LETTER

Sequence Assembly with CAFTOOLS

Simon Dear,* Richard Durbin,* LaDeana Hillier,? Gabor Marth,?
Jean Thierry-Mieg,® and Richard Mott!*4>

Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK; 2Genome
Sequencing Center, Washington University, St. Louis, Missouri 63108 USA; 3CRBM du Centre National de
la Recherche Scientifique (CNRS), Route de Mende, Montpellier, France; *SmithKline Beecham
Pharmaceuticals, New Frontiers Science Park (North), Harlow, Essex, CM19 5AW, UK

Large-scale genomic sequencing requires a software infrastructure to support and integrate applications that are
not directly compatible. We describe a suite of software tools built around the Common Assembly Format
(CAF), a comprehensive representation of a sequence assembly as a text file. These tools form the backbone of
sequencing informatics at the Sanger Centre and the Genome Sequencing Center. The CAF format is
intentionally flexible, and our Perl and C libraries, which parse and manipulate it, provide powerful tools for
creating new applications as well as wrappers to incorporate other software. The tools are available free by

anonymous FTP from ftp://ftp.sanger.ac.uk/pub/badger/.

Genomic sequencing is now a semi-industrial pro-
cess that is being increasingly automated. The
amount of finished sequence produced in large cen-
ters worldwide more than doubles each year. This
effort has required a huge investment in bioinfor-
matics, and new software is under continual devel-
opment both within these centers and in the wider
academic community. High-throughput sequence
assembly is a complicated multistep pipeline, using
many pieces of software, and we as users want to be
in a position to use the best set of software tools,
even if this causes problems reconciling the various
data formats they use. In addition, because more
than one tool may be suitable for the same task (e.g.,
for manually editing sequence assemblies) we also
want to offer alternatives within the same frame-
work.

Consequently we require a system that is flex-
ible enough for us to evaluate and incorporate new
software as it emerges and yet is easy to maintain
and use. We have not found any existing product
that meets these requirements completely, so our
solution to this problem was to create the Common
Assembly Format (CAF), a complete textual descrip-
tion of a sequence assembly, together with Perl and
C libraries for parsing and manipulating CAF files,
and applications written with these libraries to per-
form tasks for which no third-party software exists.

SCorresponding author.
E-MAIL richard mott-1@sbphrd.com; FAX 44 1279 622200.

260 «# GENOME RESEARCH

The purpose of this paper is threefold: (1) to
describe CAF and its associated software package
CAFTOOLS; (2) to illustrate their use for genomic
sequencing at the Sanger Centre; and (3) to propose
CAF as a standard format for developers and se-
quencing centers.

The CAF
Overview

CAF is a restriction of the data file format (.ace file
format) conforming to a specific acedb (http://
www.sanger.ac.uk/Software/Acedb/) schema for
describing sequence assemblies. It is acedb-
compliant, although using CAF does not require the
use of acedb. A full acedb schema for CAF can be
found at the official CAF web site, http://
www.sanger.ac.uk/Software/CAF/. CAF is designed
to be sufficiently comprehensive that any assembly
engine/editor such as phrap (P. Green, pers.
comm.), consed (Gordon et al. 1998), gap4 (Bon-
field et al. 1995), acembly (J. Thierry-Mieg, un-
publ.), FAKII (Larson et al. 1996; Myers 1996), and
so forth, can derive all of the information it needs
from the CAF file without reading any other data,
except for trace information that is held in standard
chromatogram format (SCF) files (Dear and Staden
1992). We have written tools to convert to and from
each of these systems. Note that because CAF de-
scribes a superset of sequence attributes, passing an
assembly through any of these editors may result in
loss of information.

8:260-267 ©1998 by Cold Spring Harbor Laboratory Press ISSN 1054-9803/98 $5.00; www.genome.org

A sequence assembly is essentially a set of con-
tigs, each contig being a multiple alignment of
reads. In outline, the information we may need to
store about each sequence is

1. The DNA sequence.

2. The base quality (a list of numbers indicating the
confidence that the corresponding base in the
sequence is correct).

3. The base positions (for reads only: a list of num-
bers indicating the location of the corresponding
base within the SCF trace).

4. General properties (for reads only) such as the
sequence template, name of corresponding trace
file, etc.

5. Tags (regions of the sequence with some prop-
erty, e.g., matching vector, repeat sequence, etc.).

6. Alignment of DNA onto the constituent reads, in
the case of contigs, or of DNA onto original base
calls in the case of reads.

CAF supports all of these features. In CAF the infor-
mation associated with the sequence Nameis di-
vided into a maximum of four data types, which are
represented as separate paragraphs of text, separated
by blank lines, with header lines.

DNA : Name 1. the DNA sequence

BaseQuality : Name 2. the base quality
information for the
DNA

BasePosition : Name 3. the base position

information for the
DNa, ie the trace
coordinates

Name 4-6. all other
information
about the

sequence

Sequence :

Throughout this paper, we will use Courier
font for CAF reserved words and ltalic Courier
for CAF variables. The order of paragraphs within a
CAF file is arbitrary. The BaseQuality and Base-
Position types are optional but the DNAand Se-
quence types are mandatory. Contigs and reads
have the same DNAand BaseQuality types but spe-
cialized Sequence subtypes. DNA sequence is rep-
resented as consecutive lines of text following
DNA : Name Base quality is represented as lines of
space-separated integers following BaseQuality :
Name The number of quality values must equal the
length of the DNA. Base positions are represented
similarly following BasePosition : Name

SEQUENCE ASSEMBLY WITH CAFTOOLS

The format of the data following a Sequence :
Nameis variable. The minimum requirement is to
specify the type (Is _Read or Is _Contig) and state
(Padded or Unpadded, see the examples below). For
clarity, we divide the Sequence data into simple
and coordinate-sensitive attributes.

Simple Sequence Attributes

Sequence attributes that are not linked to coordi-
nates have the general format

Attribute type Value(s)

For example, the CAF fragment in Figure 1 describes
the sequence attributes of the read hh26e2.s1
Comments start with // and continue to the end of
the line. New simple attributes can be created with-
out constraint because CAFTOOLS will treat unrec-
ognized attributes as text to be carried along un-
changed with the associated Sequence object. The
order of the attributes is arbitrary. Figure 1 details
the most important and commonly used attributes,
and a full list may be found at our web site.

Alignments and Coordinate-Sensitive Data

Those data that are coordinate dependent, for ex-
ample, alignments and tags, are more structured be-
cause they must be parsed so that they can mirror
changes to their associated DNAs. For example, ed-
iting, padding, or depadding a sequence alters the
corresponding tag coordinates. The CAFTOOLS
handle these changes transparently.

CAF stores two levels of alignment—that of the
contig DNA to the read DNA, and that of the read
DNA to the original base calls in the SCF trace. The
alignment of a read onto a contig is represented by
a series of statements of the form

Assembled from Read c¢1 c2 rl r2

which means coordinates c¢1 to c2 in the contig
align with r1 to r2 in the read. Coordinates start at
1. If ¢c1 > c¢2 then the statement means align the
reverse complement of r1 to r2 in the read. The
lengths | cI-c2| and | r1-r2 | must be the same.
The alignment of a read to its original base calls in
the SCF trace is similar:

Align to SCFrl r2 t1 t2

that is, coordinates r1 to r2 in the read correspond
with t1 to t2 in the trace. Align _to SCFis only
applicable when the base positions of the DNA can
be derived from the base position information held
in the corresponding SCF trace files (recall that an
SCF trace stores the trace data, the original base

GENOME RESEARCH « 261

DEAR ET AL.

Sequence : hh26e2.sl // Header In padded coordinate space,
Is_Read // Sequence sub-type e .

Padded // Padded state p(_)SItIO_nS [1’19]_ n Rgad_x
SCF_File hh26e2.s1SCF // Name of SCF trace file align with [3,21] in Contig .
Template hh26e2 // Name of DNA template or subclone py
Dye Dye primer 7/ Dye chemistry !—Iowever, the pres_ence_ of pads
Primer Universal_primer // Type of primer in Read_X makes its alignment
Strand Forward // Forward or Reverse strand P H
ProcessStatus PASS // Pass/Fail verdict from ASP tC_) Its trace SCF—X Compllcated'
Sequencing_vector ml3mpl8 // Subcloning vector Figure 2A shows a fragment of
Insert_size 1400 2000 // Size range of subclone insert. 7 ihi _
Seq_vec SVEC 1 34 // Sequencing vector c¢lipping a CAF_fIIe descnbmg the pad
Clipping QUAL 5 357 // High quality part of read ded alignment. Note that the
Clone c¢N104C4 // Name of parent bacterial clone alionment of the read to the
Asped 1996-08-28 // Date sample was preprocessed by ASP 9

Figure 1 An example showing how the attributes of the read hh26e2.s1 are
described as a CAF Sequence object. The text following the // on each line
are comments. This example illustrates most of the commonly used CAF

read attributes.

calls, and the mapping of each called base onto the
trace). For certain purposes, for example, consed,
we can override the SCF base calls and their posi-
tions by storing the coordinates explicitly in a
BasePosition paragraph, in which case there is no
need to use Align _to SCF

CAF supports padded and unpadded align-
ments. Padded means that gaps (-) have been in-
serted where required in the contigs and their
aligned reads so that there is a one-to-one corre-
spondence between the aligned sequences. In a pad-
ded assembly, there is exactly one Assembled _
from line for each aligned read in a contig, and the
DNA objects contain — padding characters.

In an unpadded alignment, all of the pads are
removed from the DNA objects and there are multiple
Assembled from lines for each read in a contig.
Within each Assembled _from line there is still a one-
to-one correspondence between the read and contig.

Some applications, for example, auto-editor
(described in Table 1B) and gap4, require padded
alignments. Others (e.g., applications that screen
the DNA against known sequences like repeats)
require unpadded. The programs caf pad and
caf depad allow one to move transparently be-
tween padded and unpadded states, without losing
information. In a padded alignment with Base-
Quality information it is necessary to attach a
quality value to each pad to keep the lengths equal.
By convention this is interpolated from neighbor-
ing BaseQuality values. BasePosition data are
treated similarly.

We illustrate these ideas with a hypothetical
example. Suppose the alignment of Read X to
Contig_ Y is

Read X
Contig Y

GCTGCCTTCGC-TTAAAA
CAGCTGC-TTAGCGCTTAAAA

262 «# GENOME RESEARCH

contig is attached to the con-
tig’s sequence data and not the
read’s. The equivalent unpad-
ded description is shown in
Figure 2B, where the coordi-
nates now refer to the unpad-
ded sequences. Note also that the alignment of the
read DNA sequence onto the underlying base calls
in the SCF file will change if insertions or deletions
have been made to the read.

The other major type of coordinate-sensitive
data to consider is the tag. A tag is a region of a
sequence with some property. The format must be
one of

Tag Type x1 x2 Comment

Seg_vec Method x1 x2 Comment

Clone _vec Method x1 x2 Comment

Clipping Method x1 x2 Comment

The Tag attribute means that positions x1 to x2 of
the sequence have property Type, optionally with
the free text Comment This is used extensively to
mark regions matching repeat sequences, or those
that have been automatically edited with auto-
editor. The special tags Seq vec, Clone _vec,
and Clipping are reserved for regions that match
sequencing vector, cloning vector, or are high qual-
ity. These are held inside CAFTOOLS as separate
data structures. Their Method attribute is used to
indicate which algorithm was used to generate the
relevant coordinates (e.g., so that different quality
clip points can be represented).

Finally, CAF supports the phrap concept of the
“golden path” of a contig. This is a sequence of
abutting intervals covering the contig’s DNA, such
that each interval of the contig is associated with
the read with locally the highest base quality. The
format is a series of lines

Golden path Read x1 x2

SEQUENCE ASSEMBLY WITH CAFTOOLS

Table 1. Summary of the CAFTOOLS

A. General CAF utilities, including tools for communication with other software

general CAF utilities

caf_pad Converts an unpadded assembly to a padded one. All coordinate-dependent data are updated (written
in C).

caf_depad Inverse of caf_pad (C).

cafcat Concatenates and consolidates multiple CAF files into a single file. Also reports semantic errors (C).

cafmerge Merges two CAF files, replacing duplicated objects rather than concatenating them (cf. cafcat) (C).

caf2phrap Extracts a subset of sequences from a CAF file into three files; (1) FASTA DNA; (2) base quality; (3) CAF

stub of remaining attributes. This is used to prepare data for phrap but also provides a general way
to extract FASTA sequence data from CAF (C).

assembler support

caf_phrap Takes a CAF file and an optional list of reads, assembles them with phrap and creates a new CAF file
describing the assembly. No other postprocessing is done.
caf_fak Similar Perl wrapper for FAKII.
acembly support
caf2bly Converts a CAF file into an acembly database.
bly2caf Exports a CAF file from an acembly database.
caf_bly Takes a CAF file and a script command file, reads a CAF file into an acembly database, performs the

script, re-exports a CAF file on standard output and cleans up.

gap support

caf2gap Converts a CAF file into a gap4 database. All CAF tags are converted to their gap4 equivalents (C).
gap2caf Creates a CAF representation of data in a gap4 database (C).
exp2caf Converts Staden Experiment files into CAF.
update_caf
consed support
consed2caf Converts a phrap assembly or a consed database into CAF.
consed2gap Converts a phrap assembly or consed database into a gap4 database.
caf2phd Converts CAF reads to phred PHD files required for consed.
phd2caf Converts phred PHD files to CAf.

B. Specialized processing tools. Programs are written in Perl unless indicated otherwise.
tag generators

cafvector These wrappers extract contig sequence from CAF, screen it using blast or cross_match against a
caftagfeature library of sequences, and create tags for any matches found.
cafalu
cafcgi
auto-editor
np_edit Proposes edits for an assembly by examining the SCF traces in the context of the alignment. A new
CAF file is generated listing the suggested edits as special edit tags that are parsed and acted on by
nd_edit (C).
nd_edit Makes the edits proposed by np_edit. Editing will change the DNA sequences of the reads. nd_edit
modifies the coordinates of all tags and base qualities appropriately (C).
clipping
nd_clip Clips back all assembled reads according to the Clipping tags. We use this to postprocess phrap
assemblies to restrict aligned reads to their higher-quality regions (C).
ne_clip Used after nd_clip to extend back clipped reads where necessary to cover holes created (C).
cafsplit Alternative to ne_clip. Splits contigs at holes.
finishing
finish Analyzes the assembly to choose directed reads for the purpose of finishing.
cafcop Checks assembly for finishing errors and regions of insufficient sequence coverage.
clone overlap data management
Readraid Incorporates SCF traces and sequence of reads from overlapping regions of neighboring clones in the
physical map.
Conraid Incorporates consensus sequence from overlapping regions of neighboring clones.

GENOME RESEARCH « 263

DEAR ET AL.

A B CAFTOOLS have been tested ex-
DNA : Contig Y DNA : Contig ¥ tensively unde_r Digital Alpha OSF
CAGCTGC-TTAGCGCTTAAAA CAGCTGCTTAGCGCTTAAAA and Sun Solaris UNIX but should
} , work on most UNIX platforms.
Sequence : Contig_Y Sequence : Contig_ Y . .
Is_contig Is_contig They do not provide graphics.
Padded Unpadded Most of the applications that we

Assembled_from Read_X 3 21 1 19

DNA : Read X
GCTGCCTTCGC~--TTAAAA
DNA : Read_X

Assembled_from Read_ X 3 7 1
Assembled_from Read X 8 12 7
Assembled from Read_X 15 20 12

have written with the libraries act
as UNIX-style filters, reading a
CAF file on standard input, modi-

Sequence : Read_X GCTGCCTTCGCTTAAAA fying it, and writing a new CAF on
Is_read -li

Padded Sequence : Read X sta_ndard output. _Command I_me
SCF_File Read_X.SCF Is_read switches can modify the function
Align_to SCF 1 11 1 11 Unpadded of many applications. The only

Align_to_SCF 14 19 12 17

SCF_File Read_X.SCF

Align_to_SCF 1 17 1 17

exceptions are those that split the

Figure 2 An example alignment in CAF, when the sequences are padded

(A) and when they are unpadded (B).

meaning Read provides the golden path for the in-
terval [x1,x2] . Complete examples of CAF files can
be found on our CAF web site.

The CAFTOOLS

We have written two libraries for reading, manipu-
lating, and writing CAF files:

1. Perl-5 libraries, which are easy to use and are con-
venient for creating wrappers for software writ-
ten by third parties. The general procedure is to
extract the relevant data from the input CAF file,
convert it into the format required by the pro-
gram, run the application, parse the output back
into CAF, and write an updated CAF file. For ex-
ample, the CAF tagging applications are based on
this model.

2. ANSI-C libraries, which are less flexible but are
much faster and can handle very large data sets
(up to 50,000 reads) without using too much
memory. They also perform much more strin-
gent data checking and understand which infor-
mation is position-sensitive, so that coordinates
are automatically changed in concert with DNA
modifications. They also provide error checking
that reports (a) references to nonexistent se-
quences, (b) sequence coordinates out of range
(compared with length of DNA), (c) inconsistent
alignments, and (d) mixed or unspecified pad
states. They are suited for writing computation-
ally intensive applications, such as the auto-
editor, which requires access to trace data. Ap-
plications written with the C libraries can pad or
depad the input data as required by a single func-
tion call. They can also handle multiple CAF da-
tabases simultaneously in different name spaces.

264 # GENOME RESEARCH

CAF into multiple files (e.g., to
prepare data for processing by
phrap) or that merge multiple
CAF files into one. This means it is
possible to pipe together many processing modules
in one command. For example, to auto-edit a gap4
database GAPDB.0 one could type

gap2caf -project GAPDB -version 0
-preserve | np _edit -scf | nd _edit
| caf2gap -project GAPDB -version 1

This will create a new edited database GAPDB.1
(The -preserve switch ensures that the internal
gap4 numbering of the sequences is retained. We
use a special attribute, Staden _id , for this pur-
pose.) In practice, we chop up the assembly pipeline
at significant breakpoints and write intermediate
temporary CAF files to disk so that we can switch
modules more easily and perform a postmortem if
an error occurs. Full details of how to run each ap-
plication, including all command-line options, may
be found on our web site. Table 1 summarizes the
more important utilities and applications written
using CAFTOOLS.

Most of the utilities run in under 10 elapsed sec
on a cosmid-sized CAF file. The applications are
slower, for example, the auto-editor takes 2-3 min
to edit a cosmid (40 kb, (11000 reads). We can pro-
cess a cosmid through our complete assembly pipe-
line in (115 min on a 433 Mhz DEC Alpha processor.

The Sequence Assembly Pipeline

CAFTOOLS are best illustrated by their use at the
Sanger Centre and the Genome Sequencing Center.
We use the following pipeline at the Sanger Centre
for assembling reads from a bacterial clone (e.g., a
cosmid or BAC) into contigs. Most genome sequenc-
ing centers that use shotgun sequencing follow a

broadly similar work flow. Figure 3 summarizes the
pipeline and shows how CAF is integrated into it.

Preprocessing

As each sample comes off a sequencing machine, we
preprocess it using asp (Automated Sequence Pre-
processor) (M. Wendl, S. Dear, D. Hodgson, and L.
Hillier, in prep.). asp is a chain of modules written
in Perl, some of which call C programs, for example,
phred (Ewing and Green 1998) and svec_ clip
(Mott 1998). At the Sanger Centre, asp performs the
following operations:

1. Query a central database to determine the world-
unique name of the sample, the name of the par-
ent clone (the “project’), the sequencing chem-
istry, the expected insert size, the sequencing
vector, and the priming and cloning sites.

2. Base-call the sample using phred creating an
SCF trace file and a file of phred base quality
indices.

3. Determine quality clip points (i.e., the good-
quality part of the read) from the phred base
qualities. To do this we subtract 15 from each
base quality index and then find left L and right
R clip points such that the sum of adjusted qual-
ity values from L to R is a maximum.

Raw Data
(Experiment files) .~

Finished

Sequence
(for analysis
and submission)

AN

CAF

Editors

gap4 R L

consed
acembly

SEQUENCE ASSEMBLY WITH CAFTOOLS

4. ldentify sequencing vector clip points by align-
ment of the original SCF trace to the expected
vector sequence (svec__clip).

5. Screen the sequence against Escherichia coli and
other possible contaminants.

Each sample processed by asp generates an Ex-
periment file (Bonfield and Staden 1996) containing
all the information generated about the sample in
the run. A sample can be “failed” by asp if it has no
high-quality region, is completely sequencing vec-
tor, or matches a contaminant. Samples that are
passed by asp are moved, together with their asso-
ciated trace files, into the relevant project directory
for assembly. asp reports the fate (Pass or Failure,
and the reason for failure) of each sample to a cen-
tral database. The sequence assembly process will
only start once the number of samples exceeds a
threshold, typically (1600 reads for a cosmid and
(2000 for a PAC.

Assembly

The automated assembly process is controlled by a
Perl script, phrap2gap. Each stage in the assembly
pipeline is a module that accepts a CAF description
of the current assembly, acts on it in some way, and
writes out a new CAF file. Each
CAF is a complete and consistent
description of the current state of
the assembly. Therefore, it is rela-
tively easy to add or replace mod-

A ules provided they conform to this

Assemblers . iiorn. For example, we have

prven added support for the editor
acembly consed, and for the sequence as-

sembly engines FAKII and acem-
bly. Figure 3 summarizes the pipe-
line. In greater detail, the steps are

1. Create a CAF file containing all
of the raw data from individual
Staden Experiment files (up-

/ \ date caf, exp2caf).
: \{ 2. Extract from the raw CAF input

Modules files required by the assembly
--- clipping engine phrap (essentially a file
a”;i"nies?:m' of sequences and a file of base

feature tagging qualities). Assemble into con-

Figure 3 How CAF and CAFTOOLS are used in the sequence assembly
pipeline. Broken arrows show the order in which data are processed; the
solid arrows indicate actual data flow and how CAF is used as an interchange

mechanism.

tigs with phrap and merge
back with the other informa-
tion held in the raw CAF. The
result is a new CAF file com-

GENOME RESEARCH «# 265

DEAR ET AL.

pletely describing the reads and how they are as-
sembled (caf_phrap, caf2phrap, caf-
merge).

3. Clip back the assembled reads to their high-
quality regions determined previously by asp
(nd__clip). This process can occasionally create
holes in contigs where no high-quality sequence
occurs. phrap2gap offers the choice of splitting
contigs (cafsplit) or re-extending reads back
into their low quality parts to close the gaps
(ne__clip).

4. Auto-edit the assembled reads, referring back to
the original trace data (np__edit, nd__edit).
Depending on the depth of coverage, up to 90%
of the edits can be made at an error rate of less
than one mistake per 50 kb.

5. Screen (using cafvector, cafalu, cafcgi, and
caftagfeature) the assembled contigs against
various sequence data sets (e.g., cloning vector,
known repeats, transposons) and tag any match-
ing regions.

6. Analyze the assembly to choose directed reads for
gap closure and to resolve ambiguities with fin-
ish (G. Marth and S. Dear, in prep.).

7. Convert the edited, tagged assembly into a gap4
database for manual finishing (caf2gap).

Further finishing reads are incorporated to close
gaps in the contigs and strengthen the consensus in
poor quality regions. To do this the user has the
choice of adding the new sequences individually
into the gap4 database and auto-editing again, or
reassembling all of the data from scratch.

This pipeline uses the third-party applications
phrap, cross__match (P. Green, pers. comm.),
consed, blast (Altshul et al. 1990), and gap4 and
two CAF applications auto-editor and finish,
plus repeated use of several CAF utilities.

The Genome Sequencing Center uses a similar
pipeline, except the auto-editing step is omitted and
consed is used in place of gap4. The Center also
performs an internal quality-checking step on the
final assembly (cafcop, pcop) before the sequence
is submitted for analysis.

DISCUSSION

Historically, CAF dates from [11993 to 1994, growing
out of our need to combine the assembly editor
gap4 with the assembly engine phrap and other
applications. At that time no existing interchange
format was wholly appropriate for the task, for ex-
ample, the Staden Experiment file format then did
not represent contigs as distinct entities and relied

266 «# GENOME RESEARCH

on padded alignments. The early versions of CAF-
TOOLS were entirely Perl-based. We developed the
C libraries initially to support auto-editing but soon
recognized that the efficiency gains made develop-
ing a full C library worthwhile, particularly as we
were starting to shotgun sequence 120-kb PAC and
BAC clones.

CAF is not the only textual representation of
sequence assemblies to be proposed. Staden Experi-
ment file format has been suggested previously as a
basis on which to form a standard interchange for-
mat (Bonfield and Staden 1996). The Boulder for-
mat (Stein et al. 1994) is used at the Whitehead
Institute for purposes similar to CAF.

CAF may be viewed as a synthesis of many of
the best features of other systems. Many of the CAF
sequence attributes have exact correlates in Staden
Experiment files, although the format is different
and the description of multiple alignments by As-
sembled from lines is similar to that used by
acembly. We believe that CAF has the following
advantages: (1) The plain text acedb file structure
used by CAF means that files are easy to read and
debug. (2) Holding all of the information about an
assembly in a single file, rather than divided into
individual sequence files makes it simpler to main-
tain consistent assemblies and to manipulate assem-
blies as single entities. (3) CAF is very flexible. We
have been able to incorporate new software into our
assembly pipeline relatively easily. (4) CAFTOOLS
have been tested thoroughly and are in production
use. Most of the total (to October 1997) 125 Mb of
finished genomic DNA produced at our two se-
quencing centers was processed by some version of
CAFTOOLS, and >50 Mbp was processed by the cur-
rent version.

The Sanger Centre recently completed the 4.4-
Mbp sequence of Mycobacterium tuberculosis (http://
www.sanger.ac.uk/Projects/M__tuberculosis/) using
CAFTOOLS applied to sequence data from a mixture
of cosmids and a whole-genome library. The final
stages of this project would have been much more
difficult to complete without the infrastructure that
CAF provided. This illustrates the power and impor-
tance of CAF.

The Sanger Centre is currently sequencing other
pathogens, using whole-genome or chromosome li-
braries. We have found that, in general, assemblies
covering more than 1 Mbp of genomic sequence are
rather large to hold as single CAF files, although
feasible on machines with large memories. More im-
portantly, the final assembly must be split into
pieces small enough to be completed by an indi-
vidual while maintaining the integrity of the entire

assembly. The natural solution is to store the CAF
information in a database. It is possible to use
acedb for this purpose. Alternatively, one can use a
relational database for CAF, and at the Sanger Cen-
tre we are currently implementing CAF in Oracle.
The database communicates with other software by
reading and writing CAF files, so that we can still use
our existing CAFTOOLS while we benefit from be-
ing able to manipulate subsets of the data in a safe
and efficient way. These developments have also led
us to explore the extension of the CAF model to
support partially assembled groups of contigs, to ex-
ploit relative contig order information from for-
ward/reverse read pairs and restriction-digest infor-
mation, although this is not yet part of the public
distribution.

We anticipate that CAF will undergo further
modification but that its basic principles will re-
main intact. We welcome suggestions for changes
and additions to CAF. Our hope is that CAF will
become more widely used for describing sequence
assemblies and that developers will make use of it to
the benefit of the wider sequencing community. As
all workers in the field of bioinformatics recognize,
an inordinate amount of time is spent interconvert-
ing file formats, to the detriment of actual software
development. After >2 years of intensive develop-
ment, testing, and production use, we believe CAF
and CAFTOOLS are well-positioned to offer an ef-
fective solution to these problems in the domain of
seguence assembly.

ACKNOWLEDGMENTS

This work was supported by grants from the Wellcome Trust,
CNRS, and the National Human Genome Research division of
the National Institutes of Health. Also, we acknowledge the
contributions of Rob Davies at the Sanger Centre, and Dave
Hodgson, formerly at the Sanger Centre, to this work.

The publication costs of this article were defrayed in part
by payment of page charges. This article must therefore be
hereby marked “‘advertisement” in accordance with 18 USC
section 1734 solely to indicate this fact.

REFERENCES

Altschul, S.F., W. Gish, W. Miller, EW. Myers, and D.J.
Lipman. 1990. Basic local alignment search tool. J. Mol. Biol.
215: 403-410.

Bonfield, J.K., K.F. Smith, and R. Staden. 1995. A new DNA
sequence assembly program. Nucleic Acids Res.
23: 4992-4999.

Bonfield, J.K. and R. Staden. 1996. Experiment files and

SEQUENCE ASSEMBLY WITH CAFTOOLS

their application during large-scale sequencing projects.
DNA Sequence 6: 109-117.

Dear, S. and R. Staden. 1992. A standard file format for data
from DNA sequencing instruments. DNA Sequence
3:107-110.

Ewing, B. and P. Green. 1998. Base-calling of automated
sequences traces using PHRED. Il. Error probabilities.
Genome Res. (this issue).

Gordon, D., C. Abajian, and P. Green. 1998. consed: A
graphical tool for sequence finishing. Genome Res. (this
issue).

Larson, S., M. Jain, E. Anson, and E.W. Myers. 1996. An
interface for a fragment assembly kernel. Tech. Rep. TR96-04.
Department of Computer Science, University of Arizona,
Tucson, AZ.

Mott, R. 1998. Trace alignment and some of its
applications. Bioinformatics (in press).

Myers, E. 1996. A suite of UNIX filters for fragment assembly.
Tech. Rep. TR96-07. Department of Computer Science,
University of Arizona, Tucson, AZ.

Stein, L., A. Marquis, E. Dredge, M.P. Reeve, M. Daly, S.
Rozen, and N. Goodman. 1994. Splicing UNIX into a
genome mapping laboratory. In USENIX Summer Technical
Conference, pp. 221-229. USENIX Association, Berkeley, CA.

Received December 1, 1997; accepted in revised form January
29, 1998.

GENOME RESEARCH « 267

