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Abstract

The 1000 Genomes Project aims to provide a deep characterisation of human genome sequence
variation as a foundation for investigating the relationship between genotype and phenotype. We
present results of the pilot phase of the project, designed to develop and compare different
strategies for genome wide sequencing with high throughput sequencing platforms. We undertook
three projects: low coverage whole genome sequencing of 179 individuals from four populations,
high coverage sequencing of two mother-father-child trios, and exon targeted sequencing of 697
individuals from seven populations. We describe the location, allele frequency and local haplotype
structure of approximately 15 million SNPs, 1 million short insertions and deletions and 20,000
structural variants, the majority of which were previously undescribed. We show that over 95% of
the currently accessible variants found in any individual are present in this dataset; on average,
each person carries approximately 250 to 300 loss of function variants in annotated genes and 50
to 100 variants previously implicated in inherited disorders. We demonstrate how these results can
be used to inform association and functional studies. From the two trios we directly estimate the
rate of de novo germline base substitution mutations to be approximately 1078 per base pair per
generation. We find many putative functional variants with large allele frequency differences
between populations. We explore the data with regard to signatures of natural selection, and
identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at
linked sites. These methods and public data will support the next phase of human genetic research.

Introduction

Understanding the relationship between genotype and phenotype is one of the central goals
in biology and medicine. The reference human genome sequence! provides a foundation for
the study of human genetics, but systematic investigation of human variation requires full
knowledge of DNA sequence variation across the entire spectrum of allele frequencies and
types of DNA differences. Substantial progress has already been made. By 2008 the public
catalogue of variant sites (dbSNP 129) contained approximately 11 million single nucleotide
polymorphisms (SNPs) and 3 million short insertions and deletions (indels)?-4. Databases of
structural variants (SVs) (e.g., dbVAR) indexed the locations of large genomic variants. The
International HapMap Project catalogued both allele frequencies and the correlation patterns
between nearby variants, a phenomenon known as linkage disequilibrium (LD), across
several populations for 3.5 million SNPs3, 4.

These resources have driven disease gene discovery in the first generation of genome wide
association studies (GWAS), wherein genotypes at several hundred thousand variant sites,
combined with the knowledge of LD structure, allow the vast majority of common variants
(here, those with > 5% minor allele frequency, or MAF) to be tested for association? with
disease. Over the last five years association studies have identified more than a thousand
genomic regions associated with disease susceptibility and other common traits®. Genome
wide collections of both common and rare SVs have similarly been tested for association
with disease®.
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Despite these successes, much work is still needed to achieve a deep understanding of the
genetic contribution to human phenotypes’. Once a region has been identified as harbouring
a risk locus, detailed study of all genetic variants in the locus is required to discover the
causal variant(s), to quantify their contribution to disease susceptibility, and to elucidate
their roles in functional pathways. Low frequency and rare variants (here defined as 0.5% to
5% MAF, and below 0.5% MAF respectively) vastly outhumber common variants and also
contribute significantly to the genetic architecture of disease but it has not yet been possible
to study them systematically’-°. Meanwhile, advances in DNA sequencing technology have
enabled the sequencing of individual genomes9-13, illuminating the gaps in the first
generation of databases that contain mostly common variant sites. A much more complete
catalogue of human DNA variation is a prerequisite to fully understanding the role of
common and low frequency variants in human phenotypic variation.

The aim of the 1000 Genomes Project is to discover, genotype and provide accurate
haplotype information on all forms of human DNA polymorphism in multiple human
populations. Specifically, the goal is to characterise over 95% of variants that are in genomic
regions accessible to current high throughput sequencing technologies and that have allele
frequency of 1% or higher (the classical definition of polymorphism) in each of five major
population groups (populations in or with ancestry from Europe, East Asia, South Asia,
West Africa and the Americas). Because functional alleles are often found in coding regions
and have reduced allele frequencies, lower frequency alleles (down to 0.1%) will also be
catalogued in such regions.

Here we report the results of the pilot phase of the project, the aim of which was to develop
and compare different strategies for genome wide sequencing with high throughput
platforms. To this end we undertook three projects: low coverage sequencing of 179
individuals, deep sequencing of six individuals in two trios, and exon sequencing of 1,000
genes in 697 individuals (Box 1). The results give us a much deeper, more uniform picture
of human genetic variation than was previously available, enabling new insights into the
landscapes of functional variation, genetic association and natural selection in humans.

Box 1
The 1000 Genomes pilot projects

To develop and assess multiple strategies to detect and genotype variants of various types
and frequencies using high throughput sequencing we carried out three projects, using
samples from the extended HapMap collectionl4

e Trioproject: whole genome shotgun sequencing at high coverage (average 42x)
of two families (one Yoruba from Ibadan, Nigeria (YRI), one of European
ancestry in Utah (CEU)), each including two parents and one daughter. Each of
the offspring was sequenced using three platforms and by multiple centres.

e Low coverage project: whole genome shotgun sequencing at low coverage
(2-6x) of 59 unrelated individuals from YRI, 60 unrelated individuals from
CEU, 30 unrelated Han Chinese individuals in Beijing (CHB) and 30 unrelated
Japanese individuals in Tokyo (JPT).

o  Exon project: targeted capture of the exons from nearly 1000 randomly selected
genes (total of 1.4 Mb) followed by sequencing at high coverage (average >
50x) in 697 individuals from 7 populations of African (YRI, Luhya in Webuye,
Kenya (LWK)), European (CEU, Toscani in Italia (TSI)) and East Asian (CHB,
JPT, Chinese in Denver, Colorado (CHD)) ancestry.

Nature. Author manuscript; available in PMC 2011 April 01.



syduasnue|A Joyiny sispund DA adoin3 ¢

syduosnuelA Joyiny sispun4 DA @doing ¢

Page 3

The three experimental designs differ substantially both in their ability to obtain data for
variants of different types and frequencies and in the analytical methods we used to infer
individual genotypes. The Figure shows a schematic representation of the projects and
the type of information obtained from each. Colours in the left region indicate different
haplotypes in individual genomes, and line width indicates depth of coverage (not to
scale). The shaded region to the right gives an example of genotype data that could be
generated for the same sample under the three strategies (dots indicate missing data,
dashes indicate phase information, i.e., whether heterozygous variants can be assigned to
the correct haplotype). Within a short region of the genome, each individual carries two
haplotypes, typically shared by others in the population. In the trio design, high sequence
coverage and the use of multiple platforms enable accurate discovery of multiple variant
types across most of the genome, with Mendelian transmission aiding genotype
estimation, inference of haplotypes and quality control. The low coverage project, in
contrast, efficiently identifies shared variants on common haplotypes!®, 16 (red or blue),
but has lower power to detect rare haplotypes (light green) and associated variants
(indicated by the missing alleles), and will give some inaccurate genotypes (indicated by
the red allele incorrectly assigned G). The exon design enables accurate discovery of
common, rare and low frequency variation in the targeted portion of the genome, but
lacks the ability to observe variants outside the targeted regions or assign haplotype
phase.
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Figure.

Results

Overview of data generation, alignment and variant discovery

A total of 4.9 Tb of DNA sequence was generated in nine sequencing centres using three
sequencing technologies, from DNA obtained from immortalised lymphoblastoid cell lines
(Table 1 and Supplementary Table 1). All sequenced individuals provided informed consent
and explicitly agreed to public dissemination of the variation data, as part of the HapMap
Project (see Supplementary Information for details of informed consent and data release).
The heterogeneity of the sequence data (read lengths from 25 to several hundred base pairs;
single and paired end) reflects the diversity and rapid evolution of the underlying
technologies during the project.
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Analysis to detect and genotype sequence variants differed among variant types and the
three projects, but all workflows shared four features:

»  Discovery. alignment of sequence reads to the reference genome and identification
of candidate sites or regions at which one or more samples differ from the reference
sequence.

e Filtering: use of quality control measures to remove candidate sites that likely
were false positives.

»  Genotyping: estimation of the alleles present in each individual at variant sites or
regions.

» Validation: assaying a subset of newly discovered variants using an independent
technology, enabling the estimation of the false discovery rate. Independent data
sources were used to estimate the accuracy of inferred genotypes.

All primary sequence reads, mapped reads, variant calls, inferred genotypes, estimated
haplotypes and new independent validation data are publically available through the project
website (www.1000genomes.org); filtered sets of variants, allele frequencies and genotypes
were also deposited in doSNP (www.ncbi.nlm.nih.gov/snp).

Alignment and the “accessible genome” —Sequencing reads were aligned to the
NCBI36 reference genome (details in Supplementary Information) and made available in the
BAM file format’, an early innovation of the project for storing and sharing high
throughput sequencing data. Accurate identification of genetic variation depends on
alignment of the sequence data to the correct genomic location. We restricted most variant
calling to the “accessible genome”, defined as that portion of the reference sequence that
remains after excluding regions with many ambiguously placed reads or unexpectedly high
or low numbers of aligned reads (Supplementary Information). This approach balances the
need to reduce incorrect alignments and false positive detection of variants against
maximizing the proportion of the genome that can be interrogated

For the low coverage analysis, the accessible genome contains approximately 85% of the
reference sequence and 93% of the coding sequences. Over 99% of sites genotyped in the
second generation haplotype map (HapMap I1)* are included. Of inaccessible sites, over
97% are annotated as high copy repeats or segmental duplications. However, only one
quarter of previously discovered repeats and segmental duplications were inaccessible
(Supplementary Table 2). Much of the data for the trio project was collected prior to
technical improvements in our ability to map sequence reads robustly to some of the
repeated regions of the genome (primarily longer, paired reads). For these reasons, stringent
alignment was more difficult and a smaller portion of the genome was “accessible” in the
trio project: 80% of the reference, 85% of coding sequence and 97% of HapMap |1 sites
(Table 1).

Calibration, local realignment and assembly—The quality of variant calls is
influenced by many factors including the quantification of base calling error rates in
sequence reads, the accuracy of local read alignment and the method by which individual
genotypes are defined. The project introduced key innovations in each of these areas (see
Supplementary Information). First, base quality scores reported by the image processing
software were empirically recalibrated by tallying the proportion that mismatched the
reference sequence (at non-dbSNP sites) as a function of the reported quality score, position
in read and other characteristics. Second, at potential variant sites local realignment of all
reads was performed jointly across all samples, allowing for alternative alleles that
contained indels. This realignment step substantially reduced errors, because local

Nature. Author manuscript; available in PMC 2011 April 01.


http://www.1000genomes.org
http://www.ncbi.nlm.nih.gov/snp

syduasnue|A Joyiny sispund DA adoin3 ¢

syduosnuelA Joyiny sispun4 DA @doing ¢

Page 5

misalignment, particularly around indels, can be a major source of error in variant calling.
Finally, by initially analysing the data with multiple genotype and variant calling algorithms
and then generating a consensus of these results, the project reduced genotyping error rates
by 40-50% compared to those currently achievable using any one of the methods alone
(Supplementary Figure 1).

We also used local realignment to generate candidate alternative haplotypes in the process of
calling short (1-50 bp) indels'8, as well as local de novo assembly to resolve breakpoints for
deletions greater than 50 bp. The latter resulted in a doubling of the number of large (> 1 kb)
SVs delineated with base pair resolutionl®. Full genome g novo assembly was also
performed (Supplementary Information), resulting in the identification of 3.7 Mb of novel
sequence not matching the reference at a high threshold for assembly quality and novelty.
All novel sequence matched other human and great ape sequences in the public databases.

Rates of variant discovery—In the trio project, with an average mapped sequence
coverage of 42x per individual across six individuals and 2.3 Gb of accessible genome, we
identified 5.9 million SNPs, 650,000 short indels (of 1-50 bp in length), and over 14,000
larger SVs. In the low coverage project, with average mapped coverage of 3.6x per
individual across 179 individuals (Supplementary Fig. 2) and 2.4 Gb of accessible genome,
we identified 14.4 million SNPs, 1.3 million short indels, and over 20,000 larger SVs. In the
exon project, with an average mapped sequence coverage of 56x per individual across 697
individuals and a 1.4 Mb target, we identified 12,758 SNPs and 98 indels.

Experimental validation was used to estimate and control the false discovery rates (FDR) for
novel variants (Supplementary Table 3). The FDR for each complete called set was
controlled to be less than 5% for SNPs and short indels, and less than 10% for structural
variants (FDR for novel variants 2.6% for trio SNPs, 10.9% for low coverage SNPs, 1.7%
for low coverage indels; further data in Supplementary Information and Supplementary
Tables 3, 4a and 4b).

Variation detected by the project is not evenly distributed across the genome: certain
regions, such as the HLA and subtelomeric regions, show high rates of variation, while
others, for example a 5 Mb gene dense and highly conserved region around 3p21, show very
low levels of variation (Supplementary Fig. 3a). At the chromosomal scale we see strong
correlation between different forms of variation, particularly between SNPs and indels
(Supplementary Fig. 3b). However, we also find heterogeneity particular to types of SV, for
example SVs resulting from nonallelic homologous recombination are apparently enriched
in the HLA and in subtelomeric regions (Supplementary Fig. 3b, top).

Variant Novelty—As expected, the vast majority of sites variant in any given individual
were already present in dbSNP; the proportion newly discovered differed substantially
among populations, variant types and allele frequencies (Fig. 1). Novel SNPs had a strong
tendency to be found only in one analysis panel (Fig. 1a). For SNPs also present in dbSNP
version 129 (the last release prior to 1000 Genomes Project data), only 25% were specific to
a single low coverage analysis panel and 56% were found in all panels. On the other hand,
84% of newly discovered SNPs were specific to a single analysis panel whereas only 4%
were found in all analysis panels. In the exon project, where increased depth of coverage and
sample size resulted in a higher fraction of low frequency variants among discovered sites,
96% of novel variants were restricted to samples from a single analysis panel. In contrast,
many novel SVs were identified in all analysis panels, reflecting the lower degree of
previous characterisation (Supplementary Figure 4).
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Populations with African ancestry contributed the largest number of variants and contained
the highest fraction of novel variants, reflecting the greater diversity in African populations.
For example, 63% of novel SNPs in the low coverage project and 76% in the exon project
were discovered in the African populations, compared to 20% and 33% in the European
ancestry populations for the exon and low coverage projects respectively.

The larger sample sizes in the exon and low coverage projects allowed us to detect a large
number of low frequency variants (MAF < 5%, Fig. 1b). Compared to the distribution
expected from population genetic theory (the neutral coalescent with constant population
size) we saw an excess of lower frequency variants in the exon project, reflecting purifying
selection against weakly deleterious mutations and recent population growth. There are
signs of a similar excess in the low coverage project SNPs, truncated below 5% variant
allele frequency by reduction in power of our call set to discover variants in this range, as
discussed further below.

As expected, nearly all of the high frequency SNPs discovered here were already present in
dbSNP; this was particularly true in coding regions (Fig. 1¢). The public databases were
much less complete for SNPs at low frequencies, for short indels and for structural variants
(Fig. 1d). For example, in contrast to coding SNPs (91% of common coding SNPs described
here were already present in dbSNP), approximately 50% of commaon short indels observed
in this project were novel. These results are expected given the sample sizes used in the
sequencing efforts that discovered most of the SNPs previously in dbSNP, and the more
limited, and lower resolution, efforts to characterize indels and larger structural variation
across the genome.

The number of structural variants we observed declined rapidly with increasing variant
length (Fig. 1d), with notable peaks corresponding to Alus and LINEs. The proportion of
larger structural variants that was novel depended markedly on allele size, with variants 10
bp to 5 kb in size most likely to be novel (Fig. 1d). This is expected, as large (> 5 kb)
deletions and duplications were previously discovered using array based approaches!4, 20,
whereas smaller structural variants (apart from polymorphic Alu insertions) had been less
well ascertained prior to this study.

Mitochondrial and Y chromosome sequences—Deep coverage of the mitochondrial
genome allowed us to manually curate sequences for 163 samples (Supplementary
Information). While variants that were fixed within an individual were consistent with the
known phylogeny of the mitochondrial genome (Supplementary Fig. 5), we found a
considerable amount of variation within individuals (heteroplasmy). For example, length
heteroplasmy was detected in 79% of individuals compared with 52% using capillary
sequencing?!, largely in the control region (Supplementary Fig. 6a). Base substitution
heteroplasmy was observed in 45% of samples, seven times higher than reported in the
control region alone?!, and was spread throughout the molecule (Supplementary Fig. 6b).
The extent to which this heteroplasmy arose in cell culture remains unknown, but appears
low (Supplementary Information).

The Y chromosome was sequenced at an average depth of 1.8x in the 77 males in the low
coverage project, and 15.2x depth in the two trio fathers. Using customized analysis
methods (Supplementary Information), we identified 2,870 variable sites, 74% novel, with
55/56 passing independent validation. The Y chromosome phylogeny derived from the new
variants identified novel, well supported clades within some of the 12 major haplogroups
represented among the samples (e.g., O2b in China and Japan; Supplementary Fig. 7). A
striking pattern indicative of a recent rapid expansion specific to haplogroup R1b was
observed, consistent with the postulated Neolithic origin of this haplogroup in Europe?2.

Nature. Author manuscript; available in PMC 2011 April 01.



syduasnue|A Joyiny sispund DA adoin3 ¢

syduosnuelA Joyiny sispun4 DA @doing ¢

Page 7

Power to detect variants

The ability of sequencing to detect a site that is segregating in the population is dominated
by two factors: whether the nonreference allele is present among the individuals chosen for
sequencing, and the number of high quality and well mapped reads that overlap the variant
site in individuals who carry it. Simple models show that for a given total amount of
sequencing, the number of variants discovered is maximised by sequencing many samples at
low coverage23, 24, This is because high coverage of a few genomes, while providing the
highest sensitivity and accuracy in genotyping a single individual, involves considerable
redundancy and misses variation not represented by those samples. The low coverage
project provides us with an empirical view of the power of low coverage sequencing to
detect variants of different types and frequencies.

Fig. 2a shows the rate of discovery of variants in the CEU samples of the low coverage
project as assessed by comparison to external data sources: HapMap and the exon project for
SNPs and array CGH data?? for large deletions. We estimate that while the low coverage
project had only ~25% power to detect singleton SNPs, power to detect SNPs present five
times in the 120 sampled chromosomes was ~90% (depending on the comparator), and
power was essentially complete for those present 10 or more times. Similar results were seen
in the YRI and CHB+JPT analysis panels at high allele counts, but slightly worse
performance for variants present five times (~85% and 75% respectively at HapMap |1 sites;
Supplementary Fig. 8). These results suggest that SNP discovery is less affected by the
extent of LD (which is lowest in the YRI) than sequencing coverage (which was lowest in
the CHB and JPT).

For deletions larger than 500 bp, power was approximately 40% for singletons and reached
90% for variants present ten times or more in the sample set. Our use of different algorithms
for SV discovery ensured that all major mechanistic subclasses of deletions were found in
our analyses (Supplementary Fig. 9). The lack of appropriate comparator datasets for short
indels and larger structural variants other than deletions prevented a detailed assessment of
the power to detect these types of variants. However, power to detect short indels was
approximately 70% for variants present at least 5 times in the sample, based on the
rediscovery of indels in samples overlapping with the SeattleSNPs project?®. Extrapolating
from comparisons to Alu insertions discovered in the Venter genome?® suggested an average
sensitivity for common mobile element insertions of about 75%. Analysis of a set of
duplications?0 suggested only 30-40% of common duplications were discovered here,
mostly as deletions with respect to the reference. Methods capable of discovering inversions
and novel sequence insertions in low coverage data with comparable specificity remain to be
developed.

In summary, low coverage shotgun sequencing provided modest power for singletons in
each sample (~25-40%), and very good power for variants seen 5 or more times in the
samples sequenced. We estimate that there was approximately 95% power to find SNPs with
5% allele frequency in the sequenced samples, and nearly 90% power to find SNPs with 5%
allele frequency in populations related by 1% divergence (Fig. 2b). Thus we believe the
projects found almost all accessible common variation in the sequenced populations and the
vast majority of common variants in closely related populations.

Genotype accuracy

Genotypes, and, where possible, haplotypes, were inferred for all SNPs and short indels, and
for most larger deletions (see Supplementary Information, and Table 1). For the low
coverage data, statistically phased genotypes were derived by using LD structure in addition
to sequence information at each site, in part guided by the HapMap 3 phased haplotypes.
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SNP genotype accuracy varied considerably by pilot, coverage and allele frequency. In the
low coverage project, the overall genotype error rate (based on a consensus of multiple
methods) was 1-3% (Fig. 2¢, Supplementary Fig. 10). The accuracy at heterozygous sites, a
more sensitive measure than overall accuracy, was approximately 90% for the lowest
frequency variants, increased to over 95% for intermediate frequencies and dropped to
70-80% for the highest frequency variants (i.e., those where the reference allele is the rare
allele). We note that these humbers are derived from sites that can be genotyped using array
technology, and performance may be lower in harder to access regions of the genome. We
find only minor differences in genotype accuracy between populations, reflecting
differences in coverage as well as haplotype diversity and extent of LD.

The accuracy of genotypes for large deletions was assessed against previous array based
analyses?? (Supplementary Fig. 11). The genotype error rate across all allele frequencies and
genotypes was < 1%, with the accuracy of heterozygous genotypes at low (MAF < 3%),
intermediate (MAF ~50%) and high frequency (MAF > 97%) variants estimated at 86%,
97% and 83% respectively. The greater apparent genotype accuracy of structural variants
compared to SNPs in the low coverage project reflects the increased number of informative
reads per individual for variants of large size and a bias in the known large deletion
genotype set for larger, easier to genotype variants.

For calling genotypes in the low coverage samples, the utility of using LD information in
addition to sequence data at each site was demonstrated by comparison to genotypes of the
exon project, which were derived independently for each site using high coverage data. Fig.
2d shows the SNP genotype error rate as a function of depth at the genotyped sites in CEU.
A similar number of variants was called, and at comparable accuracy, using minimum 4x
depth in the low coverage project as was obtained with minimum 15x depth in the exon
project. To genotype a high fraction of sites both projects needed to make calls at sites with
low coverage, and the LD-based calling strategy for the low coverage project used
imputation to make calls at nearly 15% more sites with only a modest increase in error rate.

The accuracy and completeness of the individual genome sequences in the low coverage
project could be estimated from the trio mothers, each of whom was sequenced to high
coverage, and for whom data subsampled to 4x were included in the low coverage analysis.
Comparison of the SNP genotypes in the two projects showed that where the CEU mother
had at least one variant allele according to the trio analysis, in 96.9% of cases the variant
was also identified in the low coverage project and in 93.8% of cases the genotype was
accurately inferred. For the YRI trio mother the equivalent figures are 95.0% and 88.4%
respectively (note that false positives in the trio calls will lead to underestimates of the
accuracy).

Putative functional variants

An individual's genome contains many variants of functional consequence, ranging from the
beneficial to the highly deleterious. We estimated that an individual typically differs from
the reference at 10,000-11,000 nonsynonymous sites (sequence differences that lead to
differences in the protein sequence) in addition to 10,000-12,000 synonymous sites
(differences in coding exons that do not lead to differences in the protein sequence; Table 2).
We found a much smaller number of variants likely to have greater functional impact: in
frame indels (190-210), premature stop codons (80-100), splice site disrupting variants
(40-50), and deletions that shift reading frame (220-250), in each individual. We estimated
that each genome is heterozygous for 50-100 variants classified by the Human Gene
Mutation Database (HGMD) as causing inherited disorders (HGMD-DM). Estimates from
the different pilot projects were consistent with each other, taking into consideration
differences in power to detect low frequency variants, fraction of the accessible genome and
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population differences (Table 2), as well as with previous observations based on personal
genome sequencest®, 11, Collectively, we refer to the 340-400 premature stops, splice site
disruptions and frame shifts, affecting 250-300 genes per individual, as putative loss of
function (LOF) variants.

In total, we found over 68,300 nonsynonymous SNPs, 34,161 of which were novel (Table
2). In an early analysis, 21,657 nonsynonymous SNPs were validated as polymorphic in 620
samples using a custom genotyping array (Table 2; Supplementary Information). The mean
minor allele frequency in the array data was 2.2% for 4,573 novel variants, and 26.2% for
previously discovered variants.

Overall we rediscovered 671 (1.3%) of the 50,361 coding single nucleotide variants in
HGMD-DM (Supplementary Table 5). The types of disease for which variants were
identified were biased towards certain categories (Supplementary Fig. 12), with diseases
associated with the eye and reproduction significantly over represented and diseases of the
nervous system significantly underrepresented. These biases reflect multiple factors
including differences in the fitness effects of the variants, the extent of medical genetics
research and differences in the false reporting rate among “disease causing’ variants.

As expected, and consistent with purifying selection, putative functional variants had an
allele frequency spectrum depleted at higher allele frequencies, with putative LOF variants
showing this effect more strongly (Supplementary Fig. 13). Of the low coverage
nonsynonymous, stop-introducing, splice-disrupting and HGMD-DM variants, 67.3%,
77.3%, 82.2% and 84.7%, were private to single populations, compared to 61.1% for
synonymous variants. Across these same functional classes, 15.8%, 25.9%, 21.6% and
19.9% of variants were found in only a single individual, compared to 11.8% of
synonymous variants.

The tendency for deleterious functional variants to have lower allele frequencies has
consequences for the discovery and analysis of this type of variation. In the deeply
sequenced CEU trio father, who was not included in the low coverage project, 97.8% of all
single base variants had been found in the low coverage project, but only 95% of
nonsynonymous, 88% of stop inducing and 85% of HGMD-DM variants. The missed
variants correspond to 389 nonsynonymous, 11 stop inducing and 13 HGMD-DM variants.
As sample size increases, the number of novel variants per sequenced individual will
decrease, but only slowly. Analyses based on the exon project data (Fig. 3) showed that on
average 99% of the synonymous variants in an individual would be found in 100 deeply
sequenced samples, whereas 250 samples would be required to find 99% of nonsynonymous
variants and 320 samples would still find only 97.4% of the LOF variants present in an
individual. Using detection power data from Fig. 2a, we estimated that 250 samples
sequenced at low coverage would be needed to find 99% of the synonymous variants in an
individual, and with 320 sequenced samples 98.5% of nonsynonymous and 96.3% of LOF
variants would be found.

Application to association studies

Whole genome sequencing enables all genetic variants present in a sample set to be tested
directly for association with a given disease or trait. To quantify the benefit of having more
complete ascertainment of genetic variation beyond that achievable with genotyping arrays,
we carried out expression quantitative trait loci (eQTL) association tests on the 142 low
coverage samples for which expression data are available in the cell lines?”. When
association analysis (Spearman rank correlation, FDR < 5%, eQTLs within 50 kb of probe)
was performed using all sites discovered in the low coverage project, a larger number of
significant eQTLs (increase of ~20% to 50%) was observed as compared to association
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analysis restricted to sites present on the lllumina 1M chip (Supplementary Table 6). The
increase was lower in the CHB+JPT and CEU samples, where greater LD exists between
previously examined and newly discovered variants, and higher in the YRI samples, where
there are more novel variants and less LD. These results indicate that, while modern
genotyping arrays capture most of the common variation, there remain substantial additional
contributions to phenotypic variation from the variants not well captured by the arrays.

Population sequencing of large phenotyped cohorts will allow direct association tests for
low frequency variants, with a resolution determined by the LD structure. An alternative that
is less expensive, albeit less accurate, is to impute variants from a sequenced reference panel
into previously genotyped samples28, 29, We evaluated the accuracy of imputation that used
the current low coverage project haplotypes as the reference panel. Specifically, we
compared genotypes derived by deep sequencing of one individual in each trio (the fathers)
with genotypes derived using the HapMap 3 genotype data (which combined data from the
Affymetrix 6.0 and Illumina 1M arrays) in those same two individuals and imputation based
on the low coverage project haplotypes to fill in their missing genotypes. At variant sites
(i.e., where the father was not homozygous for the reference), imputation accuracy was
highest for SNPs at which the minor allele was observed at least 6 times in our low coverage
samples, with an error rate of ~4% in CEU and ~10% in YRI, and became progressively
worse for rarer SNPs, with error rates of 35% for sites where the minor allele was observed
only twice in the low coverage samples (Fig. 4a).

Although the ability to impute rare variants accurately from the 1000 Genomes resource is
currently limited, the completeness of the resource nevertheless increases power to detect
association signals. To demonstrate the utility of imputation in disease samples, we imputed
into an eQTL study of ~400 children of European ancestry3C using the low coverage pilot
data and HapMap Il as reference panels. By comparison to directly genotyped sites we
estimated that the effective sample size at variants imputed from the pilot CEU low
coverage data set is 91% of the true sample size for variants with allele frequencies above
10%, 76% in the allele frequency range 4-6%, and 54% in the range 1-2%. Imputing over 6
million variants from the low coverage project data increased the number of detected cis-
eQTLs by ~16%, compared to a 9% increase with imputing from HapMap 1l (FDR 5%,
signal within 50 kb of transcript; for an example see Fig. 4b).

In addition to this modest increase in the number of discoveries, testing almost all common
variants allows identification of many additional candidate variants that might underlie each
association. For example, we find that rs11078928, a variant in a splice site for GSDMB, is
in strong LD with SNPs near ORDML3 previously associated with asthma, Crohn's Disease,
Type 1 Diabetes and rheumatoid arthritis, thus suggesting the hypothesis that GSDMB could
be the causative gene in these associations. Although rs11078928 is not newly discovered, it
was not included in HapMap or on commercial SNP arrays, and thus could not have been
identified as associated with these diseases prior to this project. Similarly, a recent study3?
used project data to show that coding variants in APOL 1 likely underlie a major risk for
kidney disease in African Americans previously attributed (at a lower effect size) to MYH9.
These examples demonstrate the value of having much more complete information on LD,
the almost complete set of variants in the regions, and putative functional variants in known
association intervals.

Testing almost all common variants also allows us to examine general properties of genetic
association signals. The NHGRI GWAS catalogue (www.genome.gov/gwastudies, accessed
July 15, 2010) described 1,227 unique SNPs associated with one or more traits (p < 5x1078).
Of these, 1,185 (96.5%) are present in the low coverage CEU dataset. Under 30% of these
are either annotated as nonsynonymous variants (77, 6.5%) or in substantial LD (/2 > 0.5)
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with a nonsynonymous variant (272, 23%). In the latter group, only 93 (8.4%) are in strong
LD (72 > 0.9) with a nonsynonymous variant. Since we tested ~95% of common variation,
these results suggest that no more than a third of complex trait association signals are likely
to be caused by common coding variation. Although it remains to be seen whether reported
associations are better explained through weak LD to coding variants with strong effects,
these results are consistent with the view that most contributions of common variation to
complex traits are regulatory in nature.

Mutation, recombination and natural selection

Project sequence data allowed us to investigate fundamental processes that shape human
genetic variation including mutation, recombination and natural selection.

Detecting de novo mutations in trio samples—Deep sequencing of individuals
within a pedigree offers the potential to detect de novo germline mutation events. Our
approach was to allow a relatively high false discovery rate in an initial screen to capture a
large fraction of true events, then use a second technology to rule out false positive
mutations.

In the CEU and YRI trios respectively, 3,236 and 2,750 candidate de novo germline single
base mutations were selected for further study, based on their presence in the child but not
the parents. Of these, 1,001 (CEU) and 669 (YRI) were validated by resequencing the cell
line DNA. When these were tested for segregation to offspring (CEU) or in non-clonal DNA
from whole blood (YRI), only 49 CEU and 36 YRI candidates were confirmed as true
germline mutations. Correcting for the fraction of the genome accessible to this analysis
provided an estimate of the per generation base pair mutation rate of 1.2x1078 and 1.0x1078
in the CEU and YRI trios respectively. These values are similar to estimates obtained from
indirect evolutionary comparisons32, direct studies based on pathogenic mutations33, and a
recent analysis of a single family34.

We infer that the remaining vast majority (952 CEU and 633 YRI) of the validated variants
were somatic or cell line mutations. The greater number of these validated non-germline
mutations in the CEU cell line perhaps reflects the greater age of the CEU cell culture.
Across the two trio offspring, we observed a single, synonymous, coding germline mutation,
and 17 coding non-germline mutations of which 16 were nonsynonymous, perhaps
suggesting selection during cell culture.

Although the number of non-germline variants found per individual is a very small fraction
of the total number of variants per individual (~0.03% for the CEU child and ~0.02% for the
YRI child), these variants will not be shared between samples. Assuming that the number of
non-germline mutations in these two trios is representative of all cell line DNA we analysed,
we estimate that non-germline mutations might constitute 0.36% and 2.4% of all variants,
and 0.61% and 3.1% of functional variants, in the low coverage and exon pilots respectively.
In larger samples of thousands the overall false positive rates from cell line mutations would
become significant, and confound interpretation, suggesting that large scale studies should
use DNA from primary tissue such as blood where possible.

Constraint around genes and the effects of selection on local variation—
Natural selection can affect levels of DNA variation across genes in multiple ways: strongly
deleterious mutations will be rapidly eliminated by natural selection, weakly deleterious
mutations can segregate in populations but rarely become fixed, and selection at nearby sites
(both purifying and adaptive) can reduce genetic variation through background selection3®
and the hitchhiking effect36. The effect of these different forces on genetic variation can be
disentangled by examining patterns of diversity and divergence within and around known
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functional elements. The low coverage data enables, for the first time, genome wide analysis
of such patterns in multiple populations. Fig. 5a (top) shows the pattern of diversity relative
to genic regions measured by aggregating estimates of heterozygosity around protein coding
genes. Within genes, exons harbor the least diversity (about 50% of that of introns) and 5
and 3" UTRs harbor slightly less diversity than immediate flanking regions and introns.
However, this variation in diversity is fully explained by the level of divergence (Fig. 5a
lower) consistent with the common part of the allele frequency spectrum being dominated
by effectively neutral variants, and weakly deleterious variants contributing only to the rare
end of the frequency spectrum.

In contrast, diversity in the immediate vicinity of genes (scaled by divergence) is reduced by
approximately 10% relative to sites distant from any gene (Fig 5b). Although a similar
reduction has been seen previously in gene dense regions3’, project data enable the scale of
the effect to be determined. We find that the reduction extends up to 0.1cM away from
genes, typically 120 kb, suggesting that selection at linked sites restricts variation relative to
neutral levels across the majority of the human genome.

Positive selection and the distribution of genetic variation among populations
—Previous inferences about demographic history and the role of local adaptation in shaping
human genetic variation made from genome wide genotype data?, 38, 39 have been limited
by the partial and complex ascertainment of SNPs on genotype arrays. While data from the
1000 Genome Project pilots are neither fully comprehensive nor fully free of ascertainment
bias (issues include low power for rare variants, noise in allele frequency estimates, some
false positives, non-random data collection across samples, platforms and populations, and
the use of imputed genotypes), they can be used to address key questions about the extent of
differentiation among populations, the presence of highly differentiated variants and the
ability to fine map signals of local adaptation.

Although the average level of population differentiation is low (at sites genotyped in all
populations the mean value of Wright's Fst is 0.071 between CEU and YRI, 0.083 between
YRI and CHB+JPT and 0.052 between CHB+JPT and CEU), we find several hundred
thousand SNPs with large allele frequency differences in each population comparison (Fig.
5¢). As seen in previous studies?, 39, the most highly differentiated sites were enriched for
nonsynonymous variants, suggestive of the action of local adaptation. The completeness of
common variants in the low coverage resource enables new perspectives in the search for
local adaptation. First, it provides a more comprehensive catalogue of fixed differences
between populations, of which there are very few: two between CEU and CHB+JPT
(including the A111T missense variant in SLC24A540 contributing to light skin colour), four
between CEU and YRI (including the —46 GATA box null mutation upstream of DARC*,
the Duffy O allele leading to v/vax malaria resistance) and 72 between CHB+JPT and YRI,
including 24 around the exocyst complex component gene EXOC6B; see Supplementary
Table 7 for a complete list. Second, it provides new candidates for selected variants, genes
and pathways. For example, we identified 139 nonsynonymous (NS) variants showing large
allele frequency differences (at least 0.8) between populations (Supplementary Table 8),
including at least two genes involved in meiotic recombination, FANCA (9th most extreme
NS SNP in CEU vs CHB+JPT) and 7EX15 (13th most extreme NS SNP in CEU vs YR,
and 26th most extreme NS SNP in CHB+JPT vs YRI). Because we are finding almost all
common variants in each population, these lists should contain the vast majority of the near
fixed differences among these populations. Finally, it enables fine mapping of the signals of
local selective sweeps (Supplementary Fig. 14) and a characterisation of the footprint of
such events on local variation. For example, we find that the signal of population
differentiation around high differentiation genic SNPs is typically less than 0.2 ¢cM (Fig. 5d),
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suggesting that the signal of local adaptation should typically be resolved to one or a few
genes.

The effect of recombination on local sequence evolution—We estimated a fine-
scale genetic map from the phased low coverage genotypes. Recombination hotspots were
narrower than previously estimated* (mean hotspot width of 2.3 kb compared to 5.5 kb in
HapMap Il; Fig. 6a), although, unexpectedly, the estimated average peak recombination rate
in hotspots is lower in YRI (13 cM/Mb) than in CEU and CHB+JPT (20cM/Mb). In
addition, crossover activity is less concentrated in the genome in YRI, with 70% of
recombination occurring in 10% of the sequence rather than 80% of the recombination for
CEU and CHB+JPT (Fig. 6b). A possible biological basis for these differences is that
PRDMO9, which binds a DNA motif strongly enriched in hotspots and influences the activity
of LD-defined hotspots#2-4> | shows length variation in its DNA binding zinc fingers within
populations, and substantial differentiation between African and non-African populations,
with a greater allelic diversity in Africa®®. This could mean greater diversity of hotspot
locations within Africa and therefore a less concentrated picture in this data set of
recombination and lower usage of LD-defined hotspots (which require evidence in at least
two populations and therefore will not reflect hotspots present only in Africa).

The low coverage data also allowed us to address a longstanding debate about whether
recombination has any local mutagenic effect. Direct examination of diversity around
hotspots defined from LD data is potentially biased (because the detection of hotspots
requires variation to be present), but we can without bias examine rates of SNP variation and
recombination around the PRDM9 binding motif associated with hotspots. Fig. 6¢ shows the
local recombination rate and pattern of SNP variation around the motif compared to the
same plots around a motif that is a single base difference away. While the motif is associated
with a sharp peak in recombination rate, there is no systematic effect on local rates of SNP
variation. We infer that, although recombination may influence the fate of new mutations,
for example through biased gene conversion, there is no evidence that it influences the rate
at which new variants appear.

Discussion

The 1000 Genomes Project launched in 2008 with the goal of creating a public reference
database for DNA polymorphism that is 95% complete at allele frequency 1%, and more
complete for common variants and exonic variants, in each of multiple human population
groups. The three pilot projects described here were designed to develop and evaluate
methods to use high throughput sequencing to achieve these goals. The results indicate (a)
that robust protocols now exist for generating both whole genome shotgun and targeted
sequence data, (b) that algorithms to detect variants from each of these designs have been
validated and (c) that low coverage sequencing offers an efficient approach to detect
variation genome wide, whereas targeted sequencing offers an efficient approach to detect
and accurately genotype rare variants in regions of functional interest (such as exons).

Data from the pilot projects are already informing medical genetic studies. As shown in our
analysis of prior eQTL datasets, a more complete catalogue of genetic variation can identify
signals previously missed and dramatically increase the number of identified candidate
functional alleles at each locus. Project data have been used to impute over 6 million genetic
variants into GWAS, for traits as diverse as smoking#® and multiple sclerosis*’, as an
exclusionary filter in Mendelian disease studies*8 and tumor sequencing studies, and to
design the next generation of genotyping arrays.
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The results from this study also provide a template for future genome-wide sequencing
studies on larger sample sets. Our plans for achieving the 1000 Genomes Project goals are
described in Box 2. Other studies using phenotyped samples are already using components
of the design and analysis framework described above.

Measurement of human DNA variation is an essential prerequisite for carrying out human
genetics research. The 1000 Genomes Project represents a step towards a complete
description of polymorphic human DNA sequence variation. The larger dataset provided by
the full 2000 Genomes Project will allow more accurate imputation of variants in GWAS
and thus better localization of disease associated variants. The project will provide a
template for studies using genome wide sequence data. Applications of these data, and the
methods developed to generate them, will contribute to a much more comprehensive
understanding of the role of inherited DNA variation in human history, evolution and
disease.

Box 2
Design of the Full 1000 Genomes Project

The production phase of the full 2000 Genomes Project will combine low coverage
whole genome sequencing, array based genotyping, and deep targeted sequencing of all
coding regions in 2,500 individuals from five large regions of the world (five population
samples of 100 in or with ancestry from each of Europe, East Asia, South Asia and West
Africa, and seven populations totalling 500 from the Americas; Supplementary Table 9).
We will increase the low coverage average depth to over 4x per individual, and use blood
derived DNA where possible to minimise somatic and cell line false positives.

A clustered sampling approach was chosen to improve low frequency variant detection in
comparison to a design in which a smaller number of populations were sampled to a
greater depth. In a region containing a cluster of related populations, genetic drift can
lead variants that are at low frequency overall to be more common (hence easily
detectable) in one population but less common (hence likely to be undetectable) in
another. We modelled this process using project data (see Supplementary Information)
assuming that five sampled populations are equally closely related to each other (Fst =
1%). We found that the low coverage sequencing in this design would discover 95% of
variants in the accessible genome at 1% frequency across each broad geographic region,
between 90% and 95% of variants at 1% frequency in any one of the sampled
populations and about 85% of variants at 1% frequency in any equally related but
unsampled population. The chart shows predicted discovery curves for variants at
different frequencies with details as for Fig. 2b. The model is conservative, in that it
ignores migration and the contribution to discovery from more distantly related
populations, each of which will increase sensitivity for variants in any given population.
In exons, the full project should have 95% power to detect variants at a frequency of
0.3% and approximately 60% power for variants at a frequency of 0.1%.

In addition to improved detection power, we expect the full project to have increased
genotype accuracy due to (a) advances in sequencing technology that are reducing per
base error rates and alignment artefacts, (b) increased sample size, which improves
imputation based methods, (c) ongoing algorithmic improvements, and (d) the designing
by the project of genotyping assays that will directly genotype up to 10 million common
and low frequency variants (SNPs, indels and SVs) observed in the low coverage data. In
addition, we expect the fraction of the genome that is accessible to increase. Longer read
lengths, improved protocols for generating paired reads, and the use of more powerful
assembly based alignment methods are expected to increase accessibility from 80-85% to
above 90% of the reference genome (Supplementary Fig. 15).
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Figure 1. Properties of the variantsfound

a, Venn diagrams showing the numbers of SNPs identified in each pilot project in each
population or analysis panel, subdivided according to whether the SNP was present in
dbSNP release 129 (“Known”) or not (“Novel”). Exon analysis panel AFR is YRI+LWK,
ASN is CHB+CHD+JPT, and EUR is CEU+TSI. Note that the scale for the exon project
column is much larger than for the other pilots. b, The number of variants per Mb at
different allele frequencies divided by the expectation under the neutral coalescent (1//,
where 7is the variant allele count), thus giving an estimate of theta per megabase. Blue: low
coverage SNPs, red: low coverage indels, black: low coverage genotyped large deletions,
green: exon SNPs. The spikes at the right ends of the lines correspond to excess variants for
which all samples differed from the reference (approximately 1 per 30 kb), consistent with
errors in the reference sequence. c, Fraction of variants in each allele frequency class that
were novel. Novelty was determined by comparison to dbSNP release 129 for SNPs and
small indels, dbVar (June 2010) for deletions, and two published genomes'?, 11 for larger
indels. d, Size distribution and novelty of variants discovered in the low coverage project.
SNPs are shown in blue, deletions with respect to the reference sequence in red, and
insertions or duplications with respect to the reference in green. The fraction of variants in
each size bin that were novel is shown by the purple line, and is defined relative to dbSNP
(SNPs and indels), dbVar (deletions, duplications, mobile element insertions), dbRIP and
other studies*® (mobile element insertions), Venter and Watson genomes1?, 11 (indels and
deletions), and indels from split capillary reads®° (indels and deletions). To account for
ambiguous placement of many indels, discovered indels were deemed to match known
indels if they were within 25 bp of a known indel of the same size. To account for imprecise
knowledge of the location of most deletions and duplications, discovered variants were
deemed to match known variants if they had > 50% reciprocal overlap.
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Figure 2. Variant discovery ratesand genotype accuracy in the low coverage project

a, Rates of low coverage variant detection by allele frequency in CEU. Lines show the
fraction of variants seen in overlapping samples in independent studies, that were also found
to be polymorphic in the low coverage project (in the same overlapping samples), as a
function of allele count in the 60 low coverage samples. Note that we plot power against
expected allele count in 60 samples, e.g. a variant present in, say, 2 copies in an overlap of
30 samples is expected to be present 4 times in 60 samples. The crosses on the right
represent the average discovery fraction for all variants having more than 10 copies in the
sample. Colours correspond to: (red) HapMap 11 sites, excluding sites also in HapMap 3 (43
overlapping samples); (blue) exon project sites (57 overlapping samples); (green) deletions
from Conrad et al.20 (60 overlapping samples; deletions were classified as “found” if there
was any overlap). b, Estimated rates of discovery of variants at different frequencies in the
CEU (blue), a population related to the CEU with Fst = 1% (green) and across Europe as a
whole (light blue). The insert shows a cartoon of the statistical model for population history
and thus allele frequencies in related populations where an ancestral population gave rise to
many equally related populations, one of which (blue circle) has samples sequenced. ¢, SNP
genotype accuracy by allele frequency in the CEU low coverage project, measured by
comparison to HapMap Il genotypes at sites present in both call sets, excluding sites that
were also in HapMap 3. Lines represent the average accuracy of homozygote reference
(red), heterozygote (green) and homozygote alternative calls (blue) as a function of the
alternative allele count in the overlapping set of 43 samples, and the overall genotype error
rate (grey, at bottom of plot). The inset shows the number of each genotype class as a
function of alternative allele count. d, Coverage and accuracy for the low coverage and exon
projects as a function of depth threshold. For 41 CEU samples sequenced in both the exon
and low coverage projects, on the x axis is shown the number of non-reference SNP
genotype calls at HapMap 11 sites not in HapMap 3 that were called in the exon project
target region, and on the y axis is shown the number of these calls that were not variant (i.e.,
are reference homozygote and thus incorrectly were called as variant) according to HapMap
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I1. Each point plotted corresponds to a minimum depth threshold for called sites. Grey lines
show constant error rates. The exon project calls (red) were made independently per sample,
whereas the low coverage calls (blue), which were only slightly less accurate, were made
using LD information that combined partial information across samples and sites in an
imputation-based algorithm. The additional data added from point “1” to point “0” (upper
right in the figure) for the low coverage project were completely imputed.
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Figure 3. Thevalue of additional samplesfor variant discovery

The fraction of variants present in an individual that would not have been found in a
sequenced reference panel, as a function of reference panel size and the sequencing strategy.
The lines represent predictions for Synonymous (Syn), Nonsynonymous (NonSyn), and
Loss of function (LOF) variant classes, broken down by sequencing category: full
sequencing as for exons (Full) and low coverage sequencing (LowCov). The values were
calculated from observed distributions of variants of each class in 321 East Asian samples
(CHB, CHD and JPT populations) in the exon data, and power to detect variants at low
allele counts in the reference panel from Figure 2a.
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Figure 4. Imputation from the low coverage data
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a, Accuracy of imputing variant genotypes using HapMap 3 sites to impute sites from the
low coverage (LC) project into the trio fathers as a function of allele frequency. Accuracy of

imputing genotypes from the HapMap 11 reference panels? is also shown. Imputation

accuracy for common variants was generally a few percent worse from the low coverage
project than from HapMap, although error rates increase for less common variants. b, An
example of imputation in a cis-eQTL for 7/MMZ22, for which the original llumina 300K

genotype data gave a weak signal3. Imputation using HapMap data made a small

improvement, and imputation using low coverage haplotypes provided a much stronger

signal.
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Figure5. Variation around genes

a, Diversity in genes calculated from the CEU low coverage genotype calls (upper) and
diversity divided by divergence between humans and rhesus macaque (lower). Within each
element averaged diversity is shown for the first and last 25 base pairs, with the remaining
150 positions sampled at fixed distances across the element (elements shorter than 150 base
pairs were not considered). Note that estimates of diversity will be reduced compared to the
true population value due to the reduced power for rare variants, but relative values should
be little affected. b, Average autosomal diversity divided by divergence, as a function of
genetic distance from coding transcripts, calculated at putatively neutral sites, i.e., excluding
phastcons conserved noncoding sequences and all sites in coding exons but four-fold
degenerate sites. ¢, Numbers of SNPs showing increasingly high levels of differentiation in
allele frequency between the CEU and CHB+JPT (red), CEU and YRI (green) and CHB
+JPT and YRI (blue). Lines indicate synonymous variants (dashed), nonsynonymous
variants (dotted) and other variants (solid). The most highly differentiated genic SNPs were
enriched for nonsynonymous variants, indicating local adaptation. d, The decay of
population differentiation around genic SNPs showing extreme allele frequency differences
between populations (difference in frequency of at least 0.8 between populations, thinned so
there is no more than one per gene considered). For all such SNPs the highest allele
frequency difference in bins of 0.01 cM away from the variant was recorded and averaged.
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Figure 6. Recombination

a, Improved resolution of hotspot boundaries. The average recombination rate estimated
from low coverage project data around recombination hotspots detected in HapMap I1.
Recombination hotspots were narrower, and in CEU (orange) and CHB+JPT (purple) more
intense than previously estimated. b, The concentration of recombination in a small fraction
of the genome, one line per chromosome. If recombination were uniformly distributed
throughout the genome, then the lines on this figure would appear along the diagonal.
Instead, most recombination occurs in a small fraction of the genome. Recombination rates
in YRI (green) appeared to be less concentrated in recombination hotspots than CEU
(orange) or CHB+JPT (purple). HapMap 1l estimates are shown in black. c, The relationship
between genetic variation and recombination rates in the YRI population. The top plot
shows average levels of diversity, measured as mean number of segregating sites per base,
surrounding occurrences of the previously described hotspot motif 43 (CCTCCCTNNCCAC,
red line) and a closely related, but not recombinogenic DNA sequence
(CTTCCCTNNCCAC, green line). The lighter red and green shaded areas give 95%
confidence intervals on diversity levels. The bottom plot shows estimated mean
recombination rates surrounding motif occurrences, with colours defined as in the top plot.
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