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Abstract 
Motivation: The accurate interpretation of genetic variants is critical for characterizing genotype-

phenotype associations.  Because the effects of genetic variants can depend strongly on their local 

genomic context, accurate genome annotations are essential.  Furthermore, as some variants have 

the potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use 

of individualized annotations that account for differences in gene structure between individuals or 

strains. 

Results: We describe a suite of software tools for identifying possible functional changes in gene 

structure that may result from sequence variants.  ACE (“Assessing Changes to Exons”) converts 

phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations 

onto them, detects gene-structure changes and their possible repercussions, and identifies several 

classes of possible loss of function.  Novel transcripts predicted by ACE are commonly supported by 

spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification 

when an individual-specific genome sequence is available.  Using publicly-available RNA-seq data, 

we show that ACE predictions confirm earlier results regarding the quantitative effects of nonsense-

mediated decay, and we show that predicted loss-of-function events are highly concordant with pat-

terns of intolerance to mutations across the human population.  ACE can be readily applied to diverse 

species including animals and plants, making it a broadly useful tool for use in eukaryotic population-

based resequencing projects, particularly for assessing the joint impact of all variants at a locus. 

Availability: ACE is written in open-source C++ and Perl and is available from genepredic-

tion.org/ACE 

Contact: bmajoros@duke.edu  

Supplementary information: Supplementary information is available at Bioinformatics online. 

 

 

1 Introduction  

The accurate interpretation of genetic variants and their impact on gene 

function is central to modern genetics, with implications for both disease 

studies and elucidation of basic biology.  However, the complexities of 

eukaryotic gene structure and function challenge our ability to predict the 

effects of genetic variants on the products of expressed genes.  The con-

text of a variant—whether in an exon, intron, or intergenic region—

directly impacts the interpretation of likely variant effects.  A number of 

bioinformatic tools are available for interpretation of individual variants, 

including ANNOVAR (Wang et al., 2010), SnpEff (Cingolani et al., 

2012), VEP (McLaren et al., 2016), PolyPhen (Adzhubei et al., 2010), 

and SIFT (Kumar et al., 2009). These tools typically assume that gene 

structures are fixed and that multiple variants do not act in combination. 

A recent analysis of exome sequencing data of more than 60,000 indi-
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viduals highlighted the importance of interpreting variants in the context 

of the entire haplotype, particularly in the case of variants that alter the 

annotated reading frame (Lek et al., 2016).  In addition, while a number 

of high-quality gene annotation sets are available for humans and other 

species, including GENCODE (Harrow et al., 2012), RefSeq (Pruitt et 

al., 2014), and Ensembl (Yates et al., 2016), it has been demonstrated 

that variant interpretation results can be sensitive to the gene structures 

used in the analysis (McCarthy et al., 2014; Frankish et al., 2015).  

A productive step toward improving our understanding of how genetic 

variants can impact gene function in an individual is to characterize the 

potential changes to gene structure that may be induced by sequence 

variants. Methods for computational modeling and prediction of eukary-

otic gene structures have been well-disseminated (e.g., Guigo et al., 

1992; Burge and Karlin, 1997; Lukashin and Borodovsky, 1998; Korf et 

al., 2001; Allen and Salzberg, 2005; Stanke et al., 2006; reviewed in 

Majoros, 2007) and productively applied to the problem of annotating 

reference genomes, both human and non-human (Adams et al., 2000; 

Lander et al., 2001; Venter et al., 2001; Parra et al., 2007; Haas et al., 

2008; Holt and Yandell, 2011; reviewed in Yandell and Ence, 2012).  

However, traditional gene-finding approaches make several assumptions 

that limit their application to predicting deleterious effects on gene struc-

ture in individuals. Specifically, they assume that genes are well formed, 

have typical codon usage statistics, and ultimately produce functional 

proteins. Many approaches also take into account evolutionary conserva-

tion between species. Those assumptions enable gene-finding models to 

achieve high levels of accuracy in elucidating the structures of protein-

coding genes in reference genomes. However, such assumptions also 

limit the ability of gene-finders to identify functional changes to gene 

structure between individuals of a species.  

As an example, traditional de novo gene finders struggle to correctly 

model the ABO gene that determines human blood group. The allele that 

gives rise to the O blood group contains an early frameshift inducing a 

premature stop codon believed to result in either mRNA degradation or 

translation to a different protein lacking enzymatic activity (Yamamoto 

et al., 1990).  Probabilistic gene finders predict an incorrect gene struc-

ture for the O allele that modifies the reading frame in order to avoid the 

in-frame stop codon (Supplementary Fig. S1), as doing so allows a 

downstream exon to be annotated as coding, resulting in a higher proba-

bility according to the gene-finder’s objective function.  In this way, 

traditional gene finders conflate multiple molecular and evolutionary 

processes in order to integrate diverse signals and maximize predictive 

accuracy in identifying functional genes in reference genomes, and in 

doing so are hampered in their ability to identify changes to gene struc-

ture that result in loss of function in an individual. 

Here we describe a novel approach (ACE—Assessing Changes to Ex-

ons) that aids the elucidation of differences in gene structure between 

individuals of a species.  In contrast to traditional gene-finding models, 

ACE does not assume that genes are fully functional in every individual.  

In particular, by considering within-species changes to gene structure 

without regard to possible downstream effects, ACE is able to identify 

changes to gene structure that may alter the function of the resulting 

protein, even if that protein is highly conserved between species.  ACE 

can therefore predict individualized gene isoforms having altered—and 

possibly deleterious—protein function relative to the reference. 

We demonstrate the use of ACE by generating personalized human 

transcriptome references for >2000 people sequenced as part of the 

Phase 3 1000 Genomes Project (The 1000 Genomes Project Consortium, 

2015). We then quantify transcript expression using RNA-seq data from 

matched individuals for a subset of the 1000 Genomes Project sample. 

That analysis reveals that predicted cases of complete or partial loss of 

function in protein-coding genes via nonsense-mediated decay (NMD) 

are detectable as a reduction in transcript levels, albeit with much varia-

tion in the degree of reduction.  That analysis also validates the use of 

ACE for identifying novel splice forms that may result when annotated 

splice sites are disrupted via sequence variants.  In addition, we show 

that transcripts predicted to suffer loss of function in healthy adults are 

significantly depleted in genes found to be intolerant to mutation across 

the human population.  

We designed ACE to be broadly applicable across eukaryotes. For that 

reason, we minimized the burden of extensive retraining for use on non-

human species. We demonstrate that feature by confirming known phe-

notype-causing differences in gene structures between plant varieties. 

2 Methods 

2.1 Reconstructing haplotype sequences from a VCF file 

ACE begins by reconstructing explicit haplotype sequences based on 

variants given in a phased VCF file (Fig. 1A), including all single-

nucleotide variants, insertions, deletions, and short copy-number vari-

ants.  VCF files may contain one or more samples (individuals); ACE 

processes each sample independently.  ACE left-normalizes all variants 

(Tan et al., 2015) and disambiguates overlapping variants by computing 

the transitive closure of the overlap relation and applying the longest 

variant, provided all other overlapping variants are properly nested and 

call for consistent substitutions.  ACE provides two warning levels cor-

responding to overlapping variants that are compatible versus those that 

are incompatible. Those warnings are provided in an easily parsed for-

mat to allow filtering of sequences by confidence level prior to down-

stream analyses.  ACE uses tabix (Li, 2011) for efficient extraction of 

variants in pre-specified intervals (Supplementary Methods), thus reduc-

ing the memory requirements for genome sequencing studies across 

large populations and facilitating parallelization on cluster compute 

environments. Detailed tracking of insertions and deletions allows ACE 

to efficiently compute a coordinate transformation to map reference 

annotations to haplotype sequences without the need to perform explicit 

sequence alignment (Supplementary Methods). 

Fig. 1.  A. ACE reconstructs explicit haplotype sequences from a phased VCF file, 

projects reference annotations onto them, detects possible gene structure changes, 

and interprets changes in terms of possible loss of function.  B. When a disrupted 

splice site is encountered, ACE enumerates possible alternate splice forms resulting 

from cryptic splicing, exon skipping, intron retention, or any combination resulting 

from multiple variants. 

2.2 Identifying changes to splice patterns and reading 

frames 

ACE requires that all reference gene models contain valid splice site 

consensus sequences as defined in a user-supplied configuration file.  
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Similarly, ACE requires that reference protein-coding gene models con-

tain valid start and stop codons in a consistent reading frame.  Reference 

genes that violate those constraints are reported as possible mis-

annotations and removed from further consideration.  For all noncoding 

and coding genes, ACE identifies splice sites in the reference that change 

in the individualized genome. Such changes may either be absolute, by 

disrupting a valid consensus splice site, or may weaken the splice site at 

flanking nucleotides.  ACE evaluates the latter possibility by aligning to 

a probabilistic weight matrix, or PWM.  Models of human splice sites 

are provided (Supplementary Methods), and scripts to re-train for other 

organisms are also provided. 

For each isoform of a gene in which a splice site is disrupted, ACE 

enumerates possible alternate splicing patterns for the isoform, including 

those in which an exon is skipped, an intron is retained, or a cryptic 

splice site is activated.  By default, ACE identifies cryptic sites within 70 

nucleotides (nt) of a disrupted site via a PWM thresholded to admit 

~98% of known human splice sites. The default distance was selected 

after observing that ~75% of cryptic sites in DBASS, the Database of 

Aberrant Splice Sites (Buratti et al., 2007), are within that distance (Sup-

plementary Fig. S2).  For isoforms with multiple disrupted splice sites, 

ACE enumerates all combinations, corresponding to the set of paths 

through a splice graph for the gene (Fig. 1B).  The splice graph is con-

strained to include only annotated splice sites and putative cryptic sites 

proximal to a disrupted annotated site. 

ACE also identifies possible changes to reading frames.  In cases in 

which the original start codon of a protein-coding gene is absent in the 

alternate sequence, ACE searches for the first downstream start codon of 

sufficient strength via a PWM.  Changes to 5’ untranslated regions trig-

ger a scan for upstream start codons that may be created as a result.  For 

transcripts annotated as noncoding, ACE searches for reading frames 

longer than a configurable minimum length (default: 150 nt), and reports 

whether the reading frame exists in both the reference and alternate 

sequence (suggesting possible mis-annotation of the gene as noncoding) 

or only the alternate sequence (suggesting possible gain of function in 

the alternate sequence, or loss of function in the reference individual). 

2.3 Identifying loss of function 

For protein-coding genes, ACE identifies instances of protein truncation 

or nonsense-mediated decay (NMD), either in the mapped transcript or 

in alternate transcripts proposed when a splice site is disrupted. NMD is 

predicted based on the linear nucleotide distance between an in-frame 

stop codon and the most 3’ exon junction in the spliced mRNA. Distanc-

es greater than 50 nt have been shown to trigger NMD (Nagy and Ma-

quat, 1998), and this phenomenon appears to be conserved between 

vertebrates and plants (Nyiko et al., 2013). ACE also reports loss of 

function (LOF) due to lack of either a valid in-frame stop codon or lack 

of a start codon scoring above the PWM threshold.  Scans for start/stop 

codons are performed on spliced transcripts, so that start/stop codons 

straddling an intron are not overlooked.  To enable filtering at arbitrary 

similarity thresholds, protein alignment scores (Supplementary Meth-

ods), defined as the percent sequence match between the reference and 

alternate proteins, are reported. Protein sequences are also emitted to 

allow detailed downstream analysis of amino acid changes by programs 

such as PolyPhen (Adzhubei et al., 2010), SIFT (Kumar et al., 2009), or 

VAAST (Hu et al., 2013).  

2.4 Configuration and structured output 

ACE is fully configurable in all of the parameters described above, via a 

simple configuration file (Supplementary Methods). 

ACE produces a highly structured output file (Supplementary Fig. S3) 

describing gene structures in the reference and alternate sequences and 

results of their detailed comparison.  The variants incorporated into the 

haplotype sequences are listed and classified as to their context within 

gene elements.  Classification of variants is performed separately for 

both mapped isoforms and putative novel splice forms, so as to highlight 

changes to a variant’s context between isoforms.  We provide scripts for 

querying and filtering outputs and for converting to XML or GFF for use 

with other software.   

2.5 Computational validation 

To demonstrate the utility of ACE for large-scale genome sequencing 

projects, we used ACE to fully annotate the genomes of 2504 human 

samples sequenced by the Thousand Genomes Project. The analysis was 

parallelized across 500 compute nodes, and required two weeks to com-

plete. GENCODE version 19 (Harrow et al., 2012) annotations were 

used as reference annotations for that analysis. To validate predicted 

novel isoforms, we aligned RNA-seq data from lymphoblastoma cell 

lines from 445 of the same individuals to the individualized genomes 

generated by ACE, using TopHat 2 (Kim et al., 2013).  RNA data was 

obtained from the Geuvadis project (Montgomery, et al. 2011). We used 

StringTie (Pertea et al., 2015) to quantify transcript abundance. Recent 

benchmarks have shown StringTie’s accuracy to be competitive with 

other state-of-the-art methods, though it is also clear that transcript 

abundance estimation is still an inaccurate process (Hayer et al., 2015). 

Thus, for validation of putative novel splice forms we rely primarily on 

finding spliced reads that map precisely to the putative splice junctions. 

We provided TopHat 2 and StringTie with both reference annotations 

mapped to the individualized genomes, as well as novel transcripts pre-

dicted by ACE (Supplementary Methods).  For the analyses of human 

genes, we disabled intron retention as it has been found to be present in 

the Geuvadis data at lower levels than cryptic splicing and exon skipping 

(Lappalainen et al., 2013; Monlong et al., 2014), and has been shown to 

be overwhelmingly likely to lead to loss of function in human coding 

genes (Braunschweig et al., 2014; Jung et al., 2015). 

To quantify the effect of predicted NMD events, we analyzed the rela-

tionship between transcript abundance and the number of NMD alleles in 

an individual, under the hypothesis that each additional NMD allele in an 

individual would result in a proportionate decrease in transcript abun-

dance for a given gene isoform.  We fit a linear mixed-effects model, 

log2(FPKM) ~ Xβ + Zu, to the transcript abundance estimates provided 

by StringTie, where FPKM (fragments per kilobase of transcript per 

million reads mapped) measures transcript abundance, X is the number 

of functional (non-NMD) alleles, and Z is an indicator variable encoding 

the transcript identifier.  The random-intercept term Zu incorporates a 

different intercept for each transcript, accounting for natural differences 

in expression between different transcripts and genes.  Values of β were 

estimated after filtering transcripts at a range of minimum FPKM thresh-

olds (applied to mean FPKM across all samples for each transcript), in 

order to assess stability of β estimates at different abundance thresholds.  

Estimates of β were transformed (Supplementary Methods) into relative 

abundance ratios r0/2 = FPKM0 / FPKM2, where FPKMk denotes mean 

FPKM among individuals predicted to have k functional alleles of a 

transcript.  Thus, 1-r0/2 is the proportionate reduction in NMD homozy-

gotes relative to individuals with two functional alleles. 

As the 1000 Genomes Project individuals were reportedly healthy 

adults, we expected isoforms with LOF in at least one individual to be 

enriched for genes tolerant of functional mutations.  We expected this 

effect to be stronger for the genes that are found as a homozygous LOF 

because they will exhibit both recessive and dominant effects.  To test 

this, we analyzed the distributions of RVIS (Residual Variant Intolerance 

Score—Petrovski et al., 2013) and ncRVIS (nocoding RVIS—Petrovski 

et al., 2015) percentiles for genes in which ACE predicts LOF for at least 

one annotated isoform of the gene in 1000 Genomes Project samples.  

RVIS reflects the intolerance of genes to functional mutations affecting 

amino acids in protein-coding genes, while ncRVIS reflects intolerance 

to mutations in noncoding portions of genes.   
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To demonstrate the applicability of ACE to nonhuman species, we al-

so analyzed 30 rice samples with fully sequenced genomes (The 3000 

Rice Genomes Project, 2014).  

3 Results 

3.1 ACE predicts changes to gene structure 

In the 1000 Genomes Project samples, ACE predicted a modest number 

of alternative splice forms for each disrupted splice site: 80% of cases 

involve at most three alternate patterns per disrupted site (median=2, 

mode=1) (Fig. 2A).  When the alternate structures predicted in the 

Geuvadis samples are provided as annotations (in addition to mapped 

reference annotations), TopHat 2 is able to assign spliced reads to signif-

icantly more of the putative novel junctions than if TopHat 2 is provided 

only mapped reference annotations (cryptic-site isoforms: Fig. 2B, Wil-

coxon W = 513660, P < 2.2×10-16; exon-skipping isoforms: Supplemen-

tary Fig. S4A, W = 537900, P < 2.2×10-16).  Similarly, StringTie assigns 

nonzero FPKM values to significantly more of these putative novel 

splice patterns when they are provided as annotations than when they are 

not provided (cryptic sites: Fig. 2C, W = 198020, P < 2.2×10-16; exon-

skipping: Supplementary Fig. S4B; W = 198020, P < 2.2×10-16).  As 

such, ACE improves the sensitivity of both spliced read mapping and 

transcript quantification for putative novel isoforms when an annotated 

splice site is disrupted, and it is able to do so while predicting conserva-

tive numbers of such alternate splice patterns per disrupted site. 

We also applied transcript quantitation methods Salmon (Patro et al., 

2016) and Kallisto (Bray et al., 2016) to the Geuvadis data and quanti-

fied the number of ACE-predicted novel transcripts that were assigned 

expression values above a range of thresholds (Supplementary Fig. 5).  

Due to the substantial differences between expression estimates by the 

three approaches, we instead used raw counts of spliced reads aligning 

exactly to predicted novel splice junctions to investigate the specificity 

of ACE’s predictions.  As a negative control, we randomly sampled 

3.25×106 non-disrupted, annotated splice sites from the Geuvadis sam-

ples, and used ACE to generate putative novel splice patterns that could 

result if the splice site had been disrupted. We then quantified support 

for these negative control splicing events via the number of spliced reads 

assigned by TopHat 2 to the junctions.   

Due to the stochastic nature of eukaryotic splicing, some splicing at 

non-annotated sites is expected (Pickrell et al., 2010; Stepankiw et al., 

2015).  The proportion of ACE cryptic-site predictions, for disrupted 

splice sites, that are supported by at least one spliced read is significantly 

greater (Wilcoxon rank-sum test: W = 502780, P < 2.2×10-16) than the 

proportion of supported predictions for the randomly selected non-

disrupted sites (Fig. 2D) (exon-skipping: Supplementary Fig. S4C; W = 

699470, P < 2.2×10-16).  Similar results for all of the above comparisons 

were obtained when applying higher read-count or FPKM thresholds 

(Supplementary Figs. S6, S7).  Furthermore, the numbers of spliced 

reads supporting predicted novel splice junctions are significantly greater 

in the case of disrupted splice sites than for non-disrupted sites (raw read 

counts: Fig. 2E, W = 785190, P < 2.2×10-16; normalized read counts: 

Supplementary Fig. 8, W = 791430, P < 2.2×10-16).  Among those tran-

scripts with disrupted splice sites for which ACE predicted at least one 

alternate splice form, in 55.5% of cases at least one ACE prediction was 

supported by at least three spliced reads mapped to the novel splice 

junction.  Possible outcomes that may comprise the remaining cases but 

that we did not investigate include: intron retention, use of cryptic sites 

further than the 70bp limit, failure to sequence spliced products due to 

low intrinsic expression levels, and accelerated degradation of aberrant 

transcripts by RNA surveillance pathways. Sampling error may have also 

contributed. When multiple cryptic sites were available and at least one 

site was supported by at least three spliced reads, support for more than 

one site was found in only 13.4% of cases, suggesting possible discrimi-

nation among available cryptic sites by the splicing machinery. 

As an additional negative control, we quantified mean cryptic splicing 

activity in the vicinity of all annotated splice sites that were disrupted in 

some individuals but not in others. We found that cryptic splicing levels 

were higher in individuals with disruption of the annotated splice site 

(Supplementary Fig. S9). That result illustrates that stochastic splicing 

does result in occasional use of cryptic sites, but that cryptic splicing is 

enriched near functional sites that have been disrupted.   

Fig. 2. A. Distribution of number of alternate structures predicted per disrupted 

splice site. B. Distribution of proportions of predicted cryptic-site isoforms sup-

ported by at least one spliced read, when predicted isoforms are not provided to 

TopHat 2 (blue) and when they are provided (red).  C. Distribution of proportions 

of predicted cryptic-site isoforms assigned nonzero FPKM by StringTie when 

predicted isoforms are not provided to StringTie (blue) and when they are provided 

(red). D. Distribution of proportions of predicted cryptic-site isoforms supported by 

at least one spliced read for splice sites simulated to be disrupted (blue) and for 

those that are disrupted (red). E. Distribution of spliced reads per junction, on log10 

scale, supporting sites simulated to be disrupted (blue) versus those that are dis-

rupted. 

3.2 ACE identifies thousands of annotated human splice 

sites as being potentially robust to disruption 

In order to further explore the utility of ACE in identifying alternate 

splice forms that may arise when an annotated splice site is disrupted, we 

simulated disruption to every annotated splice site in every protein-

coding gene in the human reference and classified each site as to whether 

there existed an alternate splice pattern found by ACE that could produce 

a highly similar protein product.  Only alternate splice forms that did not 

result in a prediction of NMD, did not lack a start or stop codon, and 

encoded a protein differing by no more than ten amino acids (aa) from 

the reference protein were accepted as potentially retaining function.  
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Nearly 80000 human splice sites (78226/377278 = 20.7%) in 15134 

genes were deemed by ACE to be potentially robust to disruption.  A 

more conservative PWM threshold that would reject ~20% of annotated 

human splice sites still results in over 30000 (32465/377278 = 8.6%) 

splice sites being identified as potentially robust to disruption. These 

results indicate that there may be ample opportunities to reduce false 

positives in disease studies in which splicing defects are suspected, by 

applying ACE for interpretation of these altered gene structures.  When 

tissue samples are available, putative splice forms proposed by ACE can 

be validated against RNA-seq data by providing them as annotations to a 

transcript quantification pipeline as described in the previous section, or 

by validating protein presence via western blot. 

Among 1000 Genomes Project samples, the mean proportion of tran-

scripts with disrupted splicing for which ACE was able to identify at 

least one alternate structure with no predicted LOF according to the 

above criteria was 0.46 (SD = 0.08; Supplementary Fig. S10A).  This 

represents a substantial enrichment compared to the 0.21 estimated for 

the genome-wide scan, possibly reflecting the effects of natural selection 

on this control population. 

3.3 ACE confirms previous estimates of the effect of non-

sense-mediated decay on transcript levels 

Nonsense-mediated decay accounted for over two-thirds (69%) of the 

loss-of-function predictions in the 2504 1000 Genomes Project samples.  

In order to better understand the impact of NMD on expression of target 

genes, we used the Geuvadis RNA-seq data and the transcript quantifica-

tion pipeline described above to quantify the effect of NMD in terms of 

the average reduction in transcript levels per NMD allele, relative to 

individuals with two functional alleles.  We first restricted our analysis to 

heterozygous individuals. 

Based on the results of earlier, in vitro experiments showing that 

NMD achieves a halving of transcript levels in episomal mini-gene con-

structs (Rosenberg et al., 2015), we hypothesized that each additional 

NMD allele at a diploid locus would reduce total transcript levels by 

25%, so that the homozygous NMD state should result in a halving of 

mean FPKM.  In Fig. 3A we show, on a log2 scale, the distribution of 

effect sizes E = FPKM1 / FPKM2 for autosomal transcripts expressed in 

LCLs, where FPKM1 is the mean FPKM pooled among heterozygous 

individuals (having one NMD allele and one functional allele), and 

FPKM2 is the mean FPKM pooled among individuals having two func-

tional alleles.  The observed distribution matches our expectation of a 

25% reduction (denoted by the dashed line) among heterozygotes, albeit 

with much variability, as also noted previously based on a subset of this 

data from 119 individuals (MacArthur et al., 2012).  Applying higher 

FPKM thresholds produced similar results (Supplementary Fig. S11). 

In order to extend the analysis to include homozygotes, we fit the lin-

ear mixed-effects model described in Methods to the Geuvadis data.  

Utilizing a linear mixed model with random intercepts allows us to more 

rigorously account for differences in expression levels between genes 

and isoforms, as each isoform can have a different (random) intercept.  

After filtering to include only transcripts expressed in at least 30 individ-

uals (to improve statistical power) and having both NMD and non-NMD 

predictions, we were left with 578 heterozygous and 38 homozygous 

observations.  All estimates of coefficient β were significantly different 

from zero (all P < 2×10-27), and estimates were relatively robust to filter-

ing of the data at different minimum FPKM thresholds (Supplementary 

Fig. S12).  The largest estimated β = 0.37 (SE = 0.01) approaches, but 

does not achieve, a complete halving of transcript levels (r0/2 = 0.60) for 

homozygotes.  The low sample size for homozygous alleles after filter-

ing, variability in the efficiency of NMD for different transcripts, and 

general noise in RNA-seq quantification are likely contributors to the 

divergence of estimated r0/2 from an exact halving. 

NMD events resulting from the creation of new upstream start codons 

were omitted from the above analysis, as many of these likely constitute 

so-called uORFs (upstream open reading frames), which can affect gene 

expression in myriad ways that are not fully understood (Barbosa et al., 

2013).  Indeed, fitting the above model to these uORF NMD predictions 

at various FPKM thresholds consistently results in an estimated β ≤ 0, 

indicating that NMD in uORFs is not predictable using the established 

methods for downstream reading frames, possibly due to their position 

near the 5’ cap site on the circularized RNA (Silva et al., 2008; Peixeiro 

et al., 2012) or to the potential for reinitiation of translation downstream 

(Neu-Yilik et al., 2011).  As such, ACE marks all NMD predictions in 

uORFs as hypothetical and provides position and length information for 

the uORF, enabling users to interpret them on a case-by-case basis. 

 

Fig. 3.  A. Distribution of log2 effect sizes of N = 578 heterozygous NMD events as 

measured via RNA-seq transcript quantification.  Dashed line at -0.42 denotes a 

25% reduction in total transcript quantity.  Data were filtered to improve power 

(sample size≥30, mean FPKM≥1).  B. Percentiles of Residual Variant Intolerance 

Scores (RVIS) for N = 633 genes in which at least one individual was predicted to 

be homozygous for gene loss of function. 

3.4 ACE’s loss-of-function predictions in healthy individu-

als are highly enriched for genes tolerant to mutation 

All 2504 individuals in the 1000 Genomes Project sample harbored 

alleles predicted to suffer loss of function (LOF).  Using ACE we esti-

mated a median of 148 LOF genes per individual (range: 115-192), 

which is higher than the estimate of 97 based on experimental validation 

and stringent filtering of variants in a single European individual (Mac-

Arthur et al., 2012), but similar to the estimate of 149-182 truncation 

events found by the more recent Phase 3 1000 Genomes Project study 

(The Thousand Genomes Consortium, 2015).  

For healthy adults we expect LOF predictions to be enriched for genes 

not critical to survival, and thus to have elevated tolerance to functional 

mutation.  As described in Methods, we assessed tolerance to mutation 

by computing RVIS and ncRVIS percentiles for all autosomal protein-

coding genes predicted to suffer LOF in at least one individual.  LOF 

was presumed if a transcript that was well-formed in the reference was 

predicted in the individual’s genome to suffer NMD (69% of all predict-

ed LOF cases), to lack a start or stop codon (8% of cases), to have a 

disrupted splice site in a terminal exon with no viable alternative splice 

forms (2% of cases), or to encode a protein differing by at least 50% of 

its amino acids from the reference protein (21% of cases). 

Loss-of-function predictions were enriched for genes tolerant to muta-

tion according to both RVIS and ncRVIS scores.  The distribution of 

RVIS percentiles for homozygous LOF genes was highly biased toward 

genes tolerant to mutation (higher RVIS scores), as expected (Fig. 3B). 

The observed distribution differs significantly from the distribution of all 

RVIS scores (Supplementary Fig. S13A) (median = 80th percentile, ver-

sus 50th percentile for all genes; Wilcoxon rank-sum test: W = 7378700, 

P < 2.2×10-16).  Random sets of genes having similar lengths, numbers of 
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exons, or G+C nucleotide composition resulted in distributions that 

could not be distinguished from uniform (Wilcoxon rank-sum, all P > 

0.6; Supplementary Fig. S13B-E).  The bias toward tolerance was signif-

icantly higher for homozygous LOF genes than for heterozygous LOF 

(W = 2214700, P < 2.2×10-16; Supplementary Fig. S14A-B), though 

heterozygous LOF genes were also significantly enriched for tolerance 

(median = 62nd percentile; W = 53451000, P < 2.2×10-16).  Percentiles for 

ncRVIS were also significantly biased toward tolerance to mutation in 

these genes (homozygous: median = 59th percentile, W = 6032200, P < 

5.5×10-11; heterozygous: median = 56th percentile, W = 48724000, P < 

2.2×10-16), and that bias was again higher for homozygotes than hetero-

zygotes (W = 1812500, P = 0.005; Supplementary Fig. S14C-D). 

Because RVIS and ncRVIS scores are assigned to genes rather than to 

individual isoforms, they may not indicate intolerance levels for every 

isoform equally.  Indeed, genes with a predicted homozygous LOF in at 

least one individual for at least one isoform that are classified as intoler-

ant to variation (RVIS percentile < 0.20) were found to have significant-

ly elevated numbers of isoforms compared to all of GENCODE (Wil-

coxon rank-sum, W = 1932000, P < 2.2×10-16) (Supplementary Fig. S15).  

This observation is consistent with the possibility that the gene-level 

intolerance detected by RVIS might not indicate intolerance for the 

particular isoforms found to suffer LOF in these samples.  Indeed, 

among the LOF predictions in 1000 Genomes Project samples, a majori-

ty of the genes were predicted to suffer LOF in some, but not all, of their 

isoforms (mean proportion among individuals was 0.59, SD = 0.03; 

Supplementary Fig. S10B), indicating that many LOF variants do not 

affect all isoforms equally. 

3.5 ACE aids interpretation of insertion and deletion vari-

ants within genes  

Insertions and deletions of short sequences can substantially alter gene 

structures, through their effect on translation reading frames, splice sites, 

or start or stop codons.  Proper interpretation of such variants requires 

analysis of the resulting sequence within the context of the correct gene 

structure.   

For example, in the CTU2 gene (Ensembl gene ENSG00000174177), 

which is involved in post-transcriptional modification of transfer RNAs, 

variant rs11278302 deletes an entire donor splice site (Fig. 4A), suggest-

ing a possible effect on splicing.  Indeed, the Ensembl variant effect 

predictor, VEP (McLaren et al., 2016) classifies this common variant 

(minor allele frequency in 1000 Genomes Project samples = 0.22) as 

having “high impact” (Supplementary Fig. S16A). However, ACE dis-

covers that the resulting sequence after deletion contains a valid donor 

consensus at the same location relative to the preceding exon, that the 

new splice site scores more highly under the donor-site PWM than the 

original donor site (-18.82 versus -19.77), and that the coding sequence 

remains unchanged, producing an identical protein.  Furthermore, while 

sample HG00096 is homozygous for the alternate allele, TopHat 2 as-

signs 33 and 35 spliced reads respectively to the new splice junctions in 

the two haplotypes, consistent with ACE’s predictions.  

An important class of insertion/deletion variants are frameshift muta-

tions, which are insertions or deletions of a length not divisible by three 

in a coding sequence.  These have the potential to radically alter encoded 

proteins by shifting the reading frame.  Frameshifts typically induce 

premature in-frame stop codons resulting in truncated proteins and, 

often, a reduction in transcript levels via NMD. In the 1000 Genomes 

Project population, frameshifts were the largest contributor to predictions 

of NMD, accounting for 60% of predicted cases. Frameshifts were also 

the largest contributor to LOF predictions stemming from large protein 

changes, accounting for 71% of cases.  When multiple frameshifts are 

present in a coding segment, however, their combined effect may be less 

severe than the predicted effect of any one frameshift if a downstream 

variant restores the original reading frame.  Because ACE analyzes se-

quences after simultaneously applying all variants present, combinations 

of frameshifts that mutually cancel each other by restoring the original 

reading frame can be detected.   

 

Fig. 4. A. Deletion of an entire splice site (top: hg19 reference sequence; bottom: 

haplotypes 1 and 2 of 1000 Genomes Project sample HG00096).  The resulting 

allele appears to retain a functional splice site despite the deletion, as concluded by 

ACE and supported by spliced RNA-seq reads. B. Compensatory frameshift vari-

ants: the second variant corrects the change to the reading frame introduced by the 

first variant (top: hg19 reference sequence, bottom: haplotype 2 of 1000 Genomes 

Project sample HG00096). 

One example of compensatory frameshifts detected by ACE occurs in 

the ZFPM1 gene (ENSG00000179588), which plays a key role in 

erythroid differentiation.  Within the coding segment of this gene are 

three common deletion variants, all within 10 nt of each other (Fig. 4B).  

The first two deletions (rs67712719, rs67322929) induce frameshifts, 

while the third (rs67873604) maintains the reading frame.  Either 

rs67712719 or rs67322929 in isolation would result in premature termi-

nation and a large change to the amino acid sequence (Supplementary 

Fig. S17).  Consequently, VEP classifies both rs67712719 and 

rs67322929 as having “high impact” (Supplementary Fig. S16B).  How-

ever, rs67712719 and rs67322929 commonly occur together in the 2504 

1000 Genomes Project samples (4869 / 5008 = 97% of haplotypes), and 

the combination results in only two amino acid changes, as rs67322929 

corrects the reading frame change introduced by rs67712719; the three 

variants together modify only four amino acids, due to their mutual 

proximity.  

Every individual in the 1000 Genomes Project sample harbored one or 

more (median = 7 per individual) compensatory frameshifts affecting 

≤30 amino acids.  In this sample, the observed lengths of affected inter-

vals (in amino acids) are very short on average (Supplementary Fig. 

S18), with a median length of only 1 aa, as compared to a null expecta-

tion of 260 aa for uniformly random, non-compensated frameshifts 

(Supplementary Fig. S19).  This bias toward short affected lengths may 

reflect selection against large functional changes in proteins. 

3.6 ACE accurately reconstructs human blood-group alleles 

at the ABO locus  

The human ABO gene (ENSG00000175164) is responsible for human 

blood types. It encodes a glycosyltransferase that modifies carbohydrate 

content of red blood cell antigens, with the A allele producing the A 

antigen, the B allele the B antigen, and the O allele being non-functional 

(Yamamoto et al., 1990).  In the non-functional O allele, a deletion of a 

single guanine in exon 6 creates a frameshift resulting in an in-frame 

stop codon in the same exon, so that only alleles A and B have a seventh 

coding exon.   

The ABO locus is highly diverse in human populations and has as-

sembly issues in both the GRCh37 and GRCh38 human reference ge-

nomes. The annotated allele in GRCh37 was the result of improper as-

sembly of two different O alleles, while GRCh38 combined A and O 

alleles, producing a sequence identical to the known O1.01 allele. 

(Yamamoto et al., 1990; Yip, 2002). Both assemblies now contain a 
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patch as an alternate contig that represents an A allele.  GENCODE 

version 19, the reference annotation for all of our analyses, annotates this 

gene as a processed transcript, and identifies no reading frame. 

In 1000 Genomes Project sample HG00096, ACE identifies a start co-

don and open reading frame in both haplotypes (Fig. 5A), and proposes 

that the gene might be mis-annotated as noncoding.  In haplotype 1 ACE 

identifies a coding gene structure that precisely matches the known O 

allele.  In haplotype 2 ACE identifies a structure matching both the A 

and B alleles; translation of this structure reveals that the amino acid 

sequence is identical to the known B allele (Yamamoto et al., 2014).  

Thus, ACE has identified this individual as being heterozygous for the O 

and B alleles, and thus likely has a B blood type. 

As noted in the Introduction, applying a state-of-the-art gene finder to 

this locus results in very different results.  This stark difference high-

lights the importance of ACE’s method of modeling splicing decisions as 

independent of downstream translation effects when analyzing gene 

structures in re-sequencing data.  

 

Fig. 5. A. Blood-group alleles of the ABO gene (ENSG00000175164).  Black: 

coding segment; gray: untranslated region (UTR).  Reference genome hg19 has the 

O allele; GENCODE version 19 annotates this gene as a processed transcript with 

no reading frame.  ACE identifies the coding segment for the O and B alleles in 

heterozygous individual HG00096.   (Coordinates have been transformed and 

mapped to the forward strand).  B. Complex differences in gene structure between 

alleles of the waxy gene in rice, due to a single G-to-T variant in a donor splice site.  

ACE detects a 1 nt shift in the donor splice site in the Wxb allele, resulting in a new 

start codon straddling the first intron.  The new start codon alters the reading frame, 

leading to a premature stop codon and NMD.  

3.7 ACE identifies complex gene-structure changes in a 

plant gene influencing flavor and nutritional content 

The waxy gene in domestic rice provides a test case for ACE’s ability to 

discover complex alterations to gene structure involving simultaneous 

changes to both splicing patterns and translation reading frames.  Differ-

ent alleles of waxy produce different ratios of amylose to amylopectin, 

leading to very different tastes and textures.  Moreover, as these polysac-

charide starches result in substantially different glycemic indices, their 

relative expression in different rice varieties has nutritional relevance. 

We provided ACE with the annotated Wxa allele as reference annota-

tion and projected this to the Wxb allele (Fig. 5B) using variants provid-

ed by the 3000 Rice Genomes Project.  ACE recognizes that the G to T 

substitution caused by variant id12648080 causes a disruption to the 

donor splice consensus at the end of the first exon in the 5’ untranslated 

region.  It then scans for and detects a new splice site scoring above 

PWM threshold in the vicinity of the annotated site; the new site is 1 nt 

upstream of the annotated site.  This 1 nt shift in the donor site results in 

a new splice junction in which an A at the end of the first exon joins with 

a TG at the beginning of the second exon.  ACE recognizes the spliced 

ATG as a valid start codon consensus.  Together with its flanking bases 

this putative start codon scores above PWM threshold.  ACE then pro-

poses that the Wxb allele preferentially begins translation at this up-

stream start codon, and traces the resulting open reading frame, finding 

that it ends in a premature stop codon resulting in a prediction of NMD.   

These conclusions match current understanding of how the Wxb allele 

functions (Cai et al., 1998; Isshiki et al., 1998; Tian et al., 2009).  The 

differences between Wxa and Wxb would be particularly challenging for 

a traditional gene finder to identify, as gene finders based on generalized 

hidden Markov models (GHMMs) utilize discrete states to represent 

multi-nucleotide features such as start codons. GHMM-based gene find-

ers are therefore unable to predict a start codon straddling an intron using 

standard decoding algorithms (e.g., Majoros et al., 2005).  The approach 

taken by ACE to separate modeling of transcription from translation 

simplifies the task because splicing decisions are made first.  Only after 

introns are removed does ACE apply the ribosome scanning model to 

search for a start codon.  In this way, ACE more closely models the way 

splicing and translation are believed to occur in the cell. 

4 Discussion 

The accurate detection and interpretation of gene structure differences in 

the genomes of individuals or strains is an important and unsolved prob-

lem, with clear relevance to genetic studies of disease and other pheno-

types.  As we have shown, individual variants disrupting splice sites or 

reading frames do not necessarily result in LOF.  Correct disambiguation 

of the effects of such variants, particularly within the context of individ-

ual genomes harboring combinations of variants that may interact, has 

the potential to substantially reduce false positives in burden testing.  We 

have also demonstrated that traditional gene-finding models are not 

suited for such applications without modification, as such models make 

assumptions incongruous to the task of detecting possibly deleterious 

changes that violate conservation patterns in genes.   

Here we have proposed an alternate framework for identifying and in-

terpreting gene structure changes, in which the potentially deleterious 

downstream effects of changes to gene structure are not considered when 

proposing such changes.  By withholding information regarding possible 

downstream effects when considering changes to gene structures, we 

enable ACE to identify changes that may result in a loss or change of 

function, and to do so in a minimally biased manner.  Because ACE has 

very few parameters, it is more readily applicable to other species than 

traditional gene finding models that utilize tens of thousands of parame-

ters and need to be retrained for each new species (Korf, 2004).  Moreo-

ver, when the intended application is to provide plausible novel gene 

structures to an RNA-seq pipeline, the use of a minimally biased ap-

proach favoring sensitivity over specificity may be desirable, though as 

noted previously, interpretation of transcript abundance estimates for 

these putative isoforms should be undertaken with caution, as existing 

methods of quantitation still leave much room for improvement (Hayer 

et al., 2015). 

The example of the ABO gene is particularly instructive, as it demon-

strates a case of different gene structures in different individuals with 

different and medically important phenotypes (blood type).  As we have 

shown, state-of-the-art de novo gene finders have difficulty correctly 

identifying the gene structures of individual alleles of this gene.  In the 

case of the O allele, which has fewer coding exons than the A and B 

alleles, there is a potential for misinterpretation of variants occurring in 

the gene.  As the final coding exon of the A and B alleles is not present 

in the O allele, correct interpretation of variants in that exon depends on 
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knowing which allele is present in an individual.  Furthermore, as the O 

allele is likely nonfunctional, accumulation of variants in that allele is 

likely underway (Yamamoto et al., 1990) and may lead to false positives 

in identification of deleterious variants when incorrect annotations are 

used.  The waxy gene in rice provides another example of allelic differ-

ences in gene structure precipitated by a simple sequence variant. We 

speculate that there may be numerous other genes in which the correct 

interpretation of variants differs between alleles in a way that depends on 

knowing the correct gene structure for each allele.  

ACE’s predictions of loss of function in the 1000 Genomes Project 

samples are highly enriched for genes tolerant of functional mutation, 

indicating a low false positive rate for identification of loss-of-function 

alleles.  Furthermore, our analyses of the Geuvadis data have confirmed 

that the nonsense-mediated decay pathway in humans typically does not 

result in complete loss of transcripts, but rather achieves a quantitative 

reduction on the order of a halving, albeit with much variation, often 

leaving many copies of NMD target isoforms undegraded.  Such tran-

scripts escaping degradation will encode truncated proteins that, if they 

escape further checkpoints during folding, can in some cases result in a 

deleterious gain-of-function and poison products (Balasubramani et al., 

2015).  Because ACE reports truncation products for all putative NMD 

targets, downstream analyses may be thereby enabled to infer deleterious 

effects directly or via association with phenotypes. 

 There is much room for enhancement of our method, for example 

through detailed modeling of the splicing regulatory landscape and its 

influence on splice site selection (e.g., Rosenberg et al., 2015).  It is also 

important to note that the accuracy of ACE’s predictions depends on the 

accuracy of genotype phasing.  In the case of the 1000 Genomes Project 

data used here, much effort has gone into ensuring that data are accurate-

ly phased (Delaneau et al., 2013).  As sequencing costs decrease and 

read lengths increase, we expect phasing accuracy to continue to im-

prove in newer resequencing studies, which will further increase ACE’s 

accuracy.  

The use of phased haplotypes is important for joint interpretation of 

variants that may interact in cis, as highlighted recently by Lek et al. 

(2016) using exome sequencing data from ~60,000 individuals.  Those 

authors reported an average of 23 multinucleotide polymorphisms (mul-

tiple variants that affect the same codon) per individual, and lament the 

lack of tools that can interpret variants in the context of a haplotype. The 

true mean number of compensatory variants will likely be higher than 23 

when other compensatory mechanisms are considered, including frame-

restoring indels and generation and/or use of alternate splice sites. These 

scenarios support a shift away from variant-centric analysis pipelines to 

tools such as ACE that generate haplotype-aware gene annotations as a 

way of understanding genetic variation in populations. 

In summary, ACE represents an initial attempt at modeling gene struc-

ture differences among the individuals of a single species, using a novel 

approach that makes fewer assumptions than traditional gene-finding 

techniques.  The abundance of human splice sites with possible robust-

ness in the form of alternate splicing solutions that result in minimal 

changes to the encoded protein suggests that ACE may have ample op-

portunities to reduce false positives in disease studies in which splicing 

defects are identified but have unknown significance.  ACE is equally 

applicable to identifying differences between lines of economically 

important animal or crop species, and it may have utility for RNA-seq 

analyses and for detecting possible gain-of-function variants in cancer 

genomes.  The design of ACE’s computational model makes it directly 

applicable to nonhuman species with minimal re-training, enabling stud-

ies of other model and non-model animal and plant species. 
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