized by the ancestral
population size Na during the likelihood maximization. The optimal value of
Na is calculated using the fact that the total number of segregating sites in
a sample of n individuals is proportional toNaLμ, where μ is the mutation rate
and L is the effective length sequenced. For this analysis, we used L =
5,007,837, the number of autosomal fourfold degenerate sites that passed
quality control in all three populations, and μ = 2.36 × 10−8. For estimates
based on exon data alone, we fixed the effective sequencing length to 68%
of the target length by requesting equal values for NA in the corrected low-
coverage and exon pilot estimates. The remaining 32% is composed of called
sites that failed quality controls and sites for which no genotype call has been
made. When performing bootstrap analysis, the total number of fourfold
degenerate sites varied from bootstrap sample to bootstrap sample and was
adjusted accordingly. Finally, to convert generation time to years, we used
a generation time of 25 y. Estimated parameters are shown in Table 2.
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